1 /*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "AudioResamplerDyn"
18 //#define LOG_NDEBUG 0
19
20 #include <malloc.h>
21 #include <string.h>
22 #include <stdlib.h>
23 #include <dlfcn.h>
24 #include <math.h>
25
26 #include <cutils/compiler.h>
27 #include <cutils/properties.h>
28 #include <utils/Debug.h>
29 #include <utils/Log.h>
30 #include <audio_utils/primitives.h>
31
32 #include "AudioResamplerFirOps.h" // USE_NEON, USE_SSE and USE_INLINE_ASSEMBLY defined here
33 #include "AudioResamplerFirProcess.h"
34 #include "AudioResamplerFirProcessNeon.h"
35 #include "AudioResamplerFirProcessSSE.h"
36 #include "AudioResamplerFirGen.h" // requires math.h
37 #include "AudioResamplerDyn.h"
38
39 //#define DEBUG_RESAMPLER
40
41 // use this for our buffer alignment. Should be at least 32 bytes.
42 constexpr size_t CACHE_LINE_SIZE = 64;
43
44 namespace android {
45
46 /*
47 * InBuffer is a type agnostic input buffer.
48 *
49 * Layout of the state buffer for halfNumCoefs=8.
50 *
51 * [rrrrrrppppppppnnnnnnnnrrrrrrrrrrrrrrrrrrr.... rrrrrrr]
52 * S I R
53 *
54 * S = mState
55 * I = mImpulse
56 * R = mRingFull
57 * p = past samples, convoluted with the (p)ositive side of sinc()
58 * n = future samples, convoluted with the (n)egative side of sinc()
59 * r = extra space for implementing the ring buffer
60 */
61
62 template<typename TC, typename TI, typename TO>
InBuffer()63 AudioResamplerDyn<TC, TI, TO>::InBuffer::InBuffer()
64 : mState(NULL), mImpulse(NULL), mRingFull(NULL), mStateCount(0)
65 {
66 }
67
68 template<typename TC, typename TI, typename TO>
~InBuffer()69 AudioResamplerDyn<TC, TI, TO>::InBuffer::~InBuffer()
70 {
71 init();
72 }
73
74 template<typename TC, typename TI, typename TO>
init()75 void AudioResamplerDyn<TC, TI, TO>::InBuffer::init()
76 {
77 free(mState);
78 mState = NULL;
79 mImpulse = NULL;
80 mRingFull = NULL;
81 mStateCount = 0;
82 }
83
84 // resizes the state buffer to accommodate the appropriate filter length
85 template<typename TC, typename TI, typename TO>
resize(int CHANNELS,int halfNumCoefs)86 void AudioResamplerDyn<TC, TI, TO>::InBuffer::resize(int CHANNELS, int halfNumCoefs)
87 {
88 // calculate desired state size
89 size_t stateCount = halfNumCoefs * CHANNELS * 2 * kStateSizeMultipleOfFilterLength;
90
91 // check if buffer needs resizing
92 if (mState
93 && stateCount == mStateCount
94 && mRingFull-mState == (ssize_t) (mStateCount-halfNumCoefs*CHANNELS)) {
95 return;
96 }
97
98 // create new buffer
99 TI* state = NULL;
100 (void)posix_memalign(
101 reinterpret_cast<void **>(&state),
102 CACHE_LINE_SIZE /* alignment */,
103 stateCount * sizeof(*state));
104 memset(state, 0, stateCount*sizeof(*state));
105
106 // attempt to preserve state
107 if (mState) {
108 TI* srcLo = mImpulse - halfNumCoefs*CHANNELS;
109 TI* srcHi = mImpulse + halfNumCoefs*CHANNELS;
110 TI* dst = state;
111
112 if (srcLo < mState) {
113 dst += mState-srcLo;
114 srcLo = mState;
115 }
116 if (srcHi > mState + mStateCount) {
117 srcHi = mState + mStateCount;
118 }
119 memcpy(dst, srcLo, (srcHi - srcLo) * sizeof(*srcLo));
120 free(mState);
121 }
122
123 // set class member vars
124 mState = state;
125 mStateCount = stateCount;
126 mImpulse = state + halfNumCoefs*CHANNELS; // actually one sample greater than needed
127 mRingFull = state + mStateCount - halfNumCoefs*CHANNELS;
128 }
129
130 // copy in the input data into the head (impulse+halfNumCoefs) of the buffer.
