1 /* 2 * Copyright (C) 2007 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ANDROID_LAYER_H 18 #define ANDROID_LAYER_H 19 20 #include <compositionengine/LayerFE.h> 21 #include <gui/BufferQueue.h> 22 #include <gui/ISurfaceComposerClient.h> 23 #include <gui/LayerState.h> 24 #include <input/InputWindow.h> 25 #include <layerproto/LayerProtoHeader.h> 26 #include <math/vec4.h> 27 #include <renderengine/Mesh.h> 28 #include <renderengine/Texture.h> 29 #include <sys/types.h> 30 #include <ui/FloatRect.h> 31 #include <ui/FrameStats.h> 32 #include <ui/GraphicBuffer.h> 33 #include <ui/PixelFormat.h> 34 #include <ui/Region.h> 35 #include <ui/Transform.h> 36 #include <utils/RefBase.h> 37 #include <utils/String8.h> 38 #include <utils/Timers.h> 39 40 #include <cstdint> 41 #include <list> 42 #include <optional> 43 #include <vector> 44 45 #include "Client.h" 46 #include "ClientCache.h" 47 #include "DisplayHardware/ComposerHal.h" 48 #include "DisplayHardware/HWComposer.h" 49 #include "FrameTracker.h" 50 #include "LayerVector.h" 51 #include "MonitoredProducer.h" 52 #include "RenderArea.h" 53 #include "SurfaceFlinger.h" 54 #include "TransactionCompletedThread.h" 55 56 using namespace android::surfaceflinger; 57 58 namespace android { 59 60 // --------------------------------------------------------------------------- 61 62 class Client; 63 class Colorizer; 64 class DisplayDevice; 65 class GraphicBuffer; 66 class SurfaceFlinger; 67 class LayerDebugInfo; 68 69 namespace compositionengine { 70 class Layer; 71 class OutputLayer; 72 struct LayerFECompositionState; 73 } 74 75 namespace impl { 76 class SurfaceInterceptor; 77 } 78 79 // --------------------------------------------------------------------------- 80 81 struct LayerCreationArgs { LayerCreationArgsLayerCreationArgs82 LayerCreationArgs(SurfaceFlinger* flinger, const sp<Client>& client, const String8& name, 83 uint32_t w, uint32_t h, uint32_t flags, LayerMetadata metadata) 84 : flinger(flinger), client(client), name(name), w(w), h(h), flags(flags), 85 metadata(std::move(metadata)) {} 86 87 SurfaceFlinger* flinger; 88 const sp<Client>& client; 89 const String8& name; 90 uint32_t w; 91 uint32_t h; 92 uint32_t flags; 93 LayerMetadata metadata; 94 }; 95 96 class Layer : public virtual compositionengine::LayerFE { 97 static std::atomic<int32_t> sSequence; 98 99 public: 100 mutable bool contentDirty{false}; 101 // regions below are in window-manager space 102 Region visibleRegion; 103 Region coveredRegion; 104 Region visibleNonTransparentRegion; 105 Region surfaceDamageRegion; 106 107 // Layer serial number. This gives layers an explicit ordering, so we 108 // have a stable sort order when their layer stack and Z-order are 109 // the same. 110 int32_t sequence{sSequence++}; 111 112 enum { // flags for doTransaction() 113 eDontUpdateGeometryState = 0x00000001, 114 eVisibleRegion = 0x00000002, 115 eInputInfoChanged = 0x00000004 116 }; 117 118 struct Geometry { 119 uint32_t w; 120 uint32_t h; 121 ui::Transform transform; 122 123 inline bool operator==(const Geometry& rhs) const { 124 return (w == rhs.w && h == rhs.h) && (transform.tx() == rhs.transform.tx()) && 125 (transform.ty() == rhs.transform.ty()); 126 } 127 inline bool operator!=(const Geometry& rhs) const { return !operator==(rhs); } 128 }; 129 130 struct RoundedCornerState { 131 RoundedCornerState() = default; RoundedCornerStateRoundedCornerState132 RoundedCornerState(FloatRect cropRect, float radius) 133 : cropRect(cropRect), radius(radius) {} 134 135 // Rounded rectangle in local layer coordinate space. 136 FloatRect cropRect = FloatRect(); 137 // Radius of the rounded rectangle. 138 float radius = 0.0f; 139 }; 140 141 struct State { 142 Geometry active_legacy; 143 Geometry requested_legacy; 144 int32_t z; 145 146 // The identifier of the layer stack this layer belongs to. A layer can 147 // only be associated to a single layer stack. A layer stack is a 148 // z-ordered group of layers which can be associated to one or more 149 // displays. Using the same layer stack on different displays is a way 150 // to achieve mirroring. 151 uint32_t layerStack; 152 153 uint8_t flags; 154 uint8_t reserved[2]; 155 int32_t sequence; // changes when visible regions can change 156 bool modified; 157 158 // Crop is expressed in layer space coordinate. 159 Rect crop_legacy; 160 Rect requestedCrop_legacy; 161 162 // If set, defers this state update until the identified Layer 163 // receives a frame with the given frameNumber 164 wp<Layer> barrierLayer_legacy; 165 uint64_t frameNumber_legacy; 166 167 // the transparentRegion hint is a bit special, it's latched only 168 // when we receive a buffer -- this is because it's "content" 169 // dependent. 