1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <fcntl.h>
18
19 #include <android-base/logging.h>
20 #include <android-base/unique_fd.h>
21 #include <cutils/properties.h>
22 #include <sys/stat.h>
23 #include <sys/sysmacros.h>
24
25 #include "hidl_return_util.h"
26 #include "hidl_struct_util.h"
27 #include "wifi_chip.h"
28 #include "wifi_status_util.h"
29
30 namespace {
31 using android::sp;
32 using android::base::unique_fd;
33 using android::hardware::hidl_string;
34 using android::hardware::hidl_vec;
35 using android::hardware::wifi::V1_0::ChipModeId;
36 using android::hardware::wifi::V1_0::IfaceType;
37 using android::hardware::wifi::V1_0::IWifiChip;
38
39 constexpr char kCpioMagic[] = "070701";
40 constexpr size_t kMaxBufferSizeBytes = 1024 * 1024 * 3;
41 constexpr uint32_t kMaxRingBufferFileAgeSeconds = 60 * 60 * 10;
42 constexpr uint32_t kMaxRingBufferFileNum = 20;
43 constexpr char kTombstoneFolderPath[] = "/data/vendor/tombstones/wifi/";
44 constexpr char kActiveWlanIfaceNameProperty[] = "wifi.active.interface";
45 constexpr char kNoActiveWlanIfaceNamePropertyValue[] = "";
46 constexpr unsigned kMaxWlanIfaces = 5;
47
48 template <typename Iface>
invalidateAndClear(std::vector<sp<Iface>> & ifaces,sp<Iface> iface)49 void invalidateAndClear(std::vector<sp<Iface>>& ifaces, sp<Iface> iface) {
50 iface->invalidate();
51 ifaces.erase(std::remove(ifaces.begin(), ifaces.end(), iface),
52 ifaces.end());
53 }
54
55 template <typename Iface>
invalidateAndClearAll(std::vector<sp<Iface>> & ifaces)56 void invalidateAndClearAll(std::vector<sp<Iface>>& ifaces) {
57 for (const auto& iface : ifaces) {
58 iface->invalidate();
59 }
60 ifaces.clear();
61 }
62
63 template <typename Iface>
getNames(std::vector<sp<Iface>> & ifaces)64 std::vector<hidl_string> getNames(std::vector<sp<Iface>>& ifaces) {
65 std::vector<hidl_string> names;
66 for (const auto& iface : ifaces) {
67 names.emplace_back(iface->getName());
68 }
69 return names;
70 }
71
72 template <typename Iface>
findUsingName(std::vector<sp<Iface>> & ifaces,const std::string & name)73 sp<Iface> findUsingName(std::vector<sp<Iface>>& ifaces,
74 const std::string& name) {
75 std::vector<hidl_string> names;
76 for (const auto& iface : ifaces) {
77 if (name == iface->getName()) {
78 return iface;
79 }
80 }
81 return nullptr;
82 }
83
getWlanIfaceName(unsigned idx)84 std::string getWlanIfaceName(unsigned idx) {
85 if (idx >= kMaxWlanIfaces) {
86 CHECK(false) << "Requested interface beyond wlan" << kMaxWlanIfaces;
87 return {};
88 }
89
90 std::array<char, PROPERTY_VALUE_MAX> buffer;
91 if (idx == 0 || idx == 1) {
92 const char* altPropName =
93 (idx == 0) ? "wifi.interface" : "wifi.concurrent.interface";
94 auto res = property_get(altPropName, buffer.data(), nullptr);
95 if (res > 0) return buffer.data();
96 }
97 std::string propName = "wifi.interface." + std::to_string(idx);
98 auto res = property_get(propName.c_str(), buffer.data(), nullptr);
99 if (res > 0) return buffer.data();
100
101 return "wlan" + std::to_string(idx);
102 }
103
getP2pIfaceName()104 std::string getP2pIfaceName() {
105 std::array<char, PROPERTY_VALUE_MAX> buffer;
106 property_get("wifi.direct.interface", buffer.data(), "p2p0");
107 return buffer.data();
108 }
109
setActiveWlanIfaceNameProperty(const std::string & ifname)110 void setActiveWlanIfaceNameProperty(const std::string& ifname) {
111 auto res = property_set(kActiveWlanIfaceNameProperty, ifname.data());
112 if (res != 0) {
113 PLOG(ERROR) << "Failed to set active wlan iface name property";
114 }
115 }
116
117 // delete files that meet either conditions:
118 // 1. older than a predefined time in the wifi tombstone dir.
119 // 2. Files in excess to a predefined amount, starting from the oldest ones
removeOldFilesInternal()120 bool removeOldFilesInternal() {
121 time_t now = time(0);
122 const time_t delete_files_before = now - kMaxRingBufferFileAgeSeconds;
123 std::unique_ptr<DIR, decltype(&closedir)> dir_dump(
124 opendir(kTombstoneFolderPath), closedir);
125 if (!dir_dump) {
126 PLOG(ERROR) << "Failed to open directory";
127 return false;
128 }
129 struct dirent* dp;
130 bool success = true;
131 std::list<std::pair<const time_t, std::string>> valid_files;
132 while ((dp = readdir(dir_dump.get()))) {
133 if (dp->d_type != DT_REG) {
134 continue;
135 }
136 std::string cur_file_name(dp->d_name);
137 struct stat cur_file_stat;
138 std::string cur_file_path = kTombstoneFolderPath + cur_file_name;
139 if (stat(cur_file_path.c_str(), &cur_file_stat) == -1) {
140 PLOG(ERROR) << "Failed to get file stat for " << cur_file_path;
141 success = false;
142 continue;
143 }
144 const time_t cur_file_time = cur_file_stat.st_mtime;
145 valid_files.push_back(
146 std::pair<const time_t, std::string>(cur_file_time, cur_file_path));
147 }
148 valid_files.sort(); // sort the list of files by last modified time from
149 // small to big.
150 uint32_t cur_file_count = valid_files.size();
151 for (auto cur_file : valid_files) {
152 if (cur_file_count > kMaxRingBufferFileNum ||
153 cur_file.first < delete_files_before) {
154 if (unlink(cur_file.second.c_str()) != 0) {
155 PLOG(ERROR) << "Error deleting file";
156 success = false;
157 }
158 cur_file_count--;
159 } else {
160 break;
161 }
162 }
163 return success;
164 }
165
166 // Helper function for |cpioArchiveFilesInDir|
cpioWriteHeader(int out_fd,struct stat & st,const char * file_name,size_t file_name_len)167 bool cpioWriteHeader(int out_fd, struct stat& st, const char* file_name,
168 size_t file_name_len) {
169 std::array<char, 32 * 1024> read_buf;
170 ssize_t llen =
171 sprintf(read_buf.data(),
172 "%s%08X%08X%08X%08X%08X%08X%08X%08X%08X%08X%08X%08X%08X",
173 kCpioMagic, static_cast<int>(st.st_ino), st.st_mode, st.st_uid,
174 st.st_gid, static_cast<int>(st.st_nlink),
175 static_cast<int>(st.st_mtime), static_cast<int>(st.st_size),
176 major(st.st_dev), minor(st.st_dev), major(st.st_rdev),
177 minor(st.st_rdev), static_cast<uint32_t>(file_name_len), 0);
178 if (write(out_fd, read_buf.data(), llen) == -1) {
179 PLOG(ERROR) << "Error writing cpio header to file " << file_name;
180 return false;
181 }
182 if (write(out_fd, file_name, file_name_len) == -1) {
183 PLOG(ERROR) << "Error writing filename to file " << file_name;
184 return false;
185 }
186
187 // NUL Pad header up to 4 multiple bytes.