131 template<typename TC, typename TI, typename TO>
132 template<int CHANNELS>
readAgain(TI * & impulse,const int halfNumCoefs,const TI * const in,const size_t inputIndex)133 void AudioResamplerDyn<TC, TI, TO>::InBuffer::readAgain(TI*& impulse, const int halfNumCoefs,
134 const TI* const in, const size_t inputIndex)
135 {
136 TI* head = impulse + halfNumCoefs*CHANNELS;
137 for (size_t i=0 ; i<CHANNELS ; i++) {
138 head[i] = in[inputIndex*CHANNELS + i];
139 }
140 }
141
142 // advance the impulse pointer, and load in data into the head (impulse+halfNumCoefs)
143 template<typename TC, typename TI, typename TO>
144 template<int CHANNELS>
readAdvance(TI * & impulse,const int halfNumCoefs,const TI * const in,const size_t inputIndex)145 void AudioResamplerDyn<TC, TI, TO>::InBuffer::readAdvance(TI*& impulse, const int halfNumCoefs,
146 const TI* const in, const size_t inputIndex)
147 {
148 impulse += CHANNELS;
149
150 if (CC_UNLIKELY(impulse >= mRingFull)) {
151 const size_t shiftDown = mRingFull - mState - halfNumCoefs*CHANNELS;
152 memcpy(mState, mState+shiftDown, halfNumCoefs*CHANNELS*2*sizeof(TI));
153 impulse -= shiftDown;
154 }
155 readAgain<CHANNELS>(impulse, halfNumCoefs, in, inputIndex);
156 }
157
158 template<typename TC, typename TI, typename TO>
reset()159 void AudioResamplerDyn<TC, TI, TO>::InBuffer::reset()
160 {
161 // clear resampler state
162 if (mState != nullptr) {
163 memset(mState, 0, mStateCount * sizeof(TI));
164 }
165 }
166
167 template<typename TC, typename TI, typename TO>
set(int L,int halfNumCoefs,int inSampleRate,int outSampleRate)168 void AudioResamplerDyn<TC, TI, TO>::Constants::set(
169 int L, int halfNumCoefs, int inSampleRate, int outSampleRate)
170 {
171 int bits = 0;
172 int lscale = inSampleRate/outSampleRate < 2 ? L - 1 :
173 static_cast<int>(static_cast<uint64_t>(L)*inSampleRate/outSampleRate);
174 for (int i=lscale; i; ++bits, i>>=1)
175 ;
176 mL = L;
177 mShift = kNumPhaseBits - bits;
178 mHalfNumCoefs = halfNumCoefs;
179 }
180
181 template<typename TC, typename TI, typename TO>
AudioResamplerDyn(int inChannelCount,int32_t sampleRate,src_quality quality)182 AudioResamplerDyn<TC, TI, TO>::AudioResamplerDyn(
183 int inChannelCount, int32_t sampleRate, src_quality quality)
184 : AudioResampler(inChannelCount, sampleRate, quality),
185 mResampleFunc(0), mFilterSampleRate(0), mFilterQuality(DEFAULT_QUALITY),
186 mCoefBuffer(NULL)
187 {
188 mVolumeSimd[0] = mVolumeSimd[1] = 0;
189 // The AudioResampler base class assumes we are always ready for 1:1 resampling.
190 // We reset mInSampleRate to 0, so setSampleRate() will calculate filters for
191 // setSampleRate() for 1:1. (May be removed if precalculated filters are used.)