170 Region activeTransparentRegion_legacy; 171 Region requestedTransparentRegion_legacy; 172 173 LayerMetadata metadata; 174 175 // If non-null, a Surface this Surface's Z-order is interpreted relative to. 176 wp<Layer> zOrderRelativeOf; 177 178 // A list of surfaces whose Z-order is interpreted relative to ours. 179 SortedVector<wp<Layer>> zOrderRelatives; 180 181 half4 color; 182 float cornerRadius; 183 184 bool inputInfoChanged; 185 InputWindowInfo inputInfo; 186 wp<Layer> touchableRegionCrop; 187 188 // dataspace is only used by BufferStateLayer and ColorLayer 189 ui::Dataspace dataspace; 190 191 // The fields below this point are only used by BufferStateLayer 192 Geometry active; 193 194 uint32_t transform; 195 bool transformToDisplayInverse; 196 197 Rect crop; 198 Region transparentRegionHint; 199 200 sp<GraphicBuffer> buffer; 201 client_cache_t clientCacheId; 202 sp<Fence> acquireFence; 203 HdrMetadata hdrMetadata; 204 Region surfaceDamageRegion; 205 int32_t api; 206 207 sp<NativeHandle> sidebandStream; 208 mat4 colorTransform; 209 bool hasColorTransform; 210 211 // pointer to background color layer that, if set, appears below the buffer state layer 212 // and the buffer state layer's children. Z order will be set to 213 // INT_MIN 214 sp<Layer> bgColorLayer; 215 216 // The deque of callback handles for this frame. The back of the deque contains the most 217 // recent callback handle. 218 std::deque<sp<CallbackHandle>> callbackHandles; 219 bool colorSpaceAgnostic; 220 }; 221 222 explicit Layer(const LayerCreationArgs& args); 223 virtual ~Layer(); 224 setPrimaryDisplayOnly()225 void setPrimaryDisplayOnly() { mPrimaryDisplayOnly = true; } getPrimaryDisplayOnly()226 bool getPrimaryDisplayOnly() const { return mPrimaryDisplayOnly; } 227 228 // ------------------------------------------------------------------------ 229 // Geometry setting functions. 230 // 231 // The following group of functions are used to specify the layers 232 // bounds, and the mapping of the texture on to those bounds. According 233 // to various settings changes to them may apply immediately, or be delayed until 234 // a pending resize is completed by the producer submitting a buffer. For example 235 // if we were to change the buffer size, and update the matrix ahead of the 236 // new buffer arriving, then we would be stretching the buffer to a different 237 // aspect before and after the buffer arriving, which probably isn't what we wanted. 238 // 239 // The first set of geometry functions are controlled by the scaling mode, described 240 // in window.h. The scaling mode may be set by the client, as it submits buffers. 241 // This value may be overriden through SurfaceControl, with setOverrideScalingMode. 242 // 243 // Put simply, if our scaling mode is SCALING_MODE_FREEZE, then 244 // matrix updates will not be applied while a resize is pending 245 // and the size and transform will remain in their previous state 246 // until a new buffer is submitted. If the scaling mode is another value 247 // then the old-buffer will immediately be scaled to the pending size 248 // and the new matrix will be immediately applied following this scaling 249 // transformation. 250 251 // Set the default buffer size for the assosciated Producer, in pixels. This is 252 // also the rendered size of the layer prior to any transformations. Parent 253 // or local matrix transformations will not affect the size of the buffer, 254 // but may affect it's on-screen size or clipping. 255 virtual bool setSize(uint32_t w, uint32_t h); 256 // Set a 2x2 transformation matrix on the layer. This transform 257 // will be applied after parent transforms, but before any final 258 // producer specified transform. 259 virtual bool setMatrix(const layer_state_t::matrix22_t& matrix, 260 bool allowNonRectPreservingTransforms); 261 262 // This second set of geometry attributes are controlled by 263 // setGeometryAppliesWithResize, and their default mode is to be 264 // immediate. If setGeometryAppliesWithResize is specified 265 // while a resize is pending, then update of these attributes will 266 // be delayed until the resize completes. 267 268 // setPosition operates in parent buffer space (pre parent-transform) or display 269 // space for top-level layers. 270 virtual bool setPosition(float x, float y, bool immediate); 271 // Buffer space 272 virtual bool setCrop_legacy(const Rect& crop, bool immediate); 273 274 // TODO(b/38182121): Could we eliminate the various latching modes by 275 // using the layer hierarchy? 276 // ----------------------------------------------------------------------- 277 virtual bool setLayer(int32_t z); 278 virtual bool setRelativeLayer(const sp<IBinder>& relativeToHandle, int32_t relativeZ); 279 280 virtual bool setAlpha(float alpha); setColor(const half3 &)281 virtual bool setColor(const half3& /*color*/) { return false; }; 282 283 // Set rounded corner radius for this layer and its children. 284 // 285 // We only support 1 radius per layer in the hierarchy, where parent layers have precedence. 286 // The shape of the rounded corner rectangle is specified by the crop rectangle of the layer 287 // from which we inferred the rounded corner radius. 288 virtual bool setCornerRadius(float cornerRadius); 289 virtual bool setTransparentRegionHint(const Region& transparent); 290 virtual bool setFlags(uint8_t flags, uint8_t mask); 291 virtual bool setLayerStack(uint32_t layerStack); 292 virtual uint32_t getLayerStack() const; 293 virtual void deferTransactionUntil_legacy(const sp<IBinder>& barrierHandle, 294 uint64_t frameNumber); 295 virtual void deferTransactionUntil_legacy(const sp<Layer>& barrierLayer, uint64_t frameNumber); 296 virtual bool setOverrideScalingMode(int32_t overrideScalingMode); 297 virtual bool setMetadata(const LayerMetadata& data); 298 virtual bool reparentChildren(const sp<IBinder>& layer); 299 virtual void setChildrenDrawingParent(const sp<Layer>& layer); 300 virtual bool reparent(const sp<IBinder>& newParentHandle); 301 virtual bool detachChildren(); 302 bool attachChildren(); isLayerDetached()303 bool isLayerDetached() const { return mLayerDetached; } 304 virtual bool setColorTransform(const mat4& matrix); 305 virtual mat4 getColorTransform() const; 306 virtual bool hasColorTransform() const; isColorSpaceAgnostic()307 virtual bool isColorSpaceAgnostic() const { return mDrawingState.colorSpaceAgnostic; } 308 309 // Used only to set BufferStateLayer state setTransform(uint32_t)310 virtual bool setTransform(uint32_t /*transform*/) { return false; }; setTransformToDisplayInverse(bool)311 virtual bool setTransformToDisplayInverse(bool /*transformToDisplayInverse*/) { return false; }; setCrop(const Rect &)312 virtual bool setCrop(const Rect& /*crop*/) { return false; }; setFrame(const Rect &)313 virtual bool setFrame(const Rect& /*frame*/) { return false; }; setBuffer(const sp<GraphicBuffer> &,nsecs_t,nsecs_t,const client_cache_t &)314 virtual bool setBuffer(const sp<GraphicBuffer>& /*buffer*/, nsecs_t /*postTime*/, 315 nsecs_t /*desiredPresentTime*/, 316 const client_cache_t& /*clientCacheId*/) { 317 return false; 318 }; setAcquireFence(const sp<Fence> &)319 virtual bool setAcquireFence(const sp<Fence>& /*fence*/) { return false; }; setDataspace(ui::Dataspace)320 virtual bool setDataspace(ui::Dataspace /*dataspace*/) { return false; }; setHdrMetadata(const HdrMetadata &)321 virtual bool setHdrMetadata(const HdrMetadata& /*hdrMetadata*/) { return false; }; setSurfaceDamageRegion(const Region &)322 virtual bool setSurfaceDamageRegion(const Region& /*surfaceDamage*/) { return false; }; setApi(int32_t)323 virtual bool setApi(int32_t /*api*/) { return false; }; setSidebandStream(const sp<NativeHandle> &)324 virtual bool setSidebandStream(const sp<NativeHandle>& /*sidebandStream*/) { return false; }; setTransactionCompletedListeners(const std::vector<sp<CallbackHandle>> &)325 virtual bool setTransactionCompletedListeners( 326 const std::vector<sp<CallbackHandle>>& /*handles*/) { 327 return false; 328 }; 329 virtual bool setBackgroundColor(const half3& color, float alpha, ui::Dataspace dataspace); 330 virtual bool setColorSpaceAgnostic(const bool agnostic); 331 getDataSpace()332 ui::Dataspace getDataSpace() const { return mCurrentDataSpace; } 333 334 // Before color management is introduced, contents on Android have to be 335 // desaturated in order to match what they appears like visually. 336 // With color management, these contents will appear desaturated, thus 337 // needed to be saturated so that they match what they are designed for 338 // visually. 339 bool isLegacyDataSpace() const; 340 341 virtual std::shared_ptr<compositionengine::Layer> getCompositionLayer() const; 342 343 // If we have received a new buffer this frame, we will pass its surface 344 // damage down to hardware composer. Otherwise, we must send a region with 345 // one empty rect. useSurfaceDamage()346 virtual void useSurfaceDamage() {} useEmptyDamage()347 virtual void useEmptyDamage() {} 348 getTransactionFlags()349 uint32_t getTransactionFlags() const { return mTransactionFlags; } 350 uint32_t getTransactionFlags(uint32_t flags); 351 uint32_t setTransactionFlags(uint32_t flags); 352 353 // Deprecated, please use compositionengine::Output::belongsInOutput() 354 // instead. 355 // TODO(lpique): Move the remaining callers (screencap) to the new function. belongsToDisplay(uint32_t layerStack,bool isPrimaryDisplay)356 bool belongsToDisplay(uint32_t layerStack, bool isPrimaryDisplay) const { 357 return getLayerStack() == layerStack && (!mPrimaryDisplayOnly || isPrimaryDisplay); 358 } 359 360 void computeGeometry(const RenderArea& renderArea, renderengine::Mesh& mesh, 361 bool useIdentityTransform) const; 362 FloatRect getBounds(const Region& activeTransparentRegion) const; 363 FloatRect getBounds() const; 364 365 // Compute bounds for the layer and cache the results. 366 void computeBounds(FloatRect parentBounds, ui::Transform parentTransform); 367 368 // Returns the buffer scale transform if a scaling mode is set. 369 ui::Transform getBufferScaleTransform() const; 370 371 // Get effective layer transform, taking into account all its parent transform with any 372 // scaling if the parent scaling more is not NATIVE_WINDOW_SCALING_MODE_FREEZE. 373 ui::Transform getTransformWithScale(const ui::Transform& bufferScaleTransform) const; 374 375 // Returns the bounds of the layer without any buffer scaling. 376 FloatRect getBoundsPreScaling(const ui::Transform& bufferScaleTransform) const; 377 getSequence()378 int32_t getSequence() const { return sequence; } 379 380 // ----------------------------------------------------------------------- 381 // Virtuals 382 virtual const char* getTypeId() const = 0; 383 384 /* 385 * isOpaque - true if this surface is opaque 386 * 387 * This takes into account the buffer format (i.e. whether or not the 388 * pixel format includes an alpha channel) and the "opaque" flag set 389 * on the layer. It does not examine the current plane alpha value. 390 */ isOpaque(const Layer::State &)391 virtual bool isOpaque(const Layer::State&) const { return false; } 392 393 /* 394 * isSecure - true if this surface is secure, that is if it prevents 395 * screenshots or VNC servers. 396 */ 397 bool isSecure() const; 398 399 /* 400 * isVisible - true if this layer is visible, false otherwise 401 */ 402 virtual bool isVisible() const = 0; 403 404 /* 405 * isHiddenByPolicy - true if this layer has been forced invisible. 406 * just because this is false, doesn't mean isVisible() is true. 407 * For example if this layer has no active buffer, it may not be hidden by 408 * policy, but it still can not be visible. 409 */ 410 bool isHiddenByPolicy() const; 411 412 /* 413 * Returns whether this layer can receive input. 414 */ 415 virtual bool canReceiveInput() const; 416 417 /* 418 * isProtected - true if the layer may contain protected content in the 419 * GRALLOC_USAGE_PROTECTED sense. 420 */ isProtected()421 virtual bool isProtected() const { return false; } 422 423 /* 424 * isFixedSize - true if content has a fixed size 425 */ isFixedSize()426 virtual bool isFixedSize() const { return true; } 427 428 /* 429 * usesSourceCrop - true if content should use a source crop 430 */ usesSourceCrop()431 virtual bool usesSourceCrop() const { return false; } 432 433 // Most layers aren't created from the main thread, and therefore need to 434 // grab the SF state lock to access HWC, but ContainerLayer does, so we need 435 // to avoid grabbing the lock again to avoid deadlock isCreatedFromMainThread()436 virtual bool isCreatedFromMainThread() const { return false; } 437 438 bool isRemovedFromCurrentState() const; 439 440 // Write states that are modified by the main thread. This includes drawing 441 // state as well as buffer data. This should be called in the main or tracing 442 // thread. 443 void writeToProtoDrawingState(LayerProto* layerInfo, 444 uint32_t traceFlags = SurfaceTracing::TRACE_ALL) const; 445 // Write states that are modified by the main thread. This includes drawing 446 // state as well as buffer data and composition data for layers on the specified 447 // display. This should be called in the main or tracing thread. 448 void writeToProtoCompositionState(LayerProto* layerInfo, const sp<DisplayDevice>& displayDevice, 449 uint32_t traceFlags = SurfaceTracing::TRACE_ALL) const; 450 // Write drawing or current state. If writing current state, the caller should hold the 451 // external mStateLock. If writing drawing state, this function should be called on the 452 // main or tracing thread. 453 void writeToProtoCommonState(LayerProto* layerInfo, LayerVector::StateSet stateSet, 454 uint32_t traceFlags = SurfaceTracing::TRACE_ALL) const; 455 getActiveGeometry(const Layer::State & s)456 virtual Geometry getActiveGeometry(const Layer::State& s) const { return s.active_legacy; } getActiveWidth(const Layer::State & s)457 virtual uint32_t getActiveWidth(const Layer::State& s) const { return s.active_legacy.w; } getActiveHeight(const Layer::State & s)458 virtual uint32_t getActiveHeight(const Layer::State& s) const { return s.active_legacy.h; } getActiveTransform(const Layer::State & s)459 virtual ui::Transform getActiveTransform(const Layer::State& s) const { 460 return s.active_legacy.transform; 461 } getActiveTransparentRegion(const Layer::State & s)462 virtual Region getActiveTransparentRegion(const Layer::State& s) const { 463 return s.activeTransparentRegion_legacy; 464 } getCrop(const Layer::State & s)465 virtual Rect getCrop(const Layer::State& s) const { return s.crop_legacy; } 466 467 protected: 468 virtual bool prepareClientLayer(const RenderArea& renderArea, const Region& clip, 469 bool useIdentityTransform, Region& clearRegion, 470 const bool supportProtectedContent, 471 renderengine::LayerSettings& layer); 472 473 public: 474 /* 475 * compositionengine::LayerFE overrides 476 */ 477 void latchCompositionState(compositionengine::LayerFECompositionState&, 478 bool includeGeometry) const override; 479 void onLayerDisplayed(const sp<Fence>& releaseFence) override; 480 const char* getDebugName() const override; 481 482 protected: 483 void latchGeometry(compositionengine::LayerFECompositionState& outState) const; 484 485 public: setDefaultBufferSize(uint32_t,uint32_t)486 virtual void setDefaultBufferSize(uint32_t /*w*/, uint32_t /*h*/) {} 487 isHdrY410()488 virtual bool isHdrY410() const { return false; } 489 490 void forceClientComposition(const sp<DisplayDevice>& display); 491 bool getForceClientComposition(const sp<DisplayDevice>& display); 492 virtual void setPerFrameData(const sp<const DisplayDevice>& display, 493 const ui::Transform& transform, const Rect& viewport, 494 int32_t supportedPerFrameMetadata, 495 const ui::Dataspace targetDataspace) = 0; 496 497 // callIntoHwc exists so we can update our local state and call 498 // acceptDisplayChanges without unnecessarily updating the device's state 499 void setCompositionType(const sp<const DisplayDevice>& display, 500 Hwc2::IComposerClient::Composition type); 501 Hwc2::IComposerClient::Composition getCompositionType( 502 const sp<const DisplayDevice>& display) const; 503 bool getClearClientTarget(const sp<const DisplayDevice>& display) const; 504 void updateCursorPosition(const sp<const DisplayDevice>& display); 505 shouldPresentNow(nsecs_t)506 virtual bool shouldPresentNow(nsecs_t /*expectedPresentTime*/) const { return false; } setTransformHint(uint32_t)507 virtual void setTransformHint(uint32_t /*orientation*/) const { } 508 509 /* 510 * called before composition. 511 * returns true if the layer has pending updates. 512 */ 513 virtual bool onPreComposition(nsecs_t refreshStartTime) = 0; 514 515 /* 516 * called after composition. 517 * returns true if the layer latched a new buffer this frame. 518 */ onPostComposition(const std::optional<DisplayId> &,const std::shared_ptr<FenceTime> &,const std::shared_ptr<FenceTime> &,const CompositorTiming &)519 virtual bool onPostComposition(const std::optional<DisplayId>& /*displayId*/, 520 const std::shared_ptr<FenceTime>& /*glDoneFence*/, 521 const std::shared_ptr<FenceTime>& /*presentFence*/, 522 const CompositorTiming& /*compositorTiming*/) { 523 return false; 524 } 525 526 // If a buffer was replaced this frame, release the former buffer releasePendingBuffer(nsecs_t)527 virtual void releasePendingBuffer(nsecs_t /*dequeueReadyTime*/) { } 528 529 /* 530 * prepareClientLayer - populates a renderengine::LayerSettings to passed to 531 * RenderEngine::drawLayers. Returns true if the layer can be used, and 532 * false otherwise. 533 */ 534 bool prepareClientLayer(const RenderArea& renderArea, const Region& clip, Region& clearRegion, 535 const bool supportProtectedContent, renderengine::LayerSettings& layer); 536 bool prepareClientLayer(const RenderArea& renderArea, bool useIdentityTransform, 537 Region& clearRegion, const bool supportProtectedContent, 538 renderengine::LayerSettings& layer); 539 540 /* 541 * doTransaction - process the transaction. This is a good place to figure 542 * out which attributes of the surface have changed. 543 */ 544 uint32_t doTransaction(uint32_t transactionFlags); 545 546 /* 547 * setVisibleRegion - called to set the new visible region. This gives 548 * a chance to update the new visible region or record the fact it changed. 549 */ 550 void setVisibleRegion(const Region& visibleRegion); 551 552 /* 553 * setCoveredRegion - called when the covered region changes. The covered 554 * region corresponds to any area of the surface that is covered 555 * (transparently or not) by another surface. 556 */ 557 void setCoveredRegion(const Region& coveredRegion); 558 559 /* 560 * setVisibleNonTransparentRegion - called when the visible and 561 * non-transparent region changes. 562 */ 563 void setVisibleNonTransparentRegion(const Region& visibleNonTransparentRegion); 564 565 /* 566 * Clear the visible, covered, and non-transparent regions. 567 */ 568 void clearVisibilityRegions(); 569 570 /* 571 * latchBuffer - called each time the screen is redrawn and returns whether 572 * the visible regions need to be recomputed (this is a fairly heavy 573 * operation, so this should be set only if needed). Typically this is used 574 * to figure out if the content or size of a surface has changed. 575 */ latchBuffer(bool &,nsecs_t)576 virtual bool latchBuffer(bool& /*recomputeVisibleRegions*/, nsecs_t /*latchTime*/) { 577 return {}; 578 } 579 isBufferLatched()580 virtual bool isBufferLatched() const { return false; } 581 582 /* 583 * Remove relative z for the layer if its relative parent is not part of the 584 * provided layer tree. 585 */ 586 void removeRelativeZ(const std::vector<Layer*>& layersInTree); 587 588 /* 589 * Remove from current state and mark for removal. 590 */ 591 void removeFromCurrentState(); 592 593 /* 594 * called with the state lock from a binder thread when the layer is 595 * removed from the current list to the pending removal list 596 */ 597 void onRemovedFromCurrentState(); 598 599 /* 600 * Called when the layer is added back to the current state list. 601 */ 602 void addToCurrentState(); 603 604 // Updates the transform hint in our SurfaceFlingerConsumer to match 605 // the current orientation of the display device. 606 void updateTransformHint(const sp<const DisplayDevice>& display) const; 607 608 /* 609 * returns the rectangle that crops the content of the layer and scales it 610 * to the layer's size. 611 */ 612 Rect getContentCrop() const; 613 614 /* 615 * Returns if a frame is ready 616 */ hasReadyFrame()617 virtual bool hasReadyFrame() const { return false; } 618 getQueuedFrameCount()619 virtual int32_t getQueuedFrameCount() const { return 0; } 620 621 // ----------------------------------------------------------------------- 622 623 bool hasHwcLayer(const sp<const DisplayDevice>& displayDevice); 624 HWC2::Layer* getHwcLayer(const sp<const DisplayDevice>& displayDevice); 625 getDrawingState()626 inline const State& getDrawingState() const { return mDrawingState; } getCurrentState()627 inline const State& getCurrentState() const { return mCurrentState; } getCurrentState()628 inline State& getCurrentState() { return mCurrentState; } 629 630 LayerDebugInfo getLayerDebugInfo() const; 631 632 /* always call base class first */ 633 static void miniDumpHeader(std::string& result); 634 void miniDump(std::string& result, const sp<DisplayDevice>& display) const; 635 void dumpFrameStats(std::string& result) const; 636 void dumpFrameEvents(std::string& result); 637 void clearFrameStats(); 638 void logFrameStats(); 639 void getFrameStats(FrameStats* outStats) const; 640 getOccupancyHistory(bool)641 virtual std::vector<OccupancyTracker::Segment> getOccupancyHistory(bool /*forceFlush*/) { 642 return {}; 643 } 644 645 void onDisconnect(); 646 void addAndGetFrameTimestamps(const NewFrameEventsEntry* newEntry, 647 FrameEventHistoryDelta* outDelta); 648 getTransformToDisplayInverse()649 virtual bool getTransformToDisplayInverse() const { return false; } 650 651 ui::Transform getTransform() const; 652 653 // Returns the Alpha of the Surface, accounting for the Alpha 654 // of parent Surfaces in the hierarchy (alpha's will be multiplied 655 // down the hierarchy). 656 half getAlpha() const; 657 half4 getColor() const; 658 659 // Returns how rounded corners should be drawn for this layer. 660 // This will traverse the hierarchy until it reaches its root, finding topmost rounded 661 // corner definition and converting it into current layer's coordinates. 662 // As of now, only 1 corner radius per display list is supported. Subsequent ones will be 663 // ignored. 664 RoundedCornerState getRoundedCornerState() const; 665 666 void traverseInReverseZOrder(LayerVector::StateSet stateSet, 667 const LayerVector::Visitor& visitor); 668 void traverseInZOrder(LayerVector::StateSet stateSet, const LayerVector::Visitor& visitor); 669 670 /** 671 * Traverse only children in z order, ignoring relative layers that are not children of the 672 * parent. 673 */ 674 void traverseChildrenInZOrder(LayerVector::StateSet stateSet, 675 const LayerVector::Visitor& visitor); 676 677 size_t getChildrenCount() const; 678 void addChild(const sp<Layer>& layer); 679 // Returns index if removed, or negative value otherwise 680 // for symmetry with Vector::remove 681 ssize_t removeChild(const sp<Layer>& layer); getParent()682 sp<Layer> getParent() const { return mCurrentParent.promote(); } hasParent()683 bool hasParent() const { return getParent() != nullptr; } 684 Rect getScreenBounds(bool reduceTransparentRegion = true) const; 685 bool setChildLayer(const sp<Layer>& childLayer, int32_t z); 686 bool setChildRelativeLayer(const sp<Layer>& childLayer, 687 const sp<IBinder>& relativeToHandle, int32_t relativeZ); 688 689 // Copy the current list of children to the drawing state. Called by 690 // SurfaceFlinger to complete a transaction. 691 void commitChildList(); 692 int32_t getZ() const; 693 virtual void pushPendingState(); 694 695 /** 696 * Returns active buffer size in the correct orientation. Buffer size is determined by undoing 697 * any buffer transformations. If the layer has no buffer then return INVALID_RECT. 698 */ getBufferSize(const Layer::State &)699 virtual Rect getBufferSize(const Layer::State&) const { return Rect::INVALID_RECT; } 700 701 /** 702 * Returns the source bounds. If the bounds are not defined, it is inferred from the 703 * buffer size. Failing that, the bounds are determined from the passed in parent bounds. 704 * For the root layer, this is the display viewport size. 705 */ computeSourceBounds(const FloatRect & parentBounds)706 virtual FloatRect computeSourceBounds(const FloatRect& parentBounds) const { 707 return parentBounds; 708 } 709 710 compositionengine::OutputLayer* findOutputLayerForDisplay( 711 const sp<const DisplayDevice>& display) const; 712 713 protected: 714 // constant 715 sp<SurfaceFlinger> mFlinger; 716 /* 717 * Trivial class, used to ensure that mFlinger->onLayerDestroyed(mLayer) 718 * is called. 719 */ 720 class LayerCleaner { 721 sp<SurfaceFlinger> mFlinger; 722 sp<Layer> mLayer; 723 724 protected: ~LayerCleaner()725 ~LayerCleaner() { 726 // destroy client resources 727 mFlinger->onHandleDestroyed(mLayer); 728 } 729 730 public: LayerCleaner(const sp<SurfaceFlinger> & flinger,const sp<Layer> & layer)731 LayerCleaner(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer) 732 : mFlinger(flinger), mLayer(layer) {} 733 }; 734 735 friend class impl::SurfaceInterceptor; 736 737 // For unit tests 738 friend class TestableSurfaceFlinger; 739 740 virtual void commitTransaction(const State& stateToCommit); 741 742 uint32_t getEffectiveUsage(uint32_t usage) const; 743 744 /** 745 * Setup rounded corners coordinates of this layer, taking into account the layer bounds and 746 * crop coordinates, transforming them into layer space. 747 */ 748 void setupRoundedCornersCropCoordinates(Rect win, const FloatRect& roundedCornersCrop) const; 749 void setParent(const sp<Layer>& layer); 750 LayerVector makeTraversalList(LayerVector::StateSet stateSet, bool* outSkipRelativeZUsers); 751 void addZOrderRelative(const wp<Layer>& relative); 752 void removeZOrderRelative(const wp<Layer>& relative); 753 754 class SyncPoint { 755 public: SyncPoint(uint64_t frameNumber,wp<Layer> requestedSyncLayer)756 explicit SyncPoint(uint64_t frameNumber, wp<Layer> requestedSyncLayer) 757 : mFrameNumber(frameNumber), 758 mFrameIsAvailable(false), 759 mTransactionIsApplied(false), 760 mRequestedSyncLayer(requestedSyncLayer) {} 761 getFrameNumber()762 uint64_t getFrameNumber() const { return mFrameNumber; } 763 frameIsAvailable()764 bool frameIsAvailable() const { return mFrameIsAvailable; } 765 setFrameAvailable()766 void setFrameAvailable() { mFrameIsAvailable = true; } 767 transactionIsApplied()768 bool transactionIsApplied() const { return mTransactionIsApplied; } 769 setTransactionApplied()770 void setTransactionApplied() { mTransactionIsApplied = true; } 771 getRequestedSyncLayer()772 sp<Layer> getRequestedSyncLayer() { return mRequestedSyncLayer.promote(); } 773 774 private: 775 const uint64_t mFrameNumber; 776 std::atomic<bool> mFrameIsAvailable; 777 std::atomic<bool> mTransactionIsApplied; 778 wp<Layer> mRequestedSyncLayer; 779 }; 780 781 // SyncPoints which will be signaled when the correct frame is at the head 782 // of the queue and dropped after the frame has been latched. Protected by 783 // mLocalSyncPointMutex. 784 Mutex mLocalSyncPointMutex; 785 std::list<std::shared_ptr<SyncPoint>> mLocalSyncPoints; 786 787 // SyncPoints which will be signaled and then dropped when the transaction 788 // is applied 789 std::list<std::shared_ptr<SyncPoint>> mRemoteSyncPoints; 790 791 // Returns false if the relevant frame has already been latched 792 bool addSyncPoint(const std::shared_ptr<SyncPoint>& point); 793 794 void popPendingState(State* stateToCommit); 795 virtual bool applyPendingStates(State* stateToCommit); 796 virtual uint32_t doTransactionResize(uint32_t flags, Layer::State* stateToCommit); 797 798 // Returns mCurrentScaling mode (originating from the 799 // Client) or mOverrideScalingMode mode (originating from 800 // the Surface Controller) if set. getEffectiveScalingMode()801 virtual uint32_t getEffectiveScalingMode() const { return 0; } 802 803 public: 804 /* 805 * The layer handle is just a BBinder object passed to the client 806 * (remote process) -- we don't keep any reference on our side such that 807 * the dtor is called when the remote side let go of its reference. 808 * 809 * LayerCleaner ensures that mFlinger->onLayerDestroyed() is called for 810 * this layer when the handle is destroyed. 811 */ 812 class Handle : public BBinder, public LayerCleaner { 813 public: Handle(const sp<SurfaceFlinger> & flinger,const sp<Layer> & layer)814 Handle(const sp<SurfaceFlinger>& flinger, const sp<Layer>& layer) 815 : LayerCleaner(flinger, layer), owner(layer) {} 816 817 wp<Layer> owner; 818 }; 819 820 // Creates a new handle each time, so we only expect 821 // this to be called once. 822 sp<IBinder> getHandle(); 823 const String8& getName() const; notifyAvailableFrames()824 virtual void notifyAvailableFrames() {} getPixelFormat()825 virtual PixelFormat getPixelFormat() const { return PIXEL_FORMAT_NONE; } 826 bool getPremultipledAlpha() const; 827 828 bool mPendingHWCDestroy{false}; 829 void setInputInfo(const InputWindowInfo& info); 830 831 InputWindowInfo fillInputInfo(); 832 bool hasInput() const; 833 834 protected: 835 // ----------------------------------------------------------------------- 836 bool usingRelativeZ(LayerVector::StateSet stateSet) const; 837 838 bool mPremultipliedAlpha{true}; 839 String8 mName; 840 String8 mTransactionName; // A cached version of "TX - " + mName for systraces 841 842 bool mPrimaryDisplayOnly = false; 843 844 // These are only accessed by the main thread or the tracing thread. 845 State mDrawingState; 846 // Store a copy of the pending state so that the drawing thread can access the 847 // states without a lock. 848 Vector<State> mPendingStatesSnapshot; 849 850 // these are protected by an external lock (mStateLock) 851 State mCurrentState; 852 std::atomic<uint32_t> mTransactionFlags{0}; 853 Vector<State> mPendingStates; 854 855 // Timestamp history for UIAutomation. Thread safe. 856 FrameTracker mFrameTracker; 857 858 // Timestamp history for the consumer to query. 859 // Accessed by both consumer and producer on main and binder threads. 860 Mutex mFrameEventHistoryMutex; 861 ConsumerFrameEventHistory mFrameEventHistory; 862 FenceTimeline mAcquireTimeline; 863 FenceTimeline mReleaseTimeline; 864 865 // main thread 866 sp<NativeHandle> mSidebandStream; 867 // Active buffer fields 868 sp<GraphicBuffer> mActiveBuffer; 869 sp<Fence> mActiveBufferFence; 870 // False if the buffer and its contents have been previously used for GPU 871 // composition, true otherwise. 872 bool mIsActiveBufferUpdatedForGpu = true; 873 874 ui::Dataspace mCurrentDataSpace = ui::Dataspace::UNKNOWN; 875 Rect mCurrentCrop; 876 uint32_t mCurrentTransform{0}; 877 // We encode unset as -1. 878 int32_t mOverrideScalingMode{-1}; 879 std::atomic<uint64_t> mCurrentFrameNumber{0}; 880 bool mFrameLatencyNeeded{false}; 881 // Whether filtering is needed b/c of the drawingstate 882 bool mNeedsFiltering{false}; 883 884 std::atomic<bool> mRemovedFromCurrentState{false}; 885 886 // page-flip thread (currently main thread) 887 bool mProtectedByApp{false}; // application requires protected path to external sink 888 889 // protected by mLock 890 mutable Mutex mLock; 891 892 const wp<Client> mClientRef; 893 894 // This layer can be a cursor on some displays. 895 bool mPotentialCursor{false}; 896 897 bool mFreezeGeometryUpdates{false}; 898 899 // Child list about to be committed/used for editing. 900 LayerVector mCurrentChildren{LayerVector::StateSet::Current}; 901 // Child list used for rendering. 902 LayerVector mDrawingChildren{LayerVector::StateSet::Drawing}; 903 904 wp<Layer> mCurrentParent; 905 wp<Layer> mDrawingParent; 906 907 // Can only be accessed with the SF state lock held. 908 bool mLayerDetached{false}; 909 // Can only be accessed with the SF state lock held. 910 bool mChildrenChanged{false}; 911 912 // Window types from WindowManager.LayoutParams 913 const int mWindowType; 914 915 // This is populated if the layer is registered with Scheduler for tracking purposes. 916 std::unique_ptr<scheduler::LayerHistory::LayerHandle> mSchedulerLayerHandle; 917 918 private: 919 /** 920 * Returns an unsorted vector of all layers that are part of this tree. 921 * That includes the current layer and all its descendants. 922 */ 923 std::vector<Layer*> getLayersInTree(LayerVector::StateSet stateSet); 924 /** 925 * Traverses layers that are part of this tree in the correct z order. 926 * layersInTree must be sorted before calling this method. 927 */ 928 void traverseChildrenInZOrderInner(const std::vector<Layer*>& layersInTree, 929 LayerVector::StateSet stateSet, 930 const LayerVector::Visitor& visitor); 931 LayerVector makeChildrenTraversalList(LayerVector::StateSet stateSet, 932 const std::vector<Layer*>& layersInTree); 933 /** 934 * Returns the cropped buffer size or the layer crop if the layer has no buffer. Return 935 * INVALID_RECT if the layer has no buffer and no crop. 936 * A layer with an invalid buffer size and no crop is considered to be boundless. The layer 937 * bounds are constrained by its parent bounds. 938 */ 939 Rect getCroppedBufferSize(const Layer::State& s) const; 940 941 // Cached properties computed from drawing state 942 // Effective transform taking into account parent transforms and any parent scaling. 943 ui::Transform mEffectiveTransform; 944 945 // Bounds of the layer before any transformation is applied and before it has been cropped 946 // by its parents. 947 FloatRect mSourceBounds; 948 949 // Bounds of the layer in layer space. This is the mSourceBounds cropped by its layer crop and 950 // its parent bounds. 951 FloatRect mBounds; 952 953 // Layer bounds in screen space. 954 FloatRect mScreenBounds; 955 956 void setZOrderRelativeOf(const wp<Layer>& relativeOf); 957 958 bool mGetHandleCalled = false; 959 960 void removeRemoteSyncPoints(); 961 }; 962 963 } // namespace android 964 965 #define RETURN_IF_NO_HWC_LAYER(displayDevice, ...) \ 966 do { \ 967 if (!hasHwcLayer(displayDevice)) { \ 968 ALOGE("[%s] %s failed: no HWC layer found for display %s", mName.string(), \ 969 __FUNCTION__, displayDevice->getDebugName().c_str()); \ 970 return __VA_ARGS__; \ 971 } \ 972 } while (false) 973 974 #endif // ANDROID_LAYER_H 975