1 /*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <errno.h>
18 #include <fcntl.h>
19 #include <libgen.h>
20 #include <poll.h>
21 #include <pthread.h>
22 #include <stdio.h>
23 #include <stdlib.h>
24 #include <string.h>
25 #include <sys/socket.h>
26 #include <sys/types.h>
27 #include <sys/wait.h>
28 #include <unistd.h>
29
30 #include <algorithm>
31
32 #include <android-base/macros.h>
33 #include <cutils/klog.h>
34 #include <log/log.h>
35 #include <logwrap/logwrap.h>
36
37 static pthread_mutex_t fd_mutex = PTHREAD_MUTEX_INITIALIZER;
38 // Protected by fd_mutex. These signals must be blocked while modifying as well.
39 static pid_t child_pid;
40 static struct sigaction old_int;
41 static struct sigaction old_quit;
42 static struct sigaction old_hup;
43
44 #define ERROR(fmt, args...) \
45 do { \
46 fprintf(stderr, fmt, ##args); \
47 ALOG(LOG_ERROR, "logwrapper", fmt, ##args); \
48 } while (0)
49
50 #define FATAL_CHILD(fmt, args...) \
51 do { \
52 ERROR(fmt, ##args); \
53 _exit(-1); \
54 } while (0)
55
56 #define MAX_KLOG_TAG 16
57
58 /* This is a simple buffer that holds up to the first beginning_buf->buf_size
59 * bytes of output from a command.
60 */
61 #define BEGINNING_BUF_SIZE 0x1000
62 struct beginning_buf {
63 char* buf;
64 size_t alloc_len;
65 /* buf_size is the usable space, which is one less than the allocated size */
66 size_t buf_size;
67 size_t used_len;
68 };
69
70 /* This is a circular buf that holds up to the last ending_buf->buf_size bytes
71 * of output from a command after the first beginning_buf->buf_size bytes
72 * (which are held in beginning_buf above).
73 */
74 #define ENDING_BUF_SIZE 0x1000
75 struct ending_buf {
76 char* buf;
77 ssize_t alloc_len;
78 /* buf_size is the usable space, which is one less than the allocated size */
79 ssize_t buf_size;
80 ssize_t used_len;
81 /* read and write offsets into the circular buffer */
82 int read;
83 int write;
84 };
85
86 /* A structure to hold all the abbreviated buf data */
87 struct abbr_buf {
88 struct beginning_buf b_buf;
89 struct ending_buf e_buf;
90 int beginning_buf_full;
91 };
92
93 /* Collect all the various bits of info needed for logging in one place. */
94 struct log_info {
95 int log_target;
96 char klog_fmt[MAX_KLOG_TAG * 2];
97 const char* btag;
98 bool abbreviated;
99 FILE* fp;
100 struct abbr_buf a_buf;
101 };
102
103 /* Forware declaration */
104 static void add_line_to_abbr_buf(struct abbr_buf* a_buf, char* linebuf, int linelen);
105
106 /* Return 0 on success, and 1 when full */
add_line_to_linear_buf(struct beginning_buf * b_buf,char * line,ssize_t line_len)107 static int add_line_to_linear_buf(struct beginning_buf* b_buf, char* line, ssize_t line_len) {
108 int full = 0;
109
110 if ((line_len + b_buf->used_len) > b_buf->buf_size) {
111 full = 1;
112 } else {
113 /* Add to the end of the buf */
114 memcpy(b_buf->buf + b_buf->used_len, line, line_len);
115 b_buf->used_len += line_len;
116 }
117
118 return full;
119 }
120
add_line_to_circular_buf(struct ending_buf * e_buf,char * line,ssize_t line_len)121 static void add_line_to_circular_buf(struct ending_buf* e_buf, char* line, ssize_t line_len) {
122 ssize_t free_len;
123 ssize_t needed_space;
124 int cnt;
125
126 if (e_buf->buf == nullptr) {
127 return;
128 }
129
130 if (line_len > e_buf->buf_size) {
131 return;
132 }
133
134 free_len = e_buf->buf_size - e_buf->used_len;
135
136 if (line_len > free_len) {
137 /* remove oldest entries at read, and move read to make
138 * room for the new string */
139 needed_space = line_len - free_len;
140 e_buf->read = (e_buf->read + needed_space) % e_buf->buf_size;
141 e_buf->used_len -= needed_space;
142 }
143
144 /* Copy the line into the circular buffer, dealing with possible
145 * wraparound.
146 */
147 cnt = std::min(line_len, e_buf->buf_size - e_buf->write);
148 memcpy(e_buf->buf + e_buf->write, line, cnt);
149 if (cnt < line_len) {
150 memcpy(e_buf->buf, line + cnt, line_len - cnt);
151 }
152 e_buf->used_len += line_len;
153 e_buf->write = (e_buf->write + line_len) % e_buf->buf_size;
154 }
155
156 /* Log directly to the specified log */
do_log_line(struct log_info * log_info,const char * line)157 static void do_log_line(struct log_info* log_info, const char* line) {
158 if (log_info->log_target & LOG_KLOG) {
159 klog_write(6, log_info->klog_fmt, line);
160 }
161 if (log_info->log_target & LOG_ALOG) {
162 ALOG(LOG_INFO, log_info->btag, "%s", line);
163 }
164 if (log_info->log_target & LOG_FILE) {
165 fprintf(log_info->fp, "%s\n", line);
166 }
167 }
168
169 /* Log to either the abbreviated buf, or directly to the specified log
170 * via do_log_line() above.
171 */
log_line(struct log_info * log_info,char * line,int len)172 static void log_line(struct log_info* log_info, char* line, int len) {
173 if (log_info->abbreviated) {
174 add_line_to_abbr_buf(&log_info->a_buf, line, len);
175 } else {
176 do_log_line(log_info, line);
177 }
178 }
179
180 /*
181 * The kernel will take a maximum of 1024 bytes in any single write to
182 * the kernel logging device file, so find and print each line one at
183 * a time. The allocated size for buf should be at least 1 byte larger
184 * than buf_size (the usable size of the buffer) to make sure there is
185 * room to temporarily stuff a null byte to terminate a line for logging.
186 */
print_buf_lines(struct log_info * log_info,char * buf,int buf_size)187 static void print_buf_lines(struct log_info* log_info, char* buf, int buf_size) {
188 char* line_start;
189 char c;
190 int i;
191
192 line_start = buf;
193 for (i = 0; i < buf_size; i++) {
194 if (*(buf + i) == '\n') {
195 /* Found a line ending, print the line and compute new line_start */
196 /* Save the next char and replace with \0 */
197 c = *(buf + i + 1);
198 *(buf + i + 1) = '\0';
199 do_log_line(log_info, line_start);
200 /* Restore the saved char */
201 *(buf + i + 1) = c;
202 line_start = buf + i + 1;
203 } else if (*(buf + i) == '\0') {
204 /* The end of the buffer, print the last bit */
205 do_log_line(log_info, line_start);
206 break;
207 }
208 }
209 /* If the buffer was completely full, and didn't end with a newline, just
210 * ignore the partial last line.
211 */
212 }
213
init_abbr_buf(struct abbr_buf * a_buf)214 static void init_abbr_buf(struct abbr_buf* a_buf) {
215 char* new_buf;
216
217 memset(a_buf, 0, sizeof(struct abbr_buf));
218 new_buf = static_cast<char*>(malloc(BEGINNING_BUF_SIZE));
219 if (new_buf) {
220 a_buf->b_buf.buf = new_buf;
221 a_buf->b_buf.alloc_len = BEGINNING_BUF_SIZE;
222 a_buf->b_buf.buf_size = BEGINNING_BUF_SIZE - 1;
223 }
224 new_buf = static_cast<char*>(malloc(ENDING_BUF_SIZE));
225 if (new_buf) {
226 a_buf->e_buf.buf = new_buf;
227 a_buf->e_buf.alloc_len = ENDING_BUF_SIZE;
228 a_buf->e_buf.buf_size = ENDING_BUF_SIZE - 1;
229 }
230 }
231
free_abbr_buf(struct abbr_buf * a_buf)232 static void free_abbr_buf(struct abbr_buf* a_buf) {
233 free(a_buf->b_buf.buf);
234 free(a_buf->e_buf.buf);
235 }
236
add_line_to_abbr_buf(struct abbr_buf * a_buf,char * linebuf,int linelen)237 static void add_line_to_abbr_buf(struct abbr_buf* a_buf, char* linebuf, int linelen) {
238 if (!a_buf->beginning_buf_full) {
239 a_buf->beginning_buf_full = add_line_to_linear_buf(&a_buf->b_buf, linebuf, linelen);
240 }
241 if (a_buf->beginning_buf_full) {
242 add_line_to_circular_buf(&a_buf->e_buf, linebuf, linelen);
243 }
244 }
245
print_abbr_buf(struct log_info * log_info)246 static void print_abbr_buf(struct log_info* log_info) {
247 struct abbr_buf* a_buf = &log_info->a_buf;
248
249 /* Add the abbreviated output to the kernel log */
250 if (a_buf->b_buf.alloc_len) {
251 print_buf_lines(log_info, a_buf->b_buf.buf, a_buf->b_buf.used_len);
252 }
253
254 /* Print an ellipsis to indicate that the buffer has wrapped or
255 * is full, and some data was not logged.
256 */
257 if (a_buf->e_buf.used_len == a_buf->e_buf.buf_size) {
258 do_log_line(log_info, "...\n");
259 }
260
261 if (a_buf->e_buf.used_len == 0) {
262 return;
263 }
264
265 /* Simplest way to print the circular buffer is allocate a second buf
266 * of the same size, and memcpy it so it's a simple linear buffer,
267 * and then cal print_buf_lines on it */
268 if (a_buf->e_buf.read < a_buf->e_buf.write) {
269 /* no wrap around, just print it */
270 print_buf_lines(log_info, a_buf->e_buf.buf + a_buf->e_buf.read, a_buf->e_buf.used_len);
271 } else {
272 /* The circular buffer will always have at least 1 byte unused,
273 * so by allocating alloc_len here we will have at least
274 * 1 byte of space available as required by print_buf_lines().
275 */
276 char* nbuf = static_cast<char*>(malloc(a_buf->e_buf.alloc_len));
277 if (!nbuf) {
278 return;
279 }
280 int first_chunk_len = a_buf->e_buf.buf_size - a_buf->e_buf.read;
281 memcpy(nbuf, a_buf->e_buf.buf + a_buf->e_buf.read, first_chunk_len);
282 /* copy second chunk */
283 memcpy(nbuf + first_chunk_len, a_buf->e_buf.buf, a_buf->e_buf.write);
284 print_buf_lines(log_info, nbuf, first_chunk_len + a_buf->e_buf.write);
285 free(nbuf);
286 }
287 }
288
289 static void signal_handler(int signal_num);
290
block_signals(sigset_t * oldset)291 static void block_signals(sigset_t* oldset) {
292 sigset_t blockset;
293
294 sigemptyset(&blockset);
295 sigaddset(&blockset, SIGINT);
296 sigaddset(&blockset, SIGQUIT);
297 sigaddset(&blockset, SIGHUP);
298 pthread_sigmask(SIG_BLOCK, &blockset, oldset);
299 }
300
unblock_signals(sigset_t * oldset)301 static void unblock_signals(sigset_t* oldset) {
302 pthread_sigmask(SIG_SETMASK, oldset, nullptr);
303 }
304
setup_signal_handlers(pid_t pid)305 static void setup_signal_handlers(pid_t pid) {
306 struct sigaction handler = {.sa_handler = signal_handler};
307
308 child_pid = pid;
309 sigaction(SIGINT, &handler, &old_int);
310 sigaction(SIGQUIT, &handler, &old_quit);
311 sigaction(SIGHUP, &handler, &old_hup);
312 }
313
restore_signal_handlers()314 static void restore_signal_handlers() {
315 sigaction(SIGINT, &old_int, nullptr);
316 sigaction(SIGQUIT, &old_quit, nullptr);
317 sigaction(SIGHUP, &old_hup, nullptr);
318 child_pid = 0;
319 }
320
signal_handler(int signal_num)321 static void signal_handler(int signal_num) {
322 if (child_pid == 0 || kill(child_pid, signal_num) != 0) {
323 restore_signal_handlers();
324 raise(signal_num);
325 }
326 }
327
parent(const char * tag,int parent_read,pid_t pid,int * chld_sts,int log_target,bool abbreviated,const char * file_path,bool forward_signals)328 static int parent(const char* tag, int parent_read, pid_t pid, int* chld_sts, int log_target,
329 bool abbreviated, const char* file_path, bool forward_signals) {
330 int status = 0;
331 char buffer[4096];
332 struct pollfd poll_fds[] = {
333 {
334 .fd = parent_read,
335 .events = POLLIN,
336 },
337 };
338 int rc = 0;
339 int fd;
340
341 struct log_info log_info;
342
343 int a = 0; // start index of unprocessed data
344 int b = 0; // end index of unprocessed data
345 int sz;
346 bool found_child = false;
347 // There is a very small chance that opening child_ptty in the child will fail, but in this case
348 // POLLHUP will not be generated below. Therefore, we use a 1 second timeout for poll() until
349 // we receive a message from child_ptty. If this times out, we call waitpid() with WNOHANG to
350 // check the status of the child process and exit appropriately if it has terminated.
351 bool received_messages = false;
352 char tmpbuf[256];
353
354 log_info.btag = basename(tag);
355 if (!log_info.btag) {
356 log_info.btag = tag;
357 }
358
359 if (abbreviated && (log_target == LOG_NONE)) {
360 abbreviated = 0;
361 }
362 if (abbreviated) {
363 init_abbr_buf(&log_info.a_buf);
364 }
365
366 if (log_target & LOG_KLOG) {
367 snprintf(log_info.klog_fmt, sizeof(log_info.klog_fmt), "<6>%.*s: %%s\n", MAX_KLOG_TAG,
368 log_info.btag);
369 }
370
371 if ((log_target & LOG_FILE) && !file_path) {
372 /* No file_path specified, clear the LOG_FILE bit */
373 log_target &= ~LOG_FILE;
374 }
375
376 if (log_target & LOG_FILE) {
377 fd = open(file_path, O_WRONLY | O_CREAT | O_CLOEXEC, 0664);
378 if (fd < 0) {
379 ERROR("Cannot log to file %s\n", file_path);
380 log_target &= ~LOG_FILE;
381 } else {
382 lseek(fd, 0, SEEK_END);
383 log_info.fp = fdopen(fd, "a");
384 }
385 }
386
387 log_info.log_target = log_target;
388 log_info.abbreviated = abbreviated;
389
390 while (!found_child) {
391 int timeout = received_messages ? -1 : 1000;
392 if (TEMP_FAILURE_RETRY(poll(poll_fds, arraysize(poll_fds), timeout)) < 0) {
393 ERROR("poll failed\n");
394 rc = -1;
395 goto err_poll;
396 }
397
398 if (poll_fds[0].revents & POLLIN) {
399 received_messages = true;
400 sz = TEMP_FAILURE_RETRY(read(parent_read, &buffer[b], sizeof(buffer) - 1 - b));
401
402 sz += b;
403 // Log one line at a time
404 for (b = 0; b < sz; b++) {
405 if (buffer[b] == '\r') {
406 if (abbreviated) {
407 /* The abbreviated logging code uses newline as
408 * the line separator. Lucikly, the pty layer
409 * helpfully cooks the output of the command
410 * being run and inserts a CR before NL. So
411 * I just change it to NL here when doing
412 * abbreviated logging.
413 */
414 buffer[b] = '\n';
415 } else {
416 buffer[b] = '\0';
417 }
418 } else if (buffer[b] == '\n') {
419 buffer[b] = '\0';
420 log_line(&log_info, &buffer[a], b - a);
421 a = b + 1;
422 }
423 }
424
425 if (a == 0 && b == sizeof(buffer) - 1) {
426 // buffer is full, flush
427 buffer[b] = '\0';
428 log_line(&log_info, &buffer[a], b - a);
429 b = 0;
430 } else if (a != b) {
431 // Keep left-overs
432 b -= a;
433 memmove(buffer, &buffer[a], b);
434 a = 0;
435 } else {
436 a = 0;
437 b = 0;
438 }
439 }
440
441 if (!received_messages || (poll_fds[0].revents & POLLHUP)) {
442 int ret;
443 sigset_t oldset;
444
445 if (forward_signals) {
446 // Our signal handlers forward these signals to 'child_pid', but waitpid() may reap
447 // the child, so we must block these signals until we either 1) conclude that the
448 // child is still running or 2) determine the child has been reaped and we have
449 // reset the signals to their original disposition.
450 block_signals(&oldset);
451 }
452
453 int flags = (poll_fds[0].revents & POLLHUP) ? 0 : WNOHANG;
454 ret = TEMP_FAILURE_RETRY(waitpid(pid, &status, flags));
455 if (ret < 0) {
456 rc = errno;
457 ALOG(LOG_ERROR, "logwrap", "waitpid failed with %s\n", strerror(errno));
458 goto err_waitpid;
459 }
460 if (ret > 0) {
461 found_child = true;
462 }
463
464 if (forward_signals) {
465 if (found_child) {
466 restore_signal_handlers();
467 }
468 unblock_signals(&oldset);
469 }
470 }
471 }
472
473 if (chld_sts != nullptr) {
474 *chld_sts = status;
475 } else {
476 if (WIFEXITED(status))
477 rc = WEXITSTATUS(status);
478 else
479 rc = -ECHILD;
480 }
481
482 // Flush remaining data
483 if (a != b) {
484 buffer[b] = '\0';
485 log_line(&log_info, &buffer[a], b - a);
486 }
487
488 /* All the output has been processed, time to dump the abbreviated output */
489 if (abbreviated) {
490 print_abbr_buf(&log_info);
491 }
492
493 if (WIFEXITED(status)) {
494 if (WEXITSTATUS(status)) {
495 snprintf(tmpbuf, sizeof(tmpbuf), "%s terminated by exit(%d)\n", log_info.btag,
496 WEXITSTATUS(status));
497 do_log_line(&log_info, tmpbuf);
498 }
499 } else {
500 if (WIFSIGNALED(status)) {
501 snprintf(tmpbuf, sizeof(tmpbuf), "%s terminated by signal %d\n", log_info.btag,
502 WTERMSIG(status));
503 do_log_line(&log_info, tmpbuf);
504 } else if (WIFSTOPPED(status)) {
505 snprintf(tmpbuf, sizeof(tmpbuf), "%s stopped by signal %d\n", log_info.btag,
506 WSTOPSIG(status));
507 do_log_line(&log_info, tmpbuf);
508 }
509 }
510
511 err_waitpid:
512 err_poll:
513 if (log_target & LOG_FILE) {
514 fclose(log_info.fp); /* Also closes underlying fd */
515 }
516 if (abbreviated) {
517 free_abbr_buf(&log_info.a_buf);
518 }
519 return rc;
520 }
521
child(int argc,const char * const * argv)522 static void child(int argc, const char* const* argv) {
523 // create null terminated argv_child array
524 char* argv_child[argc + 1];
525 memcpy(argv_child, argv, argc * sizeof(char*));
526 argv_child[argc] = nullptr;
527
528 if (execvp(argv_child[0], argv_child)) {
529 FATAL_CHILD("executing %s failed: %s\n", argv_child[0], strerror(errno));
530 }
531 }
532
logwrap_fork_execvp(int argc,const char * const * argv,int * status,bool forward_signals,int log_target,bool abbreviated,const char * file_path)533 int logwrap_fork_execvp(int argc, const char* const* argv, int* status, bool forward_signals,
534 int log_target, bool abbreviated, const char* file_path) {
535 pid_t pid;
536 int parent_ptty;
537 sigset_t oldset;
538 int rc = 0;
539
540 rc = pthread_mutex_lock(&fd_mutex);
541 if (rc) {
542 ERROR("failed to lock signal_fd mutex\n");
543 goto err_lock;
544 }
545
546 /* Use ptty instead of socketpair so that STDOUT is not buffered */
547 parent_ptty = TEMP_FAILURE_RETRY(posix_openpt(O_RDWR | O_CLOEXEC));
548 if (parent_ptty < 0) {
549 ERROR("Cannot create parent ptty\n");
550 rc = -1;
551 goto err_open;
552 }
553
554 char child_devname[64];
555 if (grantpt(parent_ptty) || unlockpt(parent_ptty) ||
556 ptsname_r(parent_ptty, child_devname, sizeof(child_devname)) != 0) {
557 ERROR("Problem with /dev/ptmx\n");
558 rc = -1;
559 goto err_ptty;
560 }
561
562 if (forward_signals) {
563 // Block these signals until we have the child pid and our signal handlers set up.
564 block_signals(&oldset);
565 }
566
567 pid = fork();
568 if (pid < 0) {
569 ERROR("Failed to fork\n");
570 rc = -1;
571 goto err_fork;
572 } else if (pid == 0) {
573 pthread_mutex_unlock(&fd_mutex);
574 if (forward_signals) {
575 unblock_signals(&oldset);
576 }
577
578 setsid();
579
580 int child_ptty = TEMP_FAILURE_RETRY(open(child_devname, O_RDWR | O_CLOEXEC));
581 if (child_ptty < 0) {
582 FATAL_CHILD("Cannot open child_ptty: %s\n", strerror(errno));
583 }
584 close(parent_ptty);
585
586 dup2(child_ptty, 1);
587 dup2(child_ptty, 2);
588 close(child_ptty);
589
590 child(argc, argv);
591 } else {
592 if (forward_signals) {
593 setup_signal_handlers(pid);
594 unblock_signals(&oldset);
595 }
596
597 rc = parent(argv[0], parent_ptty, pid, status, log_target, abbreviated, file_path,
598 forward_signals);
599
600 if (forward_signals) {
601 restore_signal_handlers();
602 }
603 }
604
605 err_fork:
606 if (forward_signals) {
607 unblock_signals(&oldset);
608 }
609 err_ptty:
610 close(parent_ptty);
611 err_open:
612 pthread_mutex_unlock(&fd_mutex);
613 err_lock:
614 return rc;
615 }
616