192 mInSampleRate = 0;
193 mConstants.set(128, 8, mSampleRate, mSampleRate); // TODO: set better
194
195 // fetch property based resampling parameters
196 mPropertyEnableAtSampleRate = property_get_int32(
197 "ro.audio.resampler.psd.enable_at_samplerate", mPropertyEnableAtSampleRate);
198 mPropertyHalfFilterLength = property_get_int32(
199 "ro.audio.resampler.psd.halflength", mPropertyHalfFilterLength);
200 mPropertyStopbandAttenuation = property_get_int32(
201 "ro.audio.resampler.psd.stopband", mPropertyStopbandAttenuation);
202 mPropertyCutoffPercent = property_get_int32(
203 "ro.audio.resampler.psd.cutoff_percent", mPropertyCutoffPercent);
204 mPropertyTransitionBandwidthCheat = property_get_int32(
205 "ro.audio.resampler.psd.tbwcheat", mPropertyTransitionBandwidthCheat);
206 }
207
208 template<typename TC, typename TI, typename TO>
~AudioResamplerDyn()209 AudioResamplerDyn<TC, TI, TO>::~AudioResamplerDyn()
210 {
211 free(mCoefBuffer);
212 }
213
214 template<typename TC, typename TI, typename TO>
init()215 void AudioResamplerDyn<TC, TI, TO>::init()
216 {
217 mFilterSampleRate = 0; // always trigger new filter generation
218 mInBuffer.init();
219 }
220
221 template<typename TC, typename TI, typename TO>
setVolume(float left,float right)222 void AudioResamplerDyn<TC, TI, TO>::setVolume(float left, float right)
223 {
224 AudioResampler::setVolume(left, right);
225 if (is_same<TO, float>::value || is_same<TO, double>::value) {
226 mVolumeSimd[0] = static_cast<TO>(left);
227 mVolumeSimd[1] = static_cast<TO>(right);
228 } else { // integer requires scaling to U4_28 (rounding down)
229 // integer volumes are clamped to 0 to UNITY_GAIN so there
230 // are no issues with signed overflow.
231 mVolumeSimd[0] = u4_28_from_float(clampFloatVol(left));
232 mVolumeSimd[1] = u4_28_from_float(clampFloatVol(right));
233 }
234 }
235
236 // TODO: update to C++11
237
max(T a,T b)238 template<typename T> T max(T a, T b) {return a > b ? a : b;}
239
absdiff(T a,T b)240 template<typename T> T absdiff(T a, T b) {return a > b ? a - b : b - a;}
241
242 template<typename TC, typename TI, typename TO>
createKaiserFir(Constants & c,double stopBandAtten,int inSampleRate,int outSampleRate,double tbwCheat)243 void AudioResamplerDyn<TC, TI, TO>::createKaiserFir(Constants &c,
244 double stopBandAtten, int inSampleRate, int outSampleRate, double tbwCheat)
245 {
246 // compute the normalized transition bandwidth
247 const double tbw = firKaiserTbw(c.mHalfNumCoefs, stopBandAtten);
248 const double halfbw = tbw * 0.5;
249
250 double fcr; // compute fcr, the 3 dB amplitude cut-off.
251 if (inSampleRate < outSampleRate) { // upsample
252 fcr = max(0.5 * tbwCheat - halfbw, halfbw);
253 } else { // downsample
254 fcr = max(0.5 * tbwCheat * outSampleRate / inSampleRate - halfbw, halfbw);
255 }
256 createKaiserFir(c, stopBandAtten, fcr);
257 }
258
259 template<typename TC, typename TI, typename TO>
createKaiserFir(Constants & c,double stopBandAtten,double fcr)260 void AudioResamplerDyn<TC, TI, TO>::createKaiserFir(Constants &c,
261 double stopBandAtten, double fcr) {
262 // compute the normalized transition bandwidth
263 const double tbw = firKaiserTbw(c.mHalfNumCoefs, stopBandAtten);
264 const int phases = c.mL;
265 const int halfLength = c.mHalfNumCoefs;
266
267 // create buffer
268 TC *coefs = nullptr;
269 int ret = posix_memalign(
270 reinterpret_cast<void **>(&coefs),
271 CACHE_LINE_SIZE /* alignment */,
272 (phases + 1) * halfLength * sizeof(TC));
273 LOG_ALWAYS_FATAL_IF(ret != 0, "Cannot allocate buffer memory, ret %d", ret);
274 c.mFirCoefs = coefs;
275 free(mCoefBuffer);
276 mCoefBuffer = coefs;
277
278 // square the computed minimum passband value (extra safety).
279 double attenuation =
280 computeWindowedSincMinimumPassbandValue(stopBandAtten);
281 attenuation *= attenuation;
282
283 // design filter
284 firKaiserGen(coefs, phases, halfLength, stopBandAtten, fcr, attenuation);
285
286 // update the design criteria
287 mNormalizedCutoffFrequency = fcr;
288 mNormalizedTransitionBandwidth = tbw;
289 mFilterAttenuation = attenuation;
290 mStopbandAttenuationDb = stopBandAtten;
291 mPassbandRippleDb = computeWindowedSincPassbandRippleDb(stopBandAtten);
292
293 #if 0
294 // Keep this debug code in case an app causes resampler design issues.
295 const double halfbw = tbw * 0.5;
296 // print basic filter stats
297 ALOGD("L:%d hnc:%d stopBandAtten:%lf fcr:%lf atten:%lf tbw:%lf\n",
298 c.mL, c.mHalfNumCoefs, stopBandAtten, fcr, attenuation, tbw);
299
300 // test the filter and report results.
301 // Since this is a polyphase filter, normalized fp and fs must be scaled.
302 const double fp = (fcr - halfbw) / phases;
303 const double fs = (fcr + halfbw) / phases;
304
305 double passMin, passMax, passRipple;
306 double stopMax, stopRipple;
307
308 const int32_t passSteps = 1000;
309
310 testFir(coefs, c.mL, c.mHalfNumCoefs, fp, fs, passSteps, passSteps * c.mL /*stopSteps*/,
311 passMin, passMax, passRipple, stopMax, stopRipple);
312 ALOGD("passband(%lf, %lf): %.8lf %.8lf %.8lf\n", 0., fp, passMin, passMax, passRipple);
313 ALOGD("stopband(%lf, %lf): %.8lf %.3lf\n", fs, 0.5, stopMax, stopRipple);
314 #endif
315 }
316
317 // recursive gcd. Using objdump, it appears the tail recursion is converted to a while loop.
gcd(int n,int m)318 static int gcd(int n, int m)
319 {
320 if (m == 0) {
321 return n;
322 }
323 return gcd(m, n % m);
324 }
325
isClose(int32_t newSampleRate,int32_t prevSampleRate,int32_t filterSampleRate,int32_t outSampleRate)326 static bool isClose(int32_t newSampleRate, int32_t prevSampleRate,
327 int32_t filterSampleRate, int32_t outSampleRate)
328 {
329
330 // different upsampling ratios do not need a filter change.
331 if (filterSampleRate != 0
332 && filterSampleRate < outSampleRate
333 && newSampleRate < outSampleRate)
334 return true;
335
336 // check design criteria again if downsampling is detected.
337 int pdiff = absdiff(newSampleRate, prevSampleRate);
338 int adiff = absdiff(newSampleRate, filterSampleRate);
339
340 // allow up to 6% relative change increments.
341 // allow up to 12% absolute change increments (from filter design)
342 return pdiff < prevSampleRate>>4 && adiff < filterSampleRate>>3;
343 }
344
345 template<typename TC, typename TI, typename TO>
setSampleRate(int32_t inSampleRate)346 void AudioResamplerDyn<TC, TI, TO>::setSampleRate(int32_t inSampleRate)
347 {
348 if (mInSampleRate == inSampleRate) {
349 return;
350 }
351 int32_t oldSampleRate = mInSampleRate;
352 uint32_t oldPhaseWrapLimit = mConstants.mL << mConstants.mShift;
353 bool useS32 = false;
354
355 mInSampleRate = inSampleRate;
356
357 // TODO: Add precalculated Equiripple filters
358
359 if (mFilterQuality != getQuality() ||
360 !isClose(inSampleRate, oldSampleRate, mFilterSampleRate, mSampleRate)) {
361 mFilterSampleRate = inSampleRate;
362 mFilterQuality = getQuality();
363
364 double stopBandAtten;
365 double tbwCheat = 1.; // how much we "cheat" into aliasing
366 int halfLength;
367 double fcr = 0.;
368
369 // Begin Kaiser Filter computation
370 //
371 // The quantization floor for S16 is about 96db - 10*log_10(#length) + 3dB.
372 // Keep the stop band attenuation no greater than 84-85dB for 32 length S16 filters
373 //
374 // For s32 we keep the stop band attenuation at the same as 16b resolution, about
375 // 96-98dB
376 //
377
378 if (mPropertyEnableAtSampleRate >= 0 && mSampleRate >= mPropertyEnableAtSampleRate) {
379 // An alternative method which allows allows a greater fcr
380 // at the expense of potential aliasing.