188 llen = (llen + file_name_len) % 4;
189 if (llen != 0) {
190 const uint32_t zero = 0;
191 if (write(out_fd, &zero, 4 - llen) == -1) {
192 PLOG(ERROR) << "Error padding 0s to file " << file_name;
193 return false;
194 }
195 }
196 return true;
197 }
198
199 // Helper function for |cpioArchiveFilesInDir|
cpioWriteFileContent(int fd_read,int out_fd,struct stat & st)200 size_t cpioWriteFileContent(int fd_read, int out_fd, struct stat& st) {
201 // writing content of file
202 std::array<char, 32 * 1024> read_buf;
203 ssize_t llen = st.st_size;
204 size_t n_error = 0;
205 while (llen > 0) {
206 ssize_t bytes_read = read(fd_read, read_buf.data(), read_buf.size());
207 if (bytes_read == -1) {
208 PLOG(ERROR) << "Error reading file";
209 return ++n_error;
210 }
211 llen -= bytes_read;
212 if (write(out_fd, read_buf.data(), bytes_read) == -1) {
213 PLOG(ERROR) << "Error writing data to file";
214 return ++n_error;
215 }
216 if (bytes_read == 0) { // this should never happen, but just in case
217 // to unstuck from while loop
218 PLOG(ERROR) << "Unexpected read result";
219 n_error++;
220 break;
221 }
222 }
223 llen = st.st_size % 4;
224 if (llen != 0) {
225 const uint32_t zero = 0;
226 if (write(out_fd, &zero, 4 - llen) == -1) {
227 PLOG(ERROR) << "Error padding 0s to file";
228 return ++n_error;
229 }
230 }
231 return n_error;
232 }
233
234 // Helper function for |cpioArchiveFilesInDir|
cpioWriteFileTrailer(int out_fd)235 bool cpioWriteFileTrailer(int out_fd) {
236 std::array<char, 4096> read_buf;
237 read_buf.fill(0);
238 if (write(out_fd, read_buf.data(),
239 sprintf(read_buf.data(), "070701%040X%056X%08XTRAILER!!!", 1,
240 0x0b, 0) +
241 4) == -1) {
242 PLOG(ERROR) << "Error writing trailing bytes";
243 return false;
244 }
245 return true;
246 }
247
248 // Archives all files in |input_dir| and writes result into |out_fd|
249 // Logic obtained from //external/toybox/toys/posix/cpio.c "Output cpio archive"
250 // portion
cpioArchiveFilesInDir(int out_fd,const char * input_dir)251 size_t cpioArchiveFilesInDir(int out_fd, const char* input_dir) {
252 struct dirent* dp;
253 size_t n_error = 0;
254 std::unique_ptr<DIR, decltype(&closedir)> dir_dump(opendir(input_dir),
255 closedir);
256 if (!dir_dump) {
257 PLOG(ERROR) << "Failed to open directory";
258 return ++n_error;
259 }
260 while ((dp = readdir(dir_dump.get()))) {
261 if (dp->d_type != DT_REG) {
262 continue;
263 }
264 std::string cur_file_name(dp->d_name);
265 // string.size() does not include the null terminator. The cpio FreeBSD
266 // file header expects the null character to be included in the length.
267 const size_t file_name_len = cur_file_name.size() + 1;
268 struct stat st;
269 const std::string cur_file_path = kTombstoneFolderPath + cur_file_name;
270 if (stat(cur_file_path.c_str(), &st) == -1) {
271 PLOG(ERROR) << "Failed to get file stat for " << cur_file_path;
272 n_error++;
273 continue;
274 }
275 const int fd_read = open(cur_file_path.c_str(), O_RDONLY);
276 if (fd_read == -1) {
277 PLOG(ERROR) << "Failed to open file " << cur_file_path;
278 n_error++;
279 continue;
280 }
281 unique_fd file_auto_closer(fd_read);
282 if (!cpioWriteHeader(out_fd, st, cur_file_name.c_str(),
283 file_name_len)) {
284 return ++n_error;
285 }
286 size_t write_error = cpioWriteFileContent(fd_read, out_fd, st);
287 if (write_error) {
288 return n_error + write_error;
289 }
290 }
291 if (!cpioWriteFileTrailer(out_fd)) {
292 return ++n_error;
293 }
294 return n_error;
295 }
296
297 // Helper function to create a non-const char*.
makeCharVec(const std::string & str)298 std::vector<char> makeCharVec(const std::string& str) {
299 std::vector<char> vec(str.size() + 1);
300 vec.assign(str.begin(), str.end());
301 vec.push_back('\0');
302 return vec;
303 }
304
305 } // namespace
306
307 namespace android {
308 namespace hardware {
309 namespace wifi {
310 namespace V1_3 {
311 namespace implementation {
312 using hidl_return_util::validateAndCall;
313 using hidl_return_util::validateAndCallWithLock;
314
WifiChip(ChipId chip_id,const std::weak_ptr<legacy_hal::WifiLegacyHal> legacy_hal,const std::weak_ptr<mode_controller::WifiModeController> mode_controller,const std::weak_ptr<iface_util::WifiIfaceUtil> iface_util,const std::weak_ptr<feature_flags::WifiFeatureFlags> feature_flags)315 WifiChip::WifiChip(
316 ChipId chip_id, const std::weak_ptr<legacy_hal::WifiLegacyHal> legacy_hal,
317 const std::weak_ptr<mode_controller::WifiModeController> mode_controller,
318 const std::weak_ptr<iface_util::WifiIfaceUtil> iface_util,
319 const std::weak_ptr<feature_flags::WifiFeatureFlags> feature_flags)
320 : chip_id_(chip_id),
321 legacy_hal_(legacy_hal),
322 mode_controller_(mode_controller),
323 iface_util_(iface_util),
324 feature_flags_(feature_flags),
325 is_valid_(true),
326 current_mode_id_(feature_flags::chip_mode_ids::kInvalid),
327 modes_(feature_flags.lock()->getChipModes()),
328 debug_ring_buffer_cb_registered_(false) {
329 setActiveWlanIfaceNameProperty(kNoActiveWlanIfaceNamePropertyValue);
330 }
331
invalidate()332 void WifiChip::invalidate() {
333 if (!writeRingbufferFilesInternal()) {
334 LOG(ERROR) << "Error writing files to flash";
335 }
336 invalidateAndRemoveAllIfaces();
337 setActiveWlanIfaceNameProperty(kNoActiveWlanIfaceNamePropertyValue);
338 legacy_hal_.reset();
339 event_cb_handler_.invalidate();
340 is_valid_ = false;
341 }
342
isValid()343 bool WifiChip::isValid() { return is_valid_; }
344
getEventCallbacks()345 std::set<sp<V1_2::IWifiChipEventCallback>> WifiChip::getEventCallbacks() {
346 return event_cb_handler_.getCallbacks();
347 }
348
getId(getId_cb hidl_status_cb)349 Return<void> WifiChip::getId(getId_cb hidl_status_cb) {
350 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
351 &WifiChip::getIdInternal, hidl_status_cb);
352 }
353
354 // Deprecated support for this callback
registerEventCallback(const sp<V1_0::IWifiChipEventCallback> & event_callback,registerEventCallback_cb hidl_status_cb)355 Return<void> WifiChip::registerEventCallback(
356 const sp<V1_0::IWifiChipEventCallback>& event_callback,
357 registerEventCallback_cb hidl_status_cb) {
358 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
359 &WifiChip::registerEventCallbackInternal,
360 hidl_status_cb, event_callback);
361 }
362
getCapabilities(getCapabilities_cb hidl_status_cb)363 Return<void> WifiChip::getCapabilities(getCapabilities_cb hidl_status_cb) {
364 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
365 &WifiChip::getCapabilitiesInternal, hidl_status_cb);
366 }
367
getAvailableModes(getAvailableModes_cb hidl_status_cb)368 Return<void> WifiChip::getAvailableModes(getAvailableModes_cb hidl_status_cb) {
369 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
370 &WifiChip::getAvailableModesInternal,
371 hidl_status_cb);
372 }
373
configureChip(ChipModeId mode_id,configureChip_cb hidl_status_cb)374 Return<void> WifiChip::configureChip(ChipModeId mode_id,
375 configureChip_cb hidl_status_cb) {
376 return validateAndCallWithLock(
377 this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
378 &WifiChip::configureChipInternal, hidl_status_cb, mode_id);
379 }
380
getMode(getMode_cb hidl_status_cb)381 Return<void> WifiChip::getMode(getMode_cb hidl_status_cb) {
382 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
383 &WifiChip::getModeInternal, hidl_status_cb);
384 }
385
requestChipDebugInfo(requestChipDebugInfo_cb hidl_status_cb)386 Return<void> WifiChip::requestChipDebugInfo(
387 requestChipDebugInfo_cb hidl_status_cb) {
388 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
389 &WifiChip::requestChipDebugInfoInternal,
390 hidl_status_cb);
391 }
392
requestDriverDebugDump(requestDriverDebugDump_cb hidl_status_cb)393 Return<void> WifiChip::requestDriverDebugDump(
394 requestDriverDebugDump_cb hidl_status_cb) {
395 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
396 &WifiChip::requestDriverDebugDumpInternal,
397 hidl_status_cb);
398 }
399
requestFirmwareDebugDump(requestFirmwareDebugDump_cb hidl_status_cb)400 Return<void> WifiChip::requestFirmwareDebugDump(
401 requestFirmwareDebugDump_cb hidl_status_cb) {
402 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
403 &WifiChip::requestFirmwareDebugDumpInternal,
404 hidl_status_cb);
405 }
406
createApIface(createApIface_cb hidl_status_cb)407 Return<void> WifiChip::createApIface(createApIface_cb hidl_status_cb) {
408 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
409 &WifiChip::createApIfaceInternal, hidl_status_cb);
410 }
411
getApIfaceNames(getApIfaceNames_cb hidl_status_cb)412 Return<void> WifiChip::getApIfaceNames(getApIfaceNames_cb hidl_status_cb) {
413 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
414 &WifiChip::getApIfaceNamesInternal, hidl_status_cb);
415 }
416
getApIface(const hidl_string & ifname,getApIface_cb hidl_status_cb)417 Return<void> WifiChip::getApIface(const hidl_string& ifname,
418 getApIface_cb hidl_status_cb) {
419 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
420 &WifiChip::getApIfaceInternal, hidl_status_cb,
421 ifname);
422 }
423
removeApIface(const hidl_string & ifname,removeApIface_cb hidl_status_cb)424 Return<void> WifiChip::removeApIface(const hidl_string& ifname,
425 removeApIface_cb hidl_status_cb) {
426 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
427 &WifiChip::removeApIfaceInternal, hidl_status_cb,
428 ifname);
429 }
430
createNanIface(createNanIface_cb hidl_status_cb)431 Return<void> WifiChip::createNanIface(createNanIface_cb hidl_status_cb) {
432 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
433 &WifiChip::createNanIfaceInternal, hidl_status_cb);
434 }
435
getNanIfaceNames(getNanIfaceNames_cb hidl_status_cb)436 Return<void> WifiChip::getNanIfaceNames(getNanIfaceNames_cb hidl_status_cb) {
437 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
438 &WifiChip::getNanIfaceNamesInternal, hidl_status_cb);
439 }
440
getNanIface(const hidl_string & ifname,getNanIface_cb hidl_status_cb)441 Return<void> WifiChip::getNanIface(const hidl_string& ifname,
442 getNanIface_cb hidl_status_cb) {
443 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
444 &WifiChip::getNanIfaceInternal, hidl_status_cb,
445 ifname);
446 }
447
removeNanIface(const hidl_string & ifname,removeNanIface_cb hidl_status_cb)448 Return<void> WifiChip::removeNanIface(const hidl_string& ifname,
449 removeNanIface_cb hidl_status_cb) {
450 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
451 &WifiChip::removeNanIfaceInternal, hidl_status_cb,
452 ifname);
453 }
454
createP2pIface(createP2pIface_cb hidl_status_cb)455 Return<void> WifiChip::createP2pIface(createP2pIface_cb hidl_status_cb) {
456 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
457 &WifiChip::createP2pIfaceInternal, hidl_status_cb);
458 }
459
getP2pIfaceNames(getP2pIfaceNames_cb hidl_status_cb)460 Return<void> WifiChip::getP2pIfaceNames(getP2pIfaceNames_cb hidl_status_cb) {
461 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
462 &WifiChip::getP2pIfaceNamesInternal, hidl_status_cb);
463 }
464
getP2pIface(const hidl_string & ifname,getP2pIface_cb hidl_status_cb)465 Return<void> WifiChip::getP2pIface(const hidl_string& ifname,
466 getP2pIface_cb hidl_status_cb) {
467 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
468 &WifiChip::getP2pIfaceInternal, hidl_status_cb,
469 ifname);
470 }
471
removeP2pIface(const hidl_string & ifname,removeP2pIface_cb hidl_status_cb)472 Return<void> WifiChip::removeP2pIface(const hidl_string& ifname,
473 removeP2pIface_cb hidl_status_cb) {
474 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
475 &WifiChip::removeP2pIfaceInternal, hidl_status_cb,
476 ifname);
477 }
478
createStaIface(createStaIface_cb hidl_status_cb)479 Return<void> WifiChip::createStaIface(createStaIface_cb hidl_status_cb) {
480 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
481 &WifiChip::createStaIfaceInternal, hidl_status_cb);
482 }
483
getStaIfaceNames(getStaIfaceNames_cb hidl_status_cb)484 Return<void> WifiChip::getStaIfaceNames(getStaIfaceNames_cb hidl_status_cb) {
485 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
486 &WifiChip::getStaIfaceNamesInternal, hidl_status_cb);
487 }
488
getStaIface(const hidl_string & ifname,getStaIface_cb hidl_status_cb)489 Return<void> WifiChip::getStaIface(const hidl_string& ifname,
490 getStaIface_cb hidl_status_cb) {
491 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
492 &WifiChip::getStaIfaceInternal, hidl_status_cb,
493 ifname);
494 }
495
removeStaIface(const hidl_string & ifname,removeStaIface_cb hidl_status_cb)496 Return<void> WifiChip::removeStaIface(const hidl_string& ifname,
497 removeStaIface_cb hidl_status_cb) {
498 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
499 &WifiChip::removeStaIfaceInternal, hidl_status_cb,
500 ifname);
501 }
502
createRttController(const sp<IWifiIface> & bound_iface,createRttController_cb hidl_status_cb)503 Return<void> WifiChip::createRttController(
504 const sp<IWifiIface>& bound_iface, createRttController_cb hidl_status_cb) {
505 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
506 &WifiChip::createRttControllerInternal,
507 hidl_status_cb, bound_iface);
508 }
509
getDebugRingBuffersStatus(getDebugRingBuffersStatus_cb hidl_status_cb)510 Return<void> WifiChip::getDebugRingBuffersStatus(
511 getDebugRingBuffersStatus_cb hidl_status_cb) {
512 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
513 &WifiChip::getDebugRingBuffersStatusInternal,
514 hidl_status_cb);
515 }
516
startLoggingToDebugRingBuffer(const hidl_string & ring_name,WifiDebugRingBufferVerboseLevel verbose_level,uint32_t max_interval_in_sec,uint32_t min_data_size_in_bytes,startLoggingToDebugRingBuffer_cb hidl_status_cb)517 Return<void> WifiChip::startLoggingToDebugRingBuffer(
518 const hidl_string& ring_name, WifiDebugRingBufferVerboseLevel verbose_level,
519 uint32_t max_interval_in_sec, uint32_t min_data_size_in_bytes,
520 startLoggingToDebugRingBuffer_cb hidl_status_cb) {
521 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
522 &WifiChip::startLoggingToDebugRingBufferInternal,
523 hidl_status_cb, ring_name, verbose_level,
524 max_interval_in_sec, min_data_size_in_bytes);
525 }
526
forceDumpToDebugRingBuffer(const hidl_string & ring_name,forceDumpToDebugRingBuffer_cb hidl_status_cb)527 Return<void> WifiChip::forceDumpToDebugRingBuffer(
528 const hidl_string& ring_name,
529 forceDumpToDebugRingBuffer_cb hidl_status_cb) {
530 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
531 &WifiChip::forceDumpToDebugRingBufferInternal,
532 hidl_status_cb, ring_name);
533 }
534
flushRingBufferToFile(flushRingBufferToFile_cb hidl_status_cb)535 Return<void> WifiChip::flushRingBufferToFile(
536 flushRingBufferToFile_cb hidl_status_cb) {
537 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
538 &WifiChip::flushRingBufferToFileInternal,
539 hidl_status_cb);
540 }
541
stopLoggingToDebugRingBuffer(stopLoggingToDebugRingBuffer_cb hidl_status_cb)542 Return<void> WifiChip::stopLoggingToDebugRingBuffer(
543 stopLoggingToDebugRingBuffer_cb hidl_status_cb) {
544 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
545 &WifiChip::stopLoggingToDebugRingBufferInternal,
546 hidl_status_cb);
547 }
548
getDebugHostWakeReasonStats(getDebugHostWakeReasonStats_cb hidl_status_cb)549 Return<void> WifiChip::getDebugHostWakeReasonStats(
550 getDebugHostWakeReasonStats_cb hidl_status_cb) {
551 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
552 &WifiChip::getDebugHostWakeReasonStatsInternal,
553 hidl_status_cb);
554 }
555
enableDebugErrorAlerts(bool enable,enableDebugErrorAlerts_cb hidl_status_cb)556 Return<void> WifiChip::enableDebugErrorAlerts(
557 bool enable, enableDebugErrorAlerts_cb hidl_status_cb) {
558 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
559 &WifiChip::enableDebugErrorAlertsInternal,
560 hidl_status_cb, enable);
561 }
562
selectTxPowerScenario(V1_1::IWifiChip::TxPowerScenario scenario,selectTxPowerScenario_cb hidl_status_cb)563 Return<void> WifiChip::selectTxPowerScenario(
564 V1_1::IWifiChip::TxPowerScenario scenario,
565 selectTxPowerScenario_cb hidl_status_cb) {
566 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
567 &WifiChip::selectTxPowerScenarioInternal,
568 hidl_status_cb, scenario);
569 }
570
resetTxPowerScenario(resetTxPowerScenario_cb hidl_status_cb)571 Return<void> WifiChip::resetTxPowerScenario(
572 resetTxPowerScenario_cb hidl_status_cb) {
573 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
574 &WifiChip::resetTxPowerScenarioInternal,
575 hidl_status_cb);
576 }
577
setLatencyMode(LatencyMode mode,setLatencyMode_cb hidl_status_cb)578 Return<void> WifiChip::setLatencyMode(LatencyMode mode,
579 setLatencyMode_cb hidl_status_cb) {
580 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
581 &WifiChip::setLatencyModeInternal, hidl_status_cb,
582 mode);
583 }
584
registerEventCallback_1_2(const sp<V1_2::IWifiChipEventCallback> & event_callback,registerEventCallback_cb hidl_status_cb)585 Return<void> WifiChip::registerEventCallback_1_2(
586 const sp<V1_2::IWifiChipEventCallback>& event_callback,
587 registerEventCallback_cb hidl_status_cb) {
588 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
589 &WifiChip::registerEventCallbackInternal_1_2,
590 hidl_status_cb, event_callback);
591 }
592
selectTxPowerScenario_1_2(TxPowerScenario scenario,selectTxPowerScenario_cb hidl_status_cb)593 Return<void> WifiChip::selectTxPowerScenario_1_2(
594 TxPowerScenario scenario, selectTxPowerScenario_cb hidl_status_cb) {
595 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
596 &WifiChip::selectTxPowerScenarioInternal_1_2,
597 hidl_status_cb, scenario);
598 }
599
getCapabilities_1_3(getCapabilities_cb hidl_status_cb)600 Return<void> WifiChip::getCapabilities_1_3(getCapabilities_cb hidl_status_cb) {
601 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
602 &WifiChip::getCapabilitiesInternal_1_3,
603 hidl_status_cb);
604 }
605
debug(const hidl_handle & handle,const hidl_vec<hidl_string> &)606 Return<void> WifiChip::debug(const hidl_handle& handle,
607 const hidl_vec<hidl_string>&) {
608 if (handle != nullptr && handle->numFds >= 1) {
609 int fd = handle->data[0];
610 if (!writeRingbufferFilesInternal()) {
611 LOG(ERROR) << "Error writing files to flash";
612 }
613 uint32_t n_error = cpioArchiveFilesInDir(fd, kTombstoneFolderPath);
614 if (n_error != 0) {
615 LOG(ERROR) << n_error << " errors occured in cpio function";
616 }
617 fsync(fd);
618 } else {
619 LOG(ERROR) << "File handle error";
620 }
621 return Void();
622 }
623
invalidateAndRemoveAllIfaces()624 void WifiChip::invalidateAndRemoveAllIfaces() {
625 invalidateAndClearAll(ap_ifaces_);
626 invalidateAndClearAll(nan_ifaces_);
627 invalidateAndClearAll(p2p_ifaces_);
628 invalidateAndClearAll(sta_ifaces_);
629 // Since all the ifaces are invalid now, all RTT controller objects
630 // using those ifaces also need to be invalidated.
631 for (const auto& rtt : rtt_controllers_) {
632 rtt->invalidate();
633 }
634 rtt_controllers_.clear();
635 }
636
invalidateAndRemoveDependencies(const std::string & removed_iface_name)637 void WifiChip::invalidateAndRemoveDependencies(
638 const std::string& removed_iface_name) {
639 for (const auto& nan_iface : nan_ifaces_) {
640 if (nan_iface->getName() == removed_iface_name) {
641 invalidateAndClear(nan_ifaces_, nan_iface);
642 for (const auto& callback : event_cb_handler_.getCallbacks()) {
643 if (!callback
644 ->onIfaceRemoved(IfaceType::NAN, removed_iface_name)
645 .isOk()) {
646 LOG(ERROR) << "Failed to invoke onIfaceRemoved callback";
647 }
648 }
649 }
650 }
651 for (const auto& rtt : rtt_controllers_) {
652 if (rtt->getIfaceName() == removed_iface_name) {
653 invalidateAndClear(rtt_controllers_, rtt);
654 }
655 }
656 }
657
getIdInternal()658 std::pair<WifiStatus, ChipId> WifiChip::getIdInternal() {
659 return {createWifiStatus(WifiStatusCode::SUCCESS), chip_id_};
660 }
661
registerEventCallbackInternal(const sp<V1_0::IWifiChipEventCallback> &)662 WifiStatus WifiChip::registerEventCallbackInternal(
663 const sp<V1_0::IWifiChipEventCallback>& /* event_callback */) {
664 // Deprecated support for this callback.
665 return createWifiStatus(WifiStatusCode::ERROR_NOT_SUPPORTED);
666 }
667
getCapabilitiesInternal()668 std::pair<WifiStatus, uint32_t> WifiChip::getCapabilitiesInternal() {
669 // Deprecated support for this callback.
670 return {createWifiStatus(WifiStatusCode::ERROR_NOT_SUPPORTED), 0};
671 }
672
getCapabilitiesInternal_1_3()673 std::pair<WifiStatus, uint32_t> WifiChip::getCapabilitiesInternal_1_3() {
674 legacy_hal::wifi_error legacy_status;
675 uint32_t legacy_feature_set;
676 uint32_t legacy_logger_feature_set;
677 const auto ifname = getFirstActiveWlanIfaceName();
678 std::tie(legacy_status, legacy_feature_set) =
679 legacy_hal_.lock()->getSupportedFeatureSet(ifname);
680 if (legacy_status != legacy_hal::WIFI_SUCCESS) {
681 return {createWifiStatusFromLegacyError(legacy_status), 0};
682 }
683 std::tie(legacy_status, legacy_logger_feature_set) =
684 legacy_hal_.lock()->getLoggerSupportedFeatureSet(ifname);
685 if (legacy_status != legacy_hal::WIFI_SUCCESS) {
686 // some devices don't support querying logger feature set
687 legacy_logger_feature_set = 0;
688 }
689 uint32_t hidl_caps;
690 if (!hidl_struct_util::convertLegacyFeaturesToHidlChipCapabilities(
691 legacy_feature_set, legacy_logger_feature_set, &hidl_caps)) {
692 return {createWifiStatus(WifiStatusCode::ERROR_UNKNOWN), 0};
693 }
694 return {createWifiStatus(WifiStatusCode::SUCCESS), hidl_caps};
695 }
696
697 std::pair<WifiStatus, std::vector<IWifiChip::ChipMode>>
getAvailableModesInternal()698 WifiChip::getAvailableModesInternal() {
699 return {createWifiStatus(WifiStatusCode::SUCCESS), modes_};
700 }
701
configureChipInternal(std::unique_lock<std::recursive_mutex> * lock,ChipModeId mode_id)702 WifiStatus WifiChip::configureChipInternal(
703 /* NONNULL */ std::unique_lock<std::recursive_mutex>* lock,
704 ChipModeId mode_id) {
705 if (!isValidModeId(mode_id)) {
706 return createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS);
707 }
708 if (mode_id == current_mode_id_) {
709 LOG(DEBUG) << "Already in the specified mode " << mode_id;
710 return createWifiStatus(WifiStatusCode::SUCCESS);
711 }
712 WifiStatus status = handleChipConfiguration(lock, mode_id);
713 if (status.code != WifiStatusCode::SUCCESS) {
714 for (const auto& callback : event_cb_handler_.getCallbacks()) {
715 if (!callback->onChipReconfigureFailure(status).isOk()) {
716 LOG(ERROR)
717 << "Failed to invoke onChipReconfigureFailure callback";
718 }
719 }
720 return status;
721 }
722 for (const auto& callback : event_cb_handler_.getCallbacks()) {
723 if (!callback->onChipReconfigured(mode_id).isOk()) {
724 LOG(ERROR) << "Failed to invoke onChipReconfigured callback";
725 }
726 }
727 current_mode_id_ = mode_id;
728 LOG(INFO) << "Configured chip in mode " << mode_id;
729 setActiveWlanIfaceNameProperty(getFirstActiveWlanIfaceName());
730 return status;
731 }
732
getModeInternal()733 std::pair<WifiStatus, uint32_t> WifiChip::getModeInternal() {
734 if (!isValidModeId(current_mode_id_)) {
735 return {createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE),
736 current_mode_id_};
737 }
738 return {createWifiStatus(WifiStatusCode::SUCCESS), current_mode_id_};
739 }
740
741 std::pair<WifiStatus, IWifiChip::ChipDebugInfo>
requestChipDebugInfoInternal()742 WifiChip::requestChipDebugInfoInternal() {
743 IWifiChip::ChipDebugInfo result;
744 legacy_hal::wifi_error legacy_status;
745 std::string driver_desc;
746 const auto ifname = getFirstActiveWlanIfaceName();
747 std::tie(legacy_status, driver_desc) =
748 legacy_hal_.lock()->getDriverVersion(ifname);
749 if (legacy_status != legacy_hal::WIFI_SUCCESS) {
750 LOG(ERROR) << "Failed to get driver version: "
751 << legacyErrorToString(legacy_status);
752 WifiStatus status = createWifiStatusFromLegacyError(
753 legacy_status, "failed to get driver version");
754 return {status, result};
755 }
756 result.driverDescription = driver_desc.c_str();
757
758 std::string firmware_desc;
759 std::tie(legacy_status, firmware_desc) =
760 legacy_hal_.lock()->getFirmwareVersion(ifname);
761 if (legacy_status != legacy_hal::WIFI_SUCCESS) {
762 LOG(ERROR) << "Failed to get firmware version: "
763 << legacyErrorToString(legacy_status);
764 WifiStatus status = createWifiStatusFromLegacyError(
765 legacy_status, "failed to get firmware version");
766 return {status, result};
767 }
768 result.firmwareDescription = firmware_desc.c_str();
769
770 return {createWifiStatus(WifiStatusCode::SUCCESS), result};
771 }
772
773 std::pair<WifiStatus, std::vector<uint8_t>>
requestDriverDebugDumpInternal()774 WifiChip::requestDriverDebugDumpInternal() {
775 legacy_hal::wifi_error legacy_status;
776 std::vector<uint8_t> driver_dump;
777 std::tie(legacy_status, driver_dump) =
778 legacy_hal_.lock()->requestDriverMemoryDump(
779 getFirstActiveWlanIfaceName());
780 if (legacy_status != legacy_hal::WIFI_SUCCESS) {
781 LOG(ERROR) << "Failed to get driver debug dump: "
782 << legacyErrorToString(legacy_status);
783 return {createWifiStatusFromLegacyError(legacy_status),
784 std::vector<uint8_t>()};
785 }
786 return {createWifiStatus(WifiStatusCode::SUCCESS), driver_dump};
787 }
788
789 std::pair<WifiStatus, std::vector<uint8_t>>
requestFirmwareDebugDumpInternal()790 WifiChip::requestFirmwareDebugDumpInternal() {
791 legacy_hal::wifi_error legacy_status;
792 std::vector<uint8_t> firmware_dump;
793 std::tie(legacy_status, firmware_dump) =
794 legacy_hal_.lock()->requestFirmwareMemoryDump(
795 getFirstActiveWlanIfaceName());
796 if (legacy_status != legacy_hal::WIFI_SUCCESS) {
797 LOG(ERROR) << "Failed to get firmware debug dump: "
798 << legacyErrorToString(legacy_status);
799 return {createWifiStatusFromLegacyError(legacy_status), {}};
800 }
801 return {createWifiStatus(WifiStatusCode::SUCCESS), firmware_dump};
802 }
803
createApIfaceInternal()804 std::pair<WifiStatus, sp<IWifiApIface>> WifiChip::createApIfaceInternal() {
805 if (!canCurrentModeSupportIfaceOfTypeWithCurrentIfaces(IfaceType::AP)) {
806 return {createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE), {}};
807 }
808 std::string ifname = allocateApIfaceName();
809 sp<WifiApIface> iface =
810 new WifiApIface(ifname, legacy_hal_, iface_util_, feature_flags_);
811 ap_ifaces_.push_back(iface);
812 for (const auto& callback : event_cb_handler_.getCallbacks()) {
813 if (!callback->onIfaceAdded(IfaceType::AP, ifname).isOk()) {
814 LOG(ERROR) << "Failed to invoke onIfaceAdded callback";
815 }
816 }
817 setActiveWlanIfaceNameProperty(getFirstActiveWlanIfaceName());
818 return {createWifiStatus(WifiStatusCode::SUCCESS), iface};
819 }
820
821 std::pair<WifiStatus, std::vector<hidl_string>>
getApIfaceNamesInternal()822 WifiChip::getApIfaceNamesInternal() {
823 if (ap_ifaces_.empty()) {
824 return {createWifiStatus(WifiStatusCode::SUCCESS), {}};
825 }
826 return {createWifiStatus(WifiStatusCode::SUCCESS), getNames(ap_ifaces_)};
827 }
828
getApIfaceInternal(const std::string & ifname)829 std::pair<WifiStatus, sp<IWifiApIface>> WifiChip::getApIfaceInternal(
830 const std::string& ifname) {
831 const auto iface = findUsingName(ap_ifaces_, ifname);
832 if (!iface.get()) {
833 return {createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS), nullptr};
834 }
835 return {createWifiStatus(WifiStatusCode::SUCCESS), iface};
836 }
837
removeApIfaceInternal(const std::string & ifname)838 WifiStatus WifiChip::removeApIfaceInternal(const std::string& ifname) {
839 const auto iface = findUsingName(ap_ifaces_, ifname);
840 if (!iface.get()) {
841 return createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS);
842 }
843 // Invalidate & remove any dependent objects first.
844 // Note: This is probably not required because we never create
845 // nan/rtt objects over AP iface. But, there is no harm to do it
846 // here and not make that assumption all over the place.
847 invalidateAndRemoveDependencies(ifname);
848 invalidateAndClear(ap_ifaces_, iface);
849 for (const auto& callback : event_cb_handler_.getCallbacks()) {
850 if (!callback->onIfaceRemoved(IfaceType::AP, ifname).isOk()) {
851 LOG(ERROR) << "Failed to invoke onIfaceRemoved callback";
852 }
853 }
854 setActiveWlanIfaceNameProperty(getFirstActiveWlanIfaceName());
855 return createWifiStatus(WifiStatusCode::SUCCESS);
856 }
857
createNanIfaceInternal()858 std::pair<WifiStatus, sp<IWifiNanIface>> WifiChip::createNanIfaceInternal() {
859 if (!canCurrentModeSupportIfaceOfTypeWithCurrentIfaces(IfaceType::NAN)) {
860 return {createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE), {}};
861 }
862 // These are still assumed to be based on wlan0.
863 std::string ifname = getFirstActiveWlanIfaceName();
864 sp<WifiNanIface> iface = new WifiNanIface(ifname, legacy_hal_, iface_util_);
865 nan_ifaces_.push_back(iface);
866 for (const auto& callback : event_cb_handler_.getCallbacks()) {
867 if (!callback->onIfaceAdded(IfaceType::NAN, ifname).isOk()) {
868 LOG(ERROR) << "Failed to invoke onIfaceAdded callback";
869 }
870 }
871 return {createWifiStatus(WifiStatusCode::SUCCESS), iface};
872 }
873
874 std::pair<WifiStatus, std::vector<hidl_string>>
getNanIfaceNamesInternal()875 WifiChip::getNanIfaceNamesInternal() {
876 if (nan_ifaces_.empty()) {
877 return {createWifiStatus(WifiStatusCode::SUCCESS), {}};
878 }
879 return {createWifiStatus(WifiStatusCode::SUCCESS), getNames(nan_ifaces_)};
880 }
881
getNanIfaceInternal(const std::string & ifname)882 std::pair<WifiStatus, sp<IWifiNanIface>> WifiChip::getNanIfaceInternal(
883 const std::string& ifname) {
884 const auto iface = findUsingName(nan_ifaces_, ifname);
885 if (!iface.get()) {
886 return {createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS), nullptr};
887 }
888 return {createWifiStatus(WifiStatusCode::SUCCESS), iface};
889 }
890
removeNanIfaceInternal(const std::string & ifname)891 WifiStatus WifiChip::removeNanIfaceInternal(const std::string& ifname) {
892 const auto iface = findUsingName(nan_ifaces_, ifname);
893 if (!iface.get()) {
894 return createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS);
895 }
896 invalidateAndClear(nan_ifaces_, iface);
897 for (const auto& callback : event_cb_handler_.getCallbacks()) {
898 if (!callback->onIfaceRemoved(IfaceType::NAN, ifname).isOk()) {
899 LOG(ERROR) << "Failed to invoke onIfaceAdded callback";
900 }
901 }
902 return createWifiStatus(WifiStatusCode::SUCCESS);
903 }
904
createP2pIfaceInternal()905 std::pair<WifiStatus, sp<IWifiP2pIface>> WifiChip::createP2pIfaceInternal() {
906 if (!canCurrentModeSupportIfaceOfTypeWithCurrentIfaces(IfaceType::P2P)) {
907 return {createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE), {}};
908 }
909 std::string ifname = getP2pIfaceName();
910 sp<WifiP2pIface> iface = new WifiP2pIface(ifname, legacy_hal_);
911 p2p_ifaces_.push_back(iface);
912 for (const auto& callback : event_cb_handler_.getCallbacks()) {
913 if (!callback->onIfaceAdded(IfaceType::P2P, ifname).isOk()) {
914 LOG(ERROR) << "Failed to invoke onIfaceAdded callback";
915 }
916 }
917 return {createWifiStatus(WifiStatusCode::SUCCESS), iface};
918 }
919
920 std::pair<WifiStatus, std::vector<hidl_string>>
getP2pIfaceNamesInternal()921 WifiChip::getP2pIfaceNamesInternal() {
922 if (p2p_ifaces_.empty()) {
923 return {createWifiStatus(WifiStatusCode::SUCCESS), {}};
924 }
925 return {createWifiStatus(WifiStatusCode::SUCCESS), getNames(p2p_ifaces_)};
926 }
927
getP2pIfaceInternal(const std::string & ifname)928 std::pair<WifiStatus, sp<IWifiP2pIface>> WifiChip::getP2pIfaceInternal(
929 const std::string& ifname) {
930 const auto iface = findUsingName(p2p_ifaces_, ifname);
931 if (!iface.get()) {
932 return {createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS), nullptr};
933 }
934 return {createWifiStatus(WifiStatusCode::SUCCESS), iface};
935 }
936
removeP2pIfaceInternal(const std::string & ifname)937 WifiStatus WifiChip::removeP2pIfaceInternal(const std::string& ifname) {
938 const auto iface = findUsingName(p2p_ifaces_, ifname);
939 if (!iface.get()) {
940 return createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS);
941 }
942 invalidateAndClear(p2p_ifaces_, iface);
943 for (const auto& callback : event_cb_handler_.getCallbacks()) {
944 if (!callback->onIfaceRemoved(IfaceType::P2P, ifname).isOk()) {
945 LOG(ERROR) << "Failed to invoke onIfaceRemoved callback";
946 }
947 }
948 return createWifiStatus(WifiStatusCode::SUCCESS);
949 }
950
createStaIfaceInternal()951 std::pair<WifiStatus, sp<IWifiStaIface>> WifiChip::createStaIfaceInternal() {
952 if (!canCurrentModeSupportIfaceOfTypeWithCurrentIfaces(IfaceType::STA)) {
953 return {createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE), {}};
954 }
955 std::string ifname = allocateStaIfaceName();
956 sp<WifiStaIface> iface = new WifiStaIface(ifname, legacy_hal_, iface_util_);
957 sta_ifaces_.push_back(iface);
958 for (const auto& callback : event_cb_handler_.getCallbacks()) {
959 if (!callback->onIfaceAdded(IfaceType::STA, ifname).isOk()) {
960 LOG(ERROR) << "Failed to invoke onIfaceAdded callback";
961 }
962 }
963 setActiveWlanIfaceNameProperty(getFirstActiveWlanIfaceName());
964 return {createWifiStatus(WifiStatusCode::SUCCESS), iface};
965 }
966
967 std::pair<WifiStatus, std::vector<hidl_string>>
getStaIfaceNamesInternal()968 WifiChip::getStaIfaceNamesInternal() {
969 if (sta_ifaces_.empty()) {
970 return {createWifiStatus(WifiStatusCode::SUCCESS), {}};
971 }
972 return {createWifiStatus(WifiStatusCode::SUCCESS), getNames(sta_ifaces_)};
973 }
974
getStaIfaceInternal(const std::string & ifname)975 std::pair<WifiStatus, sp<IWifiStaIface>> WifiChip::getStaIfaceInternal(
976 const std::string& ifname) {
977 const auto iface = findUsingName(sta_ifaces_, ifname);
978 if (!iface.get()) {
979 return {createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS), nullptr};
980 }
981 return {createWifiStatus(WifiStatusCode::SUCCESS), iface};
982 }
983
removeStaIfaceInternal(const std::string & ifname)984 WifiStatus WifiChip::removeStaIfaceInternal(const std::string& ifname) {
985 const auto iface = findUsingName(sta_ifaces_, ifname);
986 if (!iface.get()) {
987 return createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS);
988 }
989 // Invalidate & remove any dependent objects first.
990 invalidateAndRemoveDependencies(ifname);
991 invalidateAndClear(sta_ifaces_, iface);
992 for (const auto& callback : event_cb_handler_.getCallbacks()) {
993 if (!callback->onIfaceRemoved(IfaceType::STA, ifname).isOk()) {
994 LOG(ERROR) << "Failed to invoke onIfaceRemoved callback";
995 }
996 }
997 setActiveWlanIfaceNameProperty(getFirstActiveWlanIfaceName());
998 return createWifiStatus(WifiStatusCode::SUCCESS);
999 }
1000
1001 std::pair<WifiStatus, sp<IWifiRttController>>
createRttControllerInternal(const sp<IWifiIface> & bound_iface)1002 WifiChip::createRttControllerInternal(const sp<IWifiIface>& bound_iface) {
1003 if (sta_ifaces_.size() == 0 &&
1004 !canCurrentModeSupportIfaceOfType(IfaceType::STA)) {
1005 LOG(ERROR) << "createRttControllerInternal: Chip cannot support STAs "
1006 "(and RTT by extension)";
1007 return {createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE), {}};
1008 }
1009 sp<WifiRttController> rtt = new WifiRttController(
1010 getFirstActiveWlanIfaceName(), bound_iface, legacy_hal_);
1011 rtt_controllers_.emplace_back(rtt);
1012 return {createWifiStatus(WifiStatusCode::SUCCESS), rtt};
1013 }
1014
1015 std::pair<WifiStatus, std::vector<WifiDebugRingBufferStatus>>
getDebugRingBuffersStatusInternal()1016 WifiChip::getDebugRingBuffersStatusInternal() {
1017 legacy_hal::wifi_error legacy_status;
1018 std::vector<legacy_hal::wifi_ring_buffer_status>
1019 legacy_ring_buffer_status_vec;
1020 std::tie(legacy_status, legacy_ring_buffer_status_vec) =
1021 legacy_hal_.lock()->getRingBuffersStatus(getFirstActiveWlanIfaceName());
1022 if (legacy_status != legacy_hal::WIFI_SUCCESS) {
1023 return {createWifiStatusFromLegacyError(legacy_status), {}};
1024 }
1025 std::vector<WifiDebugRingBufferStatus> hidl_ring_buffer_status_vec;
1026 if (!hidl_struct_util::convertLegacyVectorOfDebugRingBufferStatusToHidl(
1027 legacy_ring_buffer_status_vec, &hidl_ring_buffer_status_vec)) {
1028 return {createWifiStatus(WifiStatusCode::ERROR_UNKNOWN), {}};
1029 }
1030 return {createWifiStatus(WifiStatusCode::SUCCESS),
1031 hidl_ring_buffer_status_vec};
1032 }
1033
startLoggingToDebugRingBufferInternal(const hidl_string & ring_name,WifiDebugRingBufferVerboseLevel verbose_level,uint32_t max_interval_in_sec,uint32_t min_data_size_in_bytes)1034 WifiStatus WifiChip::startLoggingToDebugRingBufferInternal(
1035 const hidl_string& ring_name, WifiDebugRingBufferVerboseLevel verbose_level,
1036 uint32_t max_interval_in_sec, uint32_t min_data_size_in_bytes) {
1037 WifiStatus status = registerDebugRingBufferCallback();
1038 if (status.code != WifiStatusCode::SUCCESS) {
1039 return status;
1040 }
1041 legacy_hal::wifi_error legacy_status =
1042 legacy_hal_.lock()->startRingBufferLogging(
1043 getFirstActiveWlanIfaceName(), ring_name,
1044 static_cast<
1045 std::underlying_type<WifiDebugRingBufferVerboseLevel>::type>(
1046 verbose_level),
1047 max_interval_in_sec, min_data_size_in_bytes);
1048 ringbuffer_map_.insert(std::pair<std::string, Ringbuffer>(
1049 ring_name, Ringbuffer(kMaxBufferSizeBytes)));
1050 return createWifiStatusFromLegacyError(legacy_status);
1051 }
1052
forceDumpToDebugRingBufferInternal(const hidl_string & ring_name)1053 WifiStatus WifiChip::forceDumpToDebugRingBufferInternal(
1054 const hidl_string& ring_name) {
1055 WifiStatus status = registerDebugRingBufferCallback();
1056 if (status.code != WifiStatusCode::SUCCESS) {
1057 return status;
1058 }
1059 legacy_hal::wifi_error legacy_status =
1060 legacy_hal_.lock()->getRingBufferData(getFirstActiveWlanIfaceName(),
1061 ring_name);
1062
1063 return createWifiStatusFromLegacyError(legacy_status);
1064 }
1065
flushRingBufferToFileInternal()1066 WifiStatus WifiChip::flushRingBufferToFileInternal() {
1067 if (!writeRingbufferFilesInternal()) {
1068 LOG(ERROR) << "Error writing files to flash";
1069 return createWifiStatus(WifiStatusCode::ERROR_UNKNOWN);
1070 }
1071 return createWifiStatus(WifiStatusCode::SUCCESS);
1072 }
1073
stopLoggingToDebugRingBufferInternal()1074 WifiStatus WifiChip::stopLoggingToDebugRingBufferInternal() {
1075 legacy_hal::wifi_error legacy_status =
1076 legacy_hal_.lock()->deregisterRingBufferCallbackHandler(
1077 getFirstActiveWlanIfaceName());
1078 return createWifiStatusFromLegacyError(legacy_status);
1079 }
1080
1081 std::pair<WifiStatus, WifiDebugHostWakeReasonStats>
getDebugHostWakeReasonStatsInternal()1082 WifiChip::getDebugHostWakeReasonStatsInternal() {
1083 legacy_hal::wifi_error legacy_status;
1084 legacy_hal::WakeReasonStats legacy_stats;
1085 std::tie(legacy_status, legacy_stats) =
1086 legacy_hal_.lock()->getWakeReasonStats(getFirstActiveWlanIfaceName());
1087 if (legacy_status != legacy_hal::WIFI_SUCCESS) {
1088 return {createWifiStatusFromLegacyError(legacy_status), {}};
1089 }
1090 WifiDebugHostWakeReasonStats hidl_stats;
1091 if (!hidl_struct_util::convertLegacyWakeReasonStatsToHidl(legacy_stats,
1092 &hidl_stats)) {
1093 return {createWifiStatus(WifiStatusCode::ERROR_UNKNOWN), {}};
1094 }
1095 return {createWifiStatus(WifiStatusCode::SUCCESS), hidl_stats};
1096 }
1097
enableDebugErrorAlertsInternal(bool enable)1098 WifiStatus WifiChip::enableDebugErrorAlertsInternal(bool enable) {
1099 legacy_hal::wifi_error legacy_status;
1100 if (enable) {
1101 android::wp<WifiChip> weak_ptr_this(this);
1102 const auto& on_alert_callback = [weak_ptr_this](
1103 int32_t error_code,
1104 std::vector<uint8_t> debug_data) {
1105 const auto shared_ptr_this = weak_ptr_this.promote();
1106 if (!shared_ptr_this.get() || !shared_ptr_this->isValid()) {
1107 LOG(ERROR) << "Callback invoked on an invalid object";
1108 return;
1109 }
1110 for (const auto& callback : shared_ptr_this->getEventCallbacks()) {
1111 if (!callback->onDebugErrorAlert(error_code, debug_data)
1112 .isOk()) {
1113 LOG(ERROR) << "Failed to invoke onDebugErrorAlert callback";
1114 }
1115 }
1116 };
1117 legacy_status = legacy_hal_.lock()->registerErrorAlertCallbackHandler(
1118 getFirstActiveWlanIfaceName(), on_alert_callback);
1119 } else {
1120 legacy_status = legacy_hal_.lock()->deregisterErrorAlertCallbackHandler(
1121 getFirstActiveWlanIfaceName());
1122 }
1123 return createWifiStatusFromLegacyError(legacy_status);
1124 }
1125
selectTxPowerScenarioInternal(V1_1::IWifiChip::TxPowerScenario scenario)1126 WifiStatus WifiChip::selectTxPowerScenarioInternal(
1127 V1_1::IWifiChip::TxPowerScenario scenario) {
1128 auto legacy_status = legacy_hal_.lock()->selectTxPowerScenario(
1129 getFirstActiveWlanIfaceName(),
1130 hidl_struct_util::convertHidlTxPowerScenarioToLegacy(scenario));
1131 return createWifiStatusFromLegacyError(legacy_status);
1132 }
1133
resetTxPowerScenarioInternal()1134 WifiStatus WifiChip::resetTxPowerScenarioInternal() {
1135 auto legacy_status =
1136 legacy_hal_.lock()->resetTxPowerScenario(getFirstActiveWlanIfaceName());
1137 return createWifiStatusFromLegacyError(legacy_status);
1138 }
1139
setLatencyModeInternal(LatencyMode mode)1140 WifiStatus WifiChip::setLatencyModeInternal(LatencyMode mode) {
1141 auto legacy_status = legacy_hal_.lock()->setLatencyMode(
1142 getFirstActiveWlanIfaceName(),
1143 hidl_struct_util::convertHidlLatencyModeToLegacy(mode));
1144 return createWifiStatusFromLegacyError(legacy_status);
1145 }
1146
registerEventCallbackInternal_1_2(const sp<V1_2::IWifiChipEventCallback> & event_callback)1147 WifiStatus WifiChip::registerEventCallbackInternal_1_2(
1148 const sp<V1_2::IWifiChipEventCallback>& event_callback) {
1149 if (!event_cb_handler_.addCallback(event_callback)) {
1150 return createWifiStatus(WifiStatusCode::ERROR_UNKNOWN);
1151 }
1152 return createWifiStatus(WifiStatusCode::SUCCESS);
1153 }
1154
selectTxPowerScenarioInternal_1_2(TxPowerScenario scenario)1155 WifiStatus WifiChip::selectTxPowerScenarioInternal_1_2(
1156 TxPowerScenario scenario) {
1157 auto legacy_status = legacy_hal_.lock()->selectTxPowerScenario(
1158 getFirstActiveWlanIfaceName(),
1159 hidl_struct_util::convertHidlTxPowerScenarioToLegacy_1_2(scenario));
1160 return createWifiStatusFromLegacyError(legacy_status);
1161 }
1162
handleChipConfiguration(std::unique_lock<std::recursive_mutex> * lock,ChipModeId mode_id)1163 WifiStatus WifiChip::handleChipConfiguration(
1164 /* NONNULL */ std::unique_lock<std::recursive_mutex>* lock,
1165 ChipModeId mode_id) {
1166 // If the chip is already configured in a different mode, stop
1167 // the legacy HAL and then start it after firmware mode change.
1168 if (isValidModeId(current_mode_id_)) {
1169 LOG(INFO) << "Reconfiguring chip from mode " << current_mode_id_
1170 << " to mode " << mode_id;
1171 invalidateAndRemoveAllIfaces();
1172 legacy_hal::wifi_error legacy_status =
1173 legacy_hal_.lock()->stop(lock, []() {});
1174 if (legacy_status != legacy_hal::WIFI_SUCCESS) {
1175 LOG(ERROR) << "Failed to stop legacy HAL: "
1176 << legacyErrorToString(legacy_status);
1177 return createWifiStatusFromLegacyError(legacy_status);
1178 }
1179 }
1180 // Firmware mode change not needed for V2 devices.
1181 bool success = true;
1182 if (mode_id == feature_flags::chip_mode_ids::kV1Sta) {
1183 success = mode_controller_.lock()->changeFirmwareMode(IfaceType::STA);
1184 } else if (mode_id == feature_flags::chip_mode_ids::kV1Ap) {
1185 success = mode_controller_.lock()->changeFirmwareMode(IfaceType::AP);
1186 }
1187 if (!success) {
1188 return createWifiStatus(WifiStatusCode::ERROR_UNKNOWN);
1189 }
1190 legacy_hal::wifi_error legacy_status = legacy_hal_.lock()->start();
1191 if (legacy_status != legacy_hal::WIFI_SUCCESS) {
1192 LOG(ERROR) << "Failed to start legacy HAL: "
1193 << legacyErrorToString(legacy_status);
1194 return createWifiStatusFromLegacyError(legacy_status);
1195 }
1196 // Every time the HAL is restarted, we need to register the
1197 // radio mode change callback.
1198 WifiStatus status = registerRadioModeChangeCallback();
1199 if (status.code != WifiStatusCode::SUCCESS) {
1200 // This probably is not a critical failure?
1201 LOG(ERROR) << "Failed to register radio mode change callback";
1202 }
1203 // Extract and save the version information into property.
1204 std::pair<WifiStatus, IWifiChip::ChipDebugInfo> version_info;
1205 version_info = WifiChip::requestChipDebugInfoInternal();
1206 if (WifiStatusCode::SUCCESS == version_info.first.code) {
1207 property_set("vendor.wlan.firmware.version",
1208 version_info.second.firmwareDescription.c_str());
1209 property_set("vendor.wlan.driver.version",
1210 version_info.second.driverDescription.c_str());
1211 }
1212
1213 return createWifiStatus(WifiStatusCode::SUCCESS);
1214 }
1215
registerDebugRingBufferCallback()1216 WifiStatus WifiChip::registerDebugRingBufferCallback() {
1217 if (debug_ring_buffer_cb_registered_) {
1218 return createWifiStatus(WifiStatusCode::SUCCESS);
1219 }
1220
1221 android::wp<WifiChip> weak_ptr_this(this);
1222 const auto& on_ring_buffer_data_callback =
1223 [weak_ptr_this](const std::string& name,
1224 const std::vector<uint8_t>& data,
1225 const legacy_hal::wifi_ring_buffer_status& status) {
1226 const auto shared_ptr_this = weak_ptr_this.promote();
1227 if (!shared_ptr_this.get() || !shared_ptr_this->isValid()) {
1228 LOG(ERROR) << "Callback invoked on an invalid object";
1229 return;
1230 }
1231 WifiDebugRingBufferStatus hidl_status;
1232 if (!hidl_struct_util::convertLegacyDebugRingBufferStatusToHidl(
1233 status, &hidl_status)) {
1234 LOG(ERROR) << "Error converting ring buffer status";
1235 return;
1236 }
1237 const auto& target = shared_ptr_this->ringbuffer_map_.find(name);
1238 if (target != shared_ptr_this->ringbuffer_map_.end()) {
1239 Ringbuffer& cur_buffer = target->second;
1240 cur_buffer.append(data);
1241 } else {
1242 LOG(ERROR) << "Ringname " << name << " not found";
1243 return;
1244 }
1245 };
1246 legacy_hal::wifi_error legacy_status =
1247 legacy_hal_.lock()->registerRingBufferCallbackHandler(
1248 getFirstActiveWlanIfaceName(), on_ring_buffer_data_callback);
1249
1250 if (legacy_status == legacy_hal::WIFI_SUCCESS) {
1251 debug_ring_buffer_cb_registered_ = true;
1252 }
1253 return createWifiStatusFromLegacyError(legacy_status);
1254 }
1255
registerRadioModeChangeCallback()1256 WifiStatus WifiChip::registerRadioModeChangeCallback() {
1257 android::wp<WifiChip> weak_ptr_this(this);
1258 const auto& on_radio_mode_change_callback =
1259 [weak_ptr_this](const std::vector<legacy_hal::WifiMacInfo>& mac_infos) {
1260 const auto shared_ptr_this = weak_ptr_this.promote();
1261 if (!shared_ptr_this.get() || !shared_ptr_this->isValid()) {
1262 LOG(ERROR) << "Callback invoked on an invalid object";
1263 return;
1264 }
1265 std::vector<V1_2::IWifiChipEventCallback::RadioModeInfo>
1266 hidl_radio_mode_infos;
1267 if (!hidl_struct_util::convertLegacyWifiMacInfosToHidl(
1268 mac_infos, &hidl_radio_mode_infos)) {
1269 LOG(ERROR) << "Error converting wifi mac info";
1270 return;
1271 }
1272 for (const auto& callback : shared_ptr_this->getEventCallbacks()) {
1273 if (!callback->onRadioModeChange(hidl_radio_mode_infos)
1274 .isOk()) {
1275 LOG(ERROR) << "Failed to invoke onRadioModeChange"
1276 << " callback on: " << toString(callback);
1277 }
1278 }
1279 };
1280 legacy_hal::wifi_error legacy_status =
1281 legacy_hal_.lock()->registerRadioModeChangeCallbackHandler(
1282 getFirstActiveWlanIfaceName(), on_radio_mode_change_callback);
1283 return createWifiStatusFromLegacyError(legacy_status);
1284 }
1285
1286 std::vector<IWifiChip::ChipIfaceCombination>
getCurrentModeIfaceCombinations()1287 WifiChip::getCurrentModeIfaceCombinations() {
1288 if (!isValidModeId(current_mode_id_)) {
1289 LOG(ERROR) << "Chip not configured in a mode yet";
1290 return {};
1291 }
1292 for (const auto& mode : modes_) {
1293 if (mode.id == current_mode_id_) {
1294 return mode.availableCombinations;
1295 }
1296 }
1297 CHECK(0) << "Expected to find iface combinations for current mode!";
1298 return {};
1299 }
1300
1301 // Returns a map indexed by IfaceType with the number of ifaces currently
1302 // created of the corresponding type.
getCurrentIfaceCombination()1303 std::map<IfaceType, size_t> WifiChip::getCurrentIfaceCombination() {
1304 std::map<IfaceType, size_t> iface_counts;
1305 iface_counts[IfaceType::AP] = ap_ifaces_.size();
1306 iface_counts[IfaceType::NAN] = nan_ifaces_.size();
1307 iface_counts[IfaceType::P2P] = p2p_ifaces_.size();
1308 iface_counts[IfaceType::STA] = sta_ifaces_.size();
1309 return iface_counts;
1310 }
1311
1312 // This expands the provided iface combinations to a more parseable
1313 // form. Returns a vector of available combinations possible with the number
1314 // of ifaces of each type in the combination.
1315 // This method is a port of HalDeviceManager.expandIfaceCombos() from framework.
expandIfaceCombinations(const IWifiChip::ChipIfaceCombination & combination)1316 std::vector<std::map<IfaceType, size_t>> WifiChip::expandIfaceCombinations(
1317 const IWifiChip::ChipIfaceCombination& combination) {
1318 uint32_t num_expanded_combos = 1;
1319 for (const auto& limit : combination.limits) {
1320 for (uint32_t i = 0; i < limit.maxIfaces; i++) {
1321 num_expanded_combos *= limit.types.size();
1322 }
1323 }
1324
1325 // Allocate the vector of expanded combos and reset all iface counts to 0
1326 // in each combo.
1327 std::vector<std::map<IfaceType, size_t>> expanded_combos;
1328 expanded_combos.resize(num_expanded_combos);
1329 for (auto& expanded_combo : expanded_combos) {
1330 for (const auto type :
1331 {IfaceType::AP, IfaceType::NAN, IfaceType::P2P, IfaceType::STA}) {
1332 expanded_combo[type] = 0;
1333 }
1334 }
1335 uint32_t span = num_expanded_combos;
1336 for (const auto& limit : combination.limits) {
1337 for (uint32_t i = 0; i < limit.maxIfaces; i++) {
1338 span /= limit.types.size();
1339 for (uint32_t k = 0; k < num_expanded_combos; ++k) {
1340 const auto iface_type =
1341 limit.types[(k / span) % limit.types.size()];
1342 expanded_combos[k][iface_type]++;
1343 }
1344 }
1345 }
1346 return expanded_combos;
1347 }
1348
canExpandedIfaceComboSupportIfaceOfTypeWithCurrentIfaces(const std::map<IfaceType,size_t> & expanded_combo,IfaceType requested_type)1349 bool WifiChip::canExpandedIfaceComboSupportIfaceOfTypeWithCurrentIfaces(
1350 const std::map<IfaceType, size_t>& expanded_combo,
1351 IfaceType requested_type) {
1352 const auto current_combo = getCurrentIfaceCombination();
1353
1354 // Check if we have space for 1 more iface of |type| in this combo
1355 for (const auto type :
1356 {IfaceType::AP, IfaceType::NAN, IfaceType::P2P, IfaceType::STA}) {
1357 size_t num_ifaces_needed = current_combo.at(type);
1358 if (type == requested_type) {
1359 num_ifaces_needed++;
1360 }
1361 size_t num_ifaces_allowed = expanded_combo.at(type);
1362 if (num_ifaces_needed > num_ifaces_allowed) {
1363 return false;
1364 }
1365 }
1366 return true;
1367 }
1368
1369 // This method does the following:
1370 // a) Enumerate all possible iface combos by expanding the current
1371 // ChipIfaceCombination.
1372 // b) Check if the requested iface type can be added to the current mode
1373 // with the iface combination that is already active.
canCurrentModeSupportIfaceOfTypeWithCurrentIfaces(IfaceType requested_type)1374 bool WifiChip::canCurrentModeSupportIfaceOfTypeWithCurrentIfaces(
1375 IfaