1 /* 2 * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 package java.util.stream; 26 27 import java.util.Objects; 28 import java.util.Spliterator; 29 import java.util.function.IntFunction; 30 import java.util.function.Supplier; 31 32 /** 33 * Abstract base class for "pipeline" classes, which are the core 34 * implementations of the Stream interface and its primitive specializations. 35 * Manages construction and evaluation of stream pipelines. 36 * 37 * <p>An {@code AbstractPipeline} represents an initial portion of a stream 38 * pipeline, encapsulating a stream source and zero or more intermediate 39 * operations. The individual {@code AbstractPipeline} objects are often 40 * referred to as <em>stages</em>, where each stage describes either the stream 41 * source or an intermediate operation. 42 * 43 * <p>A concrete intermediate stage is generally built from an 44 * {@code AbstractPipeline}, a shape-specific pipeline class which extends it 45 * (e.g., {@code IntPipeline}) which is also abstract, and an operation-specific 46 * concrete class which extends that. {@code AbstractPipeline} contains most of 47 * the mechanics of evaluating the pipeline, and implements methods that will be 48 * used by the operation; the shape-specific classes add helper methods for 49 * dealing with collection of results into the appropriate shape-specific 50 * containers. 51 * 52 * <p>After chaining a new intermediate operation, or executing a terminal 53 * operation, the stream is considered to be consumed, and no more intermediate 54 * or terminal operations are permitted on this stream instance. 55 * 56 * @implNote 57 * <p>For sequential streams, and parallel streams without 58 * <a href="package-summary.html#StreamOps">stateful intermediate 59 * operations</a>, parallel streams, pipeline evaluation is done in a single 60 * pass that "jams" all the operations together. For parallel streams with 61 * stateful operations, execution is divided into segments, where each 62 * stateful operations marks the end of a segment, and each segment is 63 * evaluated separately and the result used as the input to the next 64 * segment. In all cases, the source data is not consumed until a terminal 65 * operation begins. 66 * 67 * @param <E_IN> type of input elements 68 * @param <E_OUT> type of output elements 69 * @param <S> type of the subclass implementing {@code BaseStream} 70 * @since 1.8 71 * @hide Made public for CTS tests only (OpenJDK 8 streams tests). 72 */ 73 // Android-changed: Made public for CTS tests only. 74 public abstract class AbstractPipeline<E_IN, E_OUT, S extends BaseStream<E_OUT, S>> 75 extends PipelineHelper<E_OUT> implements BaseStream<E_OUT, S> { 76 private static final String MSG_STREAM_LINKED = "stream has already been operated upon or closed"; 77 private static final String MSG_CONSUMED = "source already consumed or closed"; 78 79 /** 80 * Backlink to the head of the pipeline chain (self if this is the source 81 * stage). 82 */ 83 @SuppressWarnings("rawtypes") 84 private final AbstractPipeline sourceStage; 85 86 /** 87 * The "upstream" pipeline, or null if this is the source stage. 88 */ 89 @SuppressWarnings("rawtypes") 90 private final AbstractPipeline previousStage; 91 92 /** 93 * The operation flags for the intermediate operation represented by this 94 * pipeline object. 95 */ 96 protected final int sourceOrOpFlags; 97 98 /** 99 * The next stage in the pipeline, or null if this is the last stage. 100 * Effectively final at the point of linking to the next pipeline. 101 */ 102 @SuppressWarnings("rawtypes") 103 private AbstractPipeline nextStage; 104 105 /** 106 * The number of intermediate operations between this pipeline object 107 * and the stream source if sequential, or the previous stateful if parallel. 108 * Valid at the point of pipeline preparation for evaluation. 109 */ 110 private int depth; 111 112 /** 113 * The combined source and operation flags for the source and all operations 114 * up to and including the operation represented by this pipeline object. 115 * Valid at the point of pipeline preparation for evaluation. 116 */ 117 private int combinedFlags; 118 119 /** 120 * The source spliterator. Only valid for the head pipeline. 121 * Before the pipeline is consumed if non-null then {@code sourceSupplier} 122 * must be null. After the pipeline is consumed if non-null then is set to 123 * null. 124 */ 125 private Spliterator<?> sourceSpliterator; 126 127 /** 128 * The source supplier. Only valid for the head pipeline. Before the 129 * pipeline is consumed if non-null then {@code sourceSpliterator} must be 130 * null. After the pipeline is consumed if non-null then is set to null. 131 */ 132 private Supplier<? extends Spliterator<?>> sourceSupplier; 133 134 /** 135 * True if this pipeline has been linked or consumed 136 */ 137 private boolean linkedOrConsumed; 138 139 /** 140 * True if there are any stateful ops in the pipeline; only valid for the 141 * source stage. 142 */ 143 private boolean sourceAnyStateful; 144 145 private Runnable sourceCloseAction; 146 147 /** 148 * True if pipeline is parallel, otherwise the pipeline is sequential; only 149 * valid for the source stage. 150 */ 151 private boolean parallel; 152 153 /** 154 * Constructor for the head of a stream pipeline. 155 * 156 * @param source {@code Supplier<Spliterator>} describing the stream source 157 * @param sourceFlags The source flags for the stream source, described in 158 * {@link StreamOpFlag} 159 * @param parallel True if the pipeline is parallel 160 */ AbstractPipeline(Supplier<? extends Spliterator<?>> source, int sourceFlags, boolean parallel)161 AbstractPipeline(Supplier<? extends Spliterator<?>> source, 162 int sourceFlags, boolean parallel) { 163 this.previousStage = null; 164 this.sourceSupplier = source; 165 this.sourceStage = this; 166 this.sourceOrOpFlags = sourceFlags & StreamOpFlag.STREAM_MASK; 167 // The following is an optimization of: 168 // StreamOpFlag.combineOpFlags(sourceOrOpFlags, StreamOpFlag.INITIAL_OPS_VALUE); 169 this.combinedFlags = (~(sourceOrOpFlags << 1)) & StreamOpFlag.INITIAL_OPS_VALUE; 170 this.depth = 0; 171 this.parallel = parallel; 172 } 173 174 /** 175 * Constructor for the head of a stream pipeline. 176 * 177 * @param source {@code Spliterator} describing the stream source 178 * @param sourceFlags the source flags for the stream source, described in 179 * {@link StreamOpFlag} 180 * @param parallel {@code true} if the pipeline is parallel 181 */ AbstractPipeline(Spliterator<?> source, int sourceFlags, boolean parallel)182 AbstractPipeline(Spliterator<?> source, 183 int sourceFlags, boolean parallel) { 184 this.previousStage = null; 185 this.sourceSpliterator = source; 186 this.sourceStage = this; 187 this.sourceOrOpFlags = sourceFlags & StreamOpFlag.STREAM_MASK; 188 // The following is an optimization of: 189 // StreamOpFlag.combineOpFlags(sourceOrOpFlags, StreamOpFlag.INITIAL_OPS_VALUE); 190 this.combinedFlags = (~(sourceOrOpFlags << 1)) & StreamOpFlag.INITIAL_OPS_VALUE; 191 this.depth = 0; 192 this.parallel = parallel; 193 } 194 195 /** 196 * Constructor for appending an intermediate operation stage onto an 197 * existing pipeline. 198 * 199 * @param previousStage the upstream pipeline stage 200 * @param opFlags the operation flags for the new stage, described in 201 * {@link StreamOpFlag} 202 */ AbstractPipeline(AbstractPipeline<?, E_IN, ?> previousStage, int opFlags)203 AbstractPipeline(AbstractPipeline<?, E_IN, ?> previousStage, int opFlags) { 204 if (previousStage.linkedOrConsumed) 205 throw new IllegalStateException(MSG_STREAM_LINKED); 206 previousStage.linkedOrConsumed = true; 207 previousStage.nextStage = this; 208 209 this.previousStage = previousStage; 210 this.sourceOrOpFlags = opFlags & StreamOpFlag.OP_MASK; 211 this.combinedFlags = StreamOpFlag.combineOpFlags(opFlags, previousStage.combinedFlags); 212 this.sourceStage = previousStage.sourceStage; 213 if (opIsStateful()) 214 sourceStage.sourceAnyStateful = true; 215 this.depth = previousStage.depth + 1; 216 } 217 218 219 // Terminal evaluation methods 220 221 /** 222 * Evaluate the pipeline with a terminal operation to produce a result. 223 * 224 * @param <R> the type of result 225 * @param terminalOp the terminal operation to be applied to the pipeline. 226 * @return the result 227 */ evaluate(TerminalOp<E_OUT, R> terminalOp)228 final <R> R evaluate(TerminalOp<E_OUT, R> terminalOp) { 229 assert getOutputShape() == terminalOp.inputShape(); 230 if (linkedOrConsumed) 231 throw new IllegalStateException(MSG_STREAM_LINKED); 232 linkedOrConsumed = true; 233 234 return isParallel() 235 ? terminalOp.evaluateParallel(this, sourceSpliterator(terminalOp.getOpFlags())) 236 : terminalOp.evaluateSequential(this, sourceSpliterator(terminalOp.getOpFlags())); 237 } 238 239 /** 240 * Collect the elements output from the pipeline stage. 241 * 242 * @param generator the array generator to be used to create array instances 243 * @return a flat array-backed Node that holds the collected output elements 244 */ 245 @SuppressWarnings("unchecked") 246 // Android-changed: Made public for CTS tests only. evaluateToArrayNode(IntFunction<E_OUT[]> generator)247 public final Node<E_OUT> evaluateToArrayNode(IntFunction<E_OUT[]> generator) { 248 if (linkedOrConsumed) 249 throw new IllegalStateException(MSG_STREAM_LINKED); 250 linkedOrConsumed = true; 251 252 // If the last intermediate operation is stateful then 253 // evaluate directly to avoid an extra collection step 254 if (isParallel() && previousStage != null && opIsStateful()) { 255 // Set the depth of this, last, pipeline stage to zero to slice the 256 // pipeline such that this operation will not be included in the 257 // upstream slice and upstream operations will not be included 258 // in this slice 259 depth = 0; 260 return opEvaluateParallel(previousStage, previousStage.sourceSpliterator(0), generator); 261 } 262 else { 263 return evaluate(sourceSpliterator(0), true, generator); 264 } 265 } 266 267 /** 268 * Gets the source stage spliterator if this pipeline stage is the source 269 * stage. The pipeline is consumed after this method is called and 270 * returns successfully. 271 * 272 * @return the source stage spliterator 273 * @throws IllegalStateException if this pipeline stage is not the source 274 * stage. 275 */ 276 @SuppressWarnings("unchecked") sourceStageSpliterator()277 final Spliterator<E_OUT> sourceStageSpliterator() { 278 if (this != sourceStage) 279 throw new IllegalStateException(); 280 281 if (linkedOrConsumed) 282 throw new IllegalStateException(MSG_STREAM_LINKED); 283 linkedOrConsumed = true; 284 285 if (sourceStage.sourceSpliterator != null) { 286 @SuppressWarnings("unchecked") 287 Spliterator<E_OUT> s = sourceStage.sourceSpliterator; 288 sourceStage.sourceSpliterator = null; 289 return s; 290 } 291 else if (sourceStage.sourceSupplier != null) { 292 @SuppressWarnings("unchecked") 293 Spliterator<E_OUT> s = (Spliterator<E_OUT>) sourceStage.sourceSupplier.get(); 294 sourceStage.sourceSupplier = null; 295 return s; 296 } 297 else { 298 throw new IllegalStateException(MSG_CONSUMED); 299 } 300 } 301 302 // BaseStream 303 304 @Override 305 @SuppressWarnings("unchecked") sequential()306 public final S sequential() { 307 sourceStage.parallel = false; 308 return (S) this; 309 } 310 311 @Override 312 @SuppressWarnings("unchecked") parallel()313 public final S parallel() { 314 sourceStage.parallel = true; 315 return (S) this; 316 } 317 318 @Override close()319 public void close() { 320 linkedOrConsumed = true; 321 sourceSupplier = null; 322 sourceSpliterator = null; 323 if (sourceStage.sourceCloseAction != null) { 324 Runnable closeAction = sourceStage.sourceCloseAction; 325 sourceStage.sourceCloseAction = null; 326 closeAction.run(); 327 } 328 } 329 330 @Override 331 @SuppressWarnings("unchecked") onClose(Runnable closeHandler)332 public S onClose(Runnable closeHandler) { 333 Runnable existingHandler = sourceStage.sourceCloseAction; 334 sourceStage.sourceCloseAction = 335 (existingHandler == null) 336 ? closeHandler 337 : Streams.composeWithExceptions(existingHandler, closeHandler); 338 return (S) this; 339 } 340 341 // Primitive specialization use co-variant overrides, hence is not final 342 @Override 343 @SuppressWarnings("unchecked") spliterator()344 public Spliterator<E_OUT> spliterator() { 345 if (linkedOrConsumed) 346 throw new IllegalStateException(MSG_STREAM_LINKED); 347 linkedOrConsumed = true; 348 349 if (this == sourceStage) { 350 if (sourceStage.sourceSpliterator != null) { 351 @SuppressWarnings("unchecked") 352 Spliterator<E_OUT> s = (Spliterator<E_OUT>) sourceStage.sourceSpliterator; 353 sourceStage.sourceSpliterator = null; 354 return s; 355 } 356 else if (sourceStage.sourceSupplier != null) { 357 @SuppressWarnings("unchecked") 358 Supplier<Spliterator<E_OUT>> s = (Supplier<Spliterator<E_OUT>>) sourceStage.sourceSupplier; 359 sourceStage.sourceSupplier = null; 360 return lazySpliterator(s); 361 } 362 else { 363 throw new IllegalStateException(MSG_CONSUMED); 364 } 365 } 366 else { 367 return wrap(this, () -> sourceSpliterator(0), isParallel()); 368 } 369 } 370 371 @Override isParallel()372 public final boolean isParallel() { 373 return sourceStage.parallel; 374 } 375 376 377 /** 378 * Returns the composition of stream flags of the stream source and all 379 * intermediate operations. 380 * 381 * @return the composition of stream flags of the stream source and all 382 * intermediate operations 383 * @see StreamOpFlag 384 */ 385 // Android-changed: Made public for CTS tests only. getStreamFlags()386 public final int getStreamFlags() { 387 return StreamOpFlag.toStreamFlags(combinedFlags); 388 } 389 390 /** 391 * Get the source spliterator for this pipeline stage. For a sequential or 392 * stateless parallel pipeline, this is the source spliterator. For a 393 * stateful parallel pipeline, this is a spliterator describing the results 394 * of all computations up to and including the most recent stateful 395 * operation. 396 */ 397 @SuppressWarnings("unchecked") sourceSpliterator(int terminalFlags)398 private Spliterator<?> sourceSpliterator(int terminalFlags) { 399 // Get the source spliterator of the pipeline 400 Spliterator<?> spliterator = null; 401 if (sourceStage.sourceSpliterator != null) { 402 spliterator = sourceStage.sourceSpliterator; 403 sourceStage.sourceSpliterator = null; 404 } 405 else if (sourceStage.sourceSupplier != null) { 406 spliterator = (Spliterator<?>) sourceStage.sourceSupplier.get(); 407 sourceStage.sourceSupplier = null; 408 } 409 else { 410 throw new IllegalStateException(MSG_CONSUMED); 411 } 412 413 if (isParallel() && sourceStage.sourceAnyStateful) { 414 // Adapt the source spliterator, evaluating each stateful op 415 // in the pipeline up to and including this pipeline stage. 416 // The depth and flags of each pipeline stage are adjusted accordingly. 417 int depth = 1; 418 for (@SuppressWarnings("rawtypes") AbstractPipeline u = sourceStage, p = sourceStage.nextStage, e = this; 419 u != e; 420 u = p, p = p.nextStage) { 421 422 int thisOpFlags = p.sourceOrOpFlags; 423 if (p.opIsStateful()) { 424 depth = 0; 425 426 if (StreamOpFlag.SHORT_CIRCUIT.isKnown(thisOpFlags)) { 427 // Clear the short circuit flag for next pipeline stage 428 // This stage encapsulates short-circuiting, the next 429 // stage may not have any short-circuit operations, and 430 // if so spliterator.forEachRemaining should be used 431 // for traversal 432 thisOpFlags = thisOpFlags & ~StreamOpFlag.IS_SHORT_CIRCUIT; 433 } 434 435 spliterator = p.opEvaluateParallelLazy(u, spliterator); 436 437 // Inject or clear SIZED on the source pipeline stage 438 // based on the stage's spliterator 439 thisOpFlags = spliterator.hasCharacteristics(Spliterator.SIZED) 440 ? (thisOpFlags & ~StreamOpFlag.NOT_SIZED) | StreamOpFlag.IS_SIZED 441 : (thisOpFlags & ~StreamOpFlag.IS_SIZED) | StreamOpFlag.NOT_SIZED; 442 } 443 p.depth = depth++; 444 p.combinedFlags = StreamOpFlag.combineOpFlags(thisOpFlags, u.combinedFlags); 445 } 446 } 447 448 if (terminalFlags != 0) { 449 // Apply flags from the terminal operation to last pipeline stage 450 combinedFlags = StreamOpFlag.combineOpFlags(terminalFlags, combinedFlags); 451 } 452 453 return spliterator; 454 } 455 456 // PipelineHelper 457 458 @Override getSourceShape()459 final StreamShape getSourceShape() { 460 @SuppressWarnings("rawtypes") 461 AbstractPipeline p = AbstractPipeline.this; 462 while (p.depth > 0) { 463 p = p.previousStage; 464 } 465 return p.getOutputShape(); 466 } 467 468 @Override exactOutputSizeIfKnown(Spliterator<P_IN> spliterator)469 final <P_IN> long exactOutputSizeIfKnown(Spliterator<P_IN> spliterator) { 470 return StreamOpFlag.SIZED.isKnown(getStreamAndOpFlags()) ? spliterator.getExactSizeIfKnown() : -1; 471 } 472 473 @Override wrapAndCopyInto(S sink, Spliterator<P_IN> spliterator)474 final <P_IN, S extends Sink<E_OUT>> S wrapAndCopyInto(S sink, Spliterator<P_IN> spliterator) { 475 copyInto(wrapSink(Objects.requireNonNull(sink)), spliterator); 476 return sink; 477 } 478 479 @Override copyInto(Sink<P_IN> wrappedSink, Spliterator<P_IN> spliterator)480 final <P_IN> void copyInto(Sink<P_IN> wrappedSink, Spliterator<P_IN> spliterator) { 481 Objects.requireNonNull(wrappedSink); 482 483 if (!StreamOpFlag.SHORT_CIRCUIT.isKnown(getStreamAndOpFlags())) { 484 wrappedSink.begin(spliterator.getExactSizeIfKnown()); 485 spliterator.forEachRemaining(wrappedSink); 486 wrappedSink.end(); 487 } 488 else { 489 copyIntoWithCancel(wrappedSink, spliterator); 490 } 491 } 492 493 @Override 494 @SuppressWarnings("unchecked") copyIntoWithCancel(Sink<P_IN> wrappedSink, Spliterator<P_IN> spliterator)495 final <P_IN> void copyIntoWithCancel(Sink<P_IN> wrappedSink, Spliterator<P_IN> spliterator) { 496 @SuppressWarnings({"rawtypes","unchecked"}) 497 AbstractPipeline p = AbstractPipeline.this; 498 while (p.depth > 0) { 499 p = p.previousStage; 500 } 501 wrappedSink.begin(spliterator.getExactSizeIfKnown()); 502 p.forEachWithCancel(spliterator, wrappedSink); 503 wrappedSink.end(); 504 } 505 506 @Override 507 // Android-changed: Made public for CTS tests only. getStreamAndOpFlags()508 public final int getStreamAndOpFlags() { 509 return combinedFlags; 510 } 511 isOrdered()512 final boolean isOrdered() { 513 return StreamOpFlag.ORDERED.isKnown(combinedFlags); 514 } 515 516 @Override 517 @SuppressWarnings("unchecked") 518 // Android-changed: Made public for CTS tests only. wrapSink(Sink<E_OUT> sink)519 public final <P_IN> Sink<P_IN> wrapSink(Sink<E_OUT> sink) { 520 Objects.requireNonNull(sink); 521 522 for ( @SuppressWarnings("rawtypes") AbstractPipeline p=AbstractPipeline.this; p.depth > 0; p=p.previousStage) { 523 sink = p.opWrapSink(p.previousStage.combinedFlags, sink); 524 } 525 return (Sink<P_IN>) sink; 526 } 527 528 @Override 529 @SuppressWarnings("unchecked") wrapSpliterator(Spliterator<P_IN> sourceSpliterator)530 final <P_IN> Spliterator<E_OUT> wrapSpliterator(Spliterator<P_IN> sourceSpliterator) { 531 if (depth == 0) { 532 return (Spliterator<E_OUT>) sourceSpliterator; 533 } 534 else { 535 return wrap(this, () -> sourceSpliterator, isParallel()); 536 } 537 } 538 539 @Override 540 @SuppressWarnings("unchecked") 541 // Android-changed: Made public for CTS tests only. evaluate(Spliterator<P_IN> spliterator, boolean flatten, IntFunction<E_OUT[]> generator)542 public final <P_IN> Node<E_OUT> evaluate(Spliterator<P_IN> spliterator, 543 boolean flatten, 544 IntFunction<E_OUT[]> generator) { 545 if (isParallel()) { 546 // @@@ Optimize if op of this pipeline stage is a stateful op 547 return evaluateToNode(this, spliterator, flatten, generator); 548 } 549 else { 550 Node.Builder<E_OUT> nb = makeNodeBuilder( 551 exactOutputSizeIfKnown(spliterator), generator); 552 return wrapAndCopyInto(nb, spliterator).build(); 553 } 554 } 555 556 557 // Shape-specific abstract methods, implemented by XxxPipeline classes 558 559 /** 560 * Get the output shape of the pipeline. If the pipeline is the head, 561 * then it's output shape corresponds to the shape of the source. 562 * Otherwise, it's output shape corresponds to the output shape of the 563 * associated operation. 564 * 565 * @return the output shape 566 */ 567 // Android-changed: Made public for CTS tests only. getOutputShape()568 public abstract StreamShape getOutputShape(); 569 570 /** 571 * Collect elements output from a pipeline into a Node that holds elements 572 * of this shape. 573 * 574 * @param helper the pipeline helper describing the pipeline stages 575 * @param spliterator the source spliterator 576 * @param flattenTree true if the returned node should be flattened 577 * @param generator the array generator 578 * @return a Node holding the output of the pipeline 579 */ 580 // Android-changed: Made public for CTS tests only. evaluateToNode(PipelineHelper<E_OUT> helper, Spliterator<P_IN> spliterator, boolean flattenTree, IntFunction<E_OUT[]> generator)581 public abstract <P_IN> Node<E_OUT> evaluateToNode(PipelineHelper<E_OUT> helper, 582 Spliterator<P_IN> spliterator, 583 boolean flattenTree, 584 IntFunction<E_OUT[]> generator); 585 586 /** 587 * Create a spliterator that wraps a source spliterator, compatible with 588 * this stream shape, and operations associated with a {@link 589 * PipelineHelper}. 590 * 591 * @param ph the pipeline helper describing the pipeline stages 592 * @param supplier the supplier of a spliterator 593 * @return a wrapping spliterator compatible with this shape 594 */ 595 // Android-changed: Made public for CTS tests only. wrap(PipelineHelper<E_OUT> ph, Supplier<Spliterator<P_IN>> supplier, boolean isParallel)596 public abstract <P_IN> Spliterator<E_OUT> wrap(PipelineHelper<E_OUT> ph, 597 Supplier<Spliterator<P_IN>> supplier, 598 boolean isParallel); 599 600 /** 601 * Create a lazy spliterator that wraps and obtains the supplied the 602 * spliterator when a method is invoked on the lazy spliterator. 603 * @param supplier the supplier of a spliterator 604 */ 605 // Android-changed: Made public for CTS tests only. lazySpliterator(Supplier<? extends Spliterator<E_OUT>> supplier)606 public abstract Spliterator<E_OUT> lazySpliterator(Supplier<? extends Spliterator<E_OUT>> supplier); 607 608 /** 609 * Traverse the elements of a spliterator compatible with this stream shape, 610 * pushing those elements into a sink. If the sink requests cancellation, 611 * no further elements will be pulled or pushed. 612 * 613 * @param spliterator the spliterator to pull elements from 614 * @param sink the sink to push elements to 615 */ 616 // Android-changed: Made public for CTS tests only. forEachWithCancel(Spliterator<E_OUT> spliterator, Sink<E_OUT> sink)617 public abstract void forEachWithCancel(Spliterator<E_OUT> spliterator, Sink<E_OUT> sink); 618 619 /** 620 * Make a node builder compatible with this stream shape. 621 * 622 * @param exactSizeIfKnown if {@literal >=0}, then a node builder will be 623 * created that has a fixed capacity of at most sizeIfKnown elements. If 624 * {@literal < 0}, then the node builder has an unfixed capacity. A fixed 625 * capacity node builder will throw exceptions if an element is added after 626 * builder has reached capacity, or is built before the builder has reached 627 * capacity. 628 * 629 * @param generator the array generator to be used to create instances of a 630 * T[] array. For implementations supporting primitive nodes, this parameter 631 * may be ignored. 632 * @return a node builder 633 */ 634 @Override 635 // Android-changed: Made public for CTS tests only. makeNodeBuilder(long exactSizeIfKnown, IntFunction<E_OUT[]> generator)636 public abstract Node.Builder<E_OUT> makeNodeBuilder(long exactSizeIfKnown, 637 IntFunction<E_OUT[]> generator); 638 639 640 // Op-specific abstract methods, implemented by the operation class 641 642 /** 643 * Returns whether this operation is stateful or not. If it is stateful, 644 * then the method 645 * {@link #opEvaluateParallel(PipelineHelper, java.util.Spliterator, java.util.function.IntFunction)} 646 * must be overridden. 647 * 648 * @return {@code true} if this operation is stateful 649 */ 650 // Android-changed: Made public for CTS tests only. opIsStateful()651 public abstract boolean opIsStateful(); 652 653 /** 654 * Accepts a {@code Sink} which will receive the results of this operation, 655 * and return a {@code Sink} which accepts elements of the input type of 656 * this operation and which performs the operation, passing the results to 657 * the provided {@code Sink}. 658 * 659 * @apiNote 660 * The implementation may use the {@code flags} parameter to optimize the 661 * sink wrapping. For example, if the input is already {@code DISTINCT}, 662 * the implementation for the {@code Stream#distinct()} method could just 663 * return the sink it was passed. 664 * 665 * @param flags The combined stream and operation flags up to, but not 666 * including, this operation 667 * @param sink sink to which elements should be sent after processing 668 * @return a sink which accepts elements, perform the operation upon 669 * each element, and passes the results (if any) to the provided 670 * {@code Sink}. 671 */ 672 // Android-changed: Made public for CTS tests only. opWrapSink(int flags, Sink<E_OUT> sink)673 public abstract Sink<E_IN> opWrapSink(int flags, Sink<E_OUT> sink); 674 675 /** 676 * Performs a parallel evaluation of the operation using the specified 677 * {@code PipelineHelper} which describes the upstream intermediate 678 * operations. Only called on stateful operations. If {@link 679 * #opIsStateful()} returns true then implementations must override the 680 * default implementation. 681 * 682 * @implSpec The default implementation always throw 683 * {@code UnsupportedOperationException}. 684 * 685 * @param helper the pipeline helper describing the pipeline stages 686 * @param spliterator the source {@code Spliterator} 687 * @param generator the array generator 688 * @return a {@code Node} describing the result of the evaluation 689 */ 690 // Android-changed: Made public for CTS tests only. opEvaluateParallel(PipelineHelper<E_OUT> helper, Spliterator<P_IN> spliterator, IntFunction<E_OUT[]> generator)691 public <P_IN> Node<E_OUT> opEvaluateParallel(PipelineHelper<E_OUT> helper, 692 Spliterator<P_IN> spliterator, 693 IntFunction<E_OUT[]> generator) { 694 throw new UnsupportedOperationException("Parallel evaluation is not supported"); 695 } 696 697 /** 698 * Returns a {@code Spliterator} describing a parallel evaluation of the 699 * operation, using the specified {@code PipelineHelper} which describes the 700 * upstream intermediate operations. Only called on stateful operations. 701 * It is not necessary (though acceptable) to do a full computation of the 702 * result here; it is preferable, if possible, to describe the result via a 703 * lazily evaluated spliterator. 704 * 705 * @implSpec The default implementation behaves as if: 706 * <pre>{@code 707 * return evaluateParallel(helper, i -> (E_OUT[]) new 708 * Object[i]).spliterator(); 709 * }</pre> 710 * and is suitable for implementations that cannot do better than a full 711 * synchronous evaluation. 712 * 713 * @param helper the pipeline helper 714 * @param spliterator the source {@code Spliterator} 715 * @return a {@code Spliterator} describing the result of the evaluation 716 */ 717 @SuppressWarnings("unchecked") 718 // Android-changed: Made public for CTS tests only. opEvaluateParallelLazy(PipelineHelper<E_OUT> helper, Spliterator<P_IN> spliterator)719 public <P_IN> Spliterator<E_OUT> opEvaluateParallelLazy(PipelineHelper<E_OUT> helper, 720 Spliterator<P_IN> spliterator) { 721 return opEvaluateParallel(helper, spliterator, i -> (E_OUT[]) new Object[i]).spliterator(); 722 } 723 } 724