381 halfLength = mPropertyHalfFilterLength;
382 stopBandAtten = mPropertyStopbandAttenuation;
383 useS32 = true;
384
385 // Use either the stopband location for design (tbwCheat)
386 // or use the 3dB cutoff location for design (fcr).
387 // This choice is exclusive and based on whether fcr > 0.
388 if (mPropertyTransitionBandwidthCheat != 0) {
389 tbwCheat = mPropertyTransitionBandwidthCheat / 100.;
390 } else {
391 fcr = mInSampleRate <= mSampleRate
392 ? 0.5 : 0.5 * mSampleRate / mInSampleRate;
393 fcr *= mPropertyCutoffPercent / 100.;
394 }
395 } else {
396 // Voice quality devices have lower sampling rates
397 // (and may be a consequence of downstream AMR-WB / G.722 codecs).
398 // For these devices, we ensure a wider resampler passband
399 // at the expense of aliasing noise (stopband attenuation
400 // and stopband frequency).
401 //
402 constexpr uint32_t kVoiceDeviceSampleRate = 16000;
403
404 if (mFilterQuality == DYN_HIGH_QUALITY) {
405 // float or 32b coefficients
406 useS32 = true;
407 stopBandAtten = 98.;
408 if (inSampleRate >= mSampleRate * 4) {
409 halfLength = 48;
410 } else if (inSampleRate >= mSampleRate * 2) {
411 halfLength = 40;
412 } else {
413 halfLength = 32;
414 }
415
416 if (mSampleRate <= kVoiceDeviceSampleRate) {
417 if (inSampleRate >= mSampleRate * 2) {
418 halfLength += 16;
419 } else {
420 halfLength += 8;
421 }
422 stopBandAtten = 84.;
423 tbwCheat = 1.05;
424 }
425 } else if (mFilterQuality == DYN_LOW_QUALITY) {
426 // float or 16b coefficients
427 useS32 = false;
428 stopBandAtten = 80.;
429 if (inSampleRate >= mSampleRate * 4) {
430 halfLength = 24;
431 } else if (inSampleRate >= mSampleRate * 2) {
432 halfLength = 16;
433 } else {
434 halfLength = 8;
435 }
436 if (mSampleRate <= kVoiceDeviceSampleRate) {
437 if (inSampleRate >= mSampleRate * 2) {
438 halfLength += 8;
439 }
440 tbwCheat = 1.05;
441 } else if (inSampleRate <= mSampleRate) {
442 tbwCheat = 1.05;
443 } else {
444 tbwCheat = 1.03;
445 }
446 } else { // DYN_MED_QUALITY
447 // float or 16b coefficients
448 // note: > 64 length filters with 16b coefs can have quantization noise problems
449 useS32 = false;
450 stopBandAtten = 84.;
451 if (inSampleRate >= mSampleRate * 4) {
452 halfLength = 32;
453 } else if (inSampleRate >= mSampleRate * 2) {
454 halfLength = 24;
455 } else {
456 halfLength = 16;
457 }
458
459 if (mSampleRate <= kVoiceDeviceSampleRate) {
460 if (inSampleRate >= mSampleRate * 2) {
461 halfLength += 16;
462 } else {
463 halfLength += 8;
464 }
465 tbwCheat = 1.05;
466 } else if (inSampleRate <= mSampleRate) {
467 tbwCheat = 1.03;
468 } else {
469 tbwCheat = 1.01;
470 }
471 }
472 }
473
474 if (fcr > 0.) {
475 ALOGV("%s: mFilterQuality:%d inSampleRate:%d mSampleRate:%d halfLength:%d "
476 "stopBandAtten:%lf fcr:%lf",
477 __func__, mFilterQuality, inSampleRate, mSampleRate, halfLength,
478 stopBandAtten, fcr);
479 } else {
480 ALOGV("%s: mFilterQuality:%d inSampleRate:%d mSampleRate:%d halfLength:%d "
481 "stopBandAtten:%lf tbwCheat:%lf",
482 __func__, mFilterQuality, inSampleRate, mSampleRate, halfLength,
483 stopBandAtten, tbwCheat);
484 }
485
486
487 // determine the number of polyphases in the filterbank.
488 // for 16b, it is desirable to have 2^(16/2) = 256 phases.
489 // https://ccrma.stanford.edu/~jos/resample/Relation_Interpolation_Error_Quantization.html
490 //
491 // We are a bit more lax on this.
492
493 int phases = mSampleRate / gcd(mSampleRate, inSampleRate);
494
495 // TODO: Once dynamic sample rate change is an option, the code below
496 // should be modified to execute only when dynamic sample rate change is enabled.
497 //
498 // as above, #phases less than 63 is too few phases for accurate linear interpolation.
499 // we increase the phases to compensate, but more phases means more memory per
500 // filter and more time to compute the filter.
501 //
502 // if we know that the filter will be used for dynamic sample rate changes,
503 // that would allow us skip this part for fixed sample rate resamplers.
504 //
505 while (phases<63) {
506 phases *= 2; // this code only needed to support dynamic rate changes
507 }
508
509 if (phases>=256) { // too many phases, always interpolate
510 phases = 127;
511 }
512
513 // create the filter
514 mConstants.set(phases, halfLength, inSampleRate, mSampleRate);
515 if (fcr > 0.) {
516 createKaiserFir(mConstants, stopBandAtten, fcr);
517 } else {
518 createKaiserFir(mConstants, stopBandAtten,
519 inSampleRate, mSampleRate, tbwCheat);
520 }
521 } // End Kaiser filter
522
523 // update phase and state based on the new filter.
524 const Constants& c(mConstants);
525 mInBuffer.resize(mChannelCount, c.mHalfNumCoefs);
526 const uint32_t phaseWrapLimit = c.mL << c.mShift;
527 // try to preserve as much of the phase fraction as possible for on-the-fly changes
528 mPhaseFraction = static_cast<unsigned long long>(mPhaseFraction)
529 * phaseWrapLimit / oldPhaseWrapLimit;
530 mPhaseFraction %= phaseWrapLimit; // should not do anything, but just in case.
531 mPhaseIncrement = static_cast<uint32_t>(static_cast<uint64_t>(phaseWrapLimit)
532 * inSampleRate / mSampleRate);
533
534 // determine which resampler to use
535 // check if locked phase (works only if mPhaseIncrement has no "fractional phase bits")
536 int locked = (mPhaseIncrement << (sizeof(mPhaseIncrement)*8 - c.mShift)) == 0;
537 if (locked) {
538 mPhaseFraction = mPhaseFraction >> c.mShift << c.mShift; // remove fractional phase
539 }
540
541 // stride is the minimum number of filter coefficients processed per loop iteration.
542 // We currently only allow a stride of 16 to match with SIMD processing.
543 // This means that the filter length must be a multiple of 16,
544 // or half the filter length (mHalfNumCoefs) must be a multiple of 8.
545 //
546 // Note: A stride of 2 is achieved with non-SIMD processing.
547 int stride = ((c.mHalfNumCoefs & 7) == 0) ? 16 : 2;
548 LOG_ALWAYS_FATAL_IF(stride < 16, "Resampler stride must be 16 or more");
549 LOG_ALWAYS_FATAL_IF(mChannelCount < 1 || mChannelCount > 8,
550 "Resampler channels(%d) must be between 1 to 8", mChannelCount);
551 // stride 16 (falls back to stride 2 for machines that do not support NEON)
552 if (locked) {
553 switch (mChannelCount) {
554 case 1:
555 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<1, true, 16>;
556 break;
557 case 2:
558 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<2, true, 16>;
559 break;
560 case 3:
561 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<3, true, 16>;
562 break;
563 case 4:
564 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<4, true, 16>;
565 break;
566 case 5:
567 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<5, true, 16>;
568 break;
569 case 6:
570 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<6, true, 16>;
571 break;
572 case 7:
573 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<7, true, 16>;
574 break;
575 case 8:
576 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<8, true, 16>;
577 break;
578 }
579 } else {
580 switch (mChannelCount) {
581 case 1:
582 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<1, false, 16>;
583 break;
584 case 2:
585 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<2, false, 16>;
586 break;
587 case 3:
588 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<3, false, 16>;
589 break;
590 case 4:
591 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<4, false, 16>;
592 break;
593 case 5:
594 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<5, false, 16>;
595 break;
596 case 6:
597 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<6, false, 16>;
598 break;
599 case 7:
600 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<7, false, 16>;
601 break;
602 case 8:
603 mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<8, false, 16>;
604 break;
605 }
606 }
607 #ifdef DEBUG_RESAMPLER
608 printf("channels:%d %s stride:%d %s coef:%d shift:%d\n",
609 mChannelCount, locked ? "locked" : "interpolated",
610 stride, useS32 ? "S32" : "S16", 2*c.mHalfNumCoefs, c.mShift);
611 #endif
612 }
613
614 template<typename TC, typename TI, typename TO>
resample(int32_t * out,size_t outFrameCount,AudioBufferProvider * provider)615 size_t AudioResamplerDyn<TC, TI, TO>::resample(int32_t* out, size_t outFrameCount,
616 AudioBufferProvider* provider)
617 {
618 return (this->*mResampleFunc)(reinterpret_cast<TO*>(out), outFrameCount, provider);
619 }
620
621 template<typename TC, typename TI, typename TO>
622 template<int CHANNELS, bool LOCKED, int STRIDE>
resample(TO * out,size_t outFrameCount,AudioBufferProvider * provider)623 size_t AudioResamplerDyn<TC, TI, TO>::resample(TO* out, size_t outFrameCount,
624 AudioBufferProvider* provider)
625 {
626 // TODO Mono -> Mono is not supported. OUTPUT_CHANNELS reflects minimum of stereo out.
627 const int OUTPUT_CHANNELS = (CHANNELS < 2) ? 2 : CHANNELS;
628 const Constants& c(mConstants);
629 const TC* const coefs = mConstants.mFirCoefs;
630 TI* impulse = mInBuffer.getImpulse();
631 size_t inputIndex = 0;
632 uint32_t phaseFraction = mPhaseFraction;
633 const uint32_t phaseIncrement = mPhaseIncrement;
634 size_t outputIndex = 0;
635 size_t outputSampleCount = outFrameCount * OUTPUT_CHANNELS;
636 const uint32_t phaseWrapLimit = c.mL << c.mShift;
637 size_t inFrameCount = (phaseIncrement * (uint64_t)outFrameCount + phaseFraction)
638 / phaseWrapLimit;
639 // validate that inFrameCount is in signed 32 bit integer range.
640 ALOG_ASSERT(0 <= inFrameCount && inFrameCount < (1U << 31));
641
642 //ALOGV("inFrameCount:%d outFrameCount:%d"
643 // " phaseIncrement:%u phaseFraction:%u phaseWrapLimit:%u",
644 // inFrameCount, outFrameCount, phaseIncrement, phaseFraction, phaseWrapLimit);
645
646 // NOTE: be very careful when modifying the code here. register
647 // pressure is very high and a small change might cause the compiler
648 // to generate far less efficient code.
649 // Always validate the result with objdump or test-resample.
650
651 // the following logic is a bit convoluted to keep the main processing loop
652 // as tight as possible with register allocation.
653 while (outputIndex < outputSampleCount) {
654 //ALOGV("LOOP: inFrameCount:%d outputIndex:%d outFrameCount:%d"
655 // " phaseFraction:%u phaseWrapLimit:%u",
656 // inFrameCount, outputIndex, outFrameCount, phaseFraction, phaseWrapLimit);
657
658 // check inputIndex overflow
659 ALOG_ASSERT(inputIndex <= mBuffer.frameCount, "inputIndex%zu > frameCount%zu",
660 inputIndex, mBuffer.frameCount);
661 // Buffer is empty, fetch a new one if necessary (inFrameCount > 0).
662 // We may not fetch a new buffer if the existing data is sufficient.
663 while (mBuffer.frameCount == 0 && inFrameCount > 0) {
664 mBuffer.frameCount = inFrameCount;
665 provider->getNextBuffer(&mBuffer);
666 if (mBuffer.raw == NULL) {
667 // We are either at the end of playback or in an underrun situation.
668 // Reset buffer to prevent pop noise at the next buffer.
669 mInBuffer.reset();
670 goto resample_exit;
671 }
672 inFrameCount -= mBuffer.frameCount;
673 if (phaseFraction >= phaseWrapLimit) { // read in data
674 mInBuffer.template readAdvance<CHANNELS>(
675 impulse, c.mHalfNumCoefs,
676 reinterpret_cast<TI*>(mBuffer.raw), inputIndex);
677 inputIndex++;
678 phaseFraction -= phaseWrapLimit;
679 while (phaseFraction >= phaseWrapLimit) {
680 if (inputIndex >= mBuffer.frameCount) {
681 inputIndex = 0;
682 provider->releaseBuffer(&mBuffer);
683 break;
684 }
685 mInBuffer.template readAdvance<CHANNELS>(
686 impulse, c.mHalfNumCoefs,
687 reinterpret_cast<TI*>(mBuffer.raw), inputIndex);
688 inputIndex++;
689 phaseFraction -= phaseWrapLimit;
690 }
691 }
692 }
693 const TI* const in = reinterpret_cast<const TI*>(mBuffer.raw);
694 const size_t frameCount = mBuffer.frameCount;
695 const int coefShift = c.mShift;
696 const int halfNumCoefs = c.mHalfNumCoefs;
697 const TO* const volumeSimd = mVolumeSimd;
698
699 // main processing loop
700 while (CC_LIKELY(outputIndex < outputSampleCount)) {
701 // caution: fir() is inlined and may be large.
702 // output will be loaded with the appropriate values
703 //
704 // from the input samples in impulse[-halfNumCoefs+1]... impulse[halfNumCoefs]
705 // from the polyphase filter of (phaseFraction / phaseWrapLimit) in coefs.
706 //
707 //ALOGV("LOOP2: inFrameCount:%d outputIndex:%d outFrameCount:%d"
708 // " phaseFraction:%u phaseWrapLimit:%u",
709 // inFrameCount, outputIndex, outFrameCount, phaseFraction, phaseWrapLimit);
710 ALOG_ASSERT(phaseFraction < phaseWrapLimit);
711 fir<CHANNELS, LOCKED, STRIDE>(
712 &out[outputIndex],
713 phaseFraction, phaseWrapLimit,
714 coefShift, halfNumCoefs, coefs,
715 impulse, volumeSimd);
716
717 outputIndex += OUTPUT_CHANNELS;
718
719 phaseFraction += phaseIncrement;
720 while (phaseFraction >= phaseWrapLimit) {
721 if (inputIndex >= frameCount) {
722 goto done; // need a new buffer
723 }
724 mInBuffer.template readAdvance<CHANNELS>(impulse, halfNumCoefs, in, inputIndex);
725 inputIndex++;
726 phaseFraction -= phaseWrapLimit;
727 }
728 }
729 done:
730 // We arrive here when we're finished or when the input buffer runs out.
731 // Regardless we need to release the input buffer if we've acquired it.
732 if (inputIndex > 0) { // we've acquired a buffer (alternatively could check frameCount)
733 ALOG_ASSERT(inputIndex == frameCount, "inputIndex(%zu) != frameCount(%zu)",
734 inputIndex, frameCount); // must have been fully read.
735 inputIndex = 0;
736 provider->releaseBuffer(&mBuffer);
737 ALOG_ASSERT(mBuffer.frameCount == 0);
738 }
739 }
740
741 resample_exit:
742 // inputIndex must be zero in all three cases:
743 // (1) the buffer never was been acquired; (2) the buffer was
744 // released at "done:"; or (3) getNextBuffer() failed.
745 ALOG_ASSERT(inputIndex == 0, "Releasing: inputindex:%zu frameCount:%zu phaseFraction:%u",
746 inputIndex, mBuffer.frameCount, phaseFraction);
747 ALOG_ASSERT(mBuffer.frameCount == 0); // there must be no frames in the buffer
748 mInBuffer.setImpulse(impulse);
749 mPhaseFraction = phaseFraction;
750 return outputIndex / OUTPUT_CHANNELS;
751 }
752
753 /* instantiate templates used by AudioResampler::create */
754 template class AudioResamplerDyn<float, float, float>;
755 template class AudioResamplerDyn<int16_t, int16_t, int32_t>;
756 template class AudioResamplerDyn<int32_t, int16_t, int32_t>;
757
758 // ----------------------------------------------------------------------------
759 } // namespace android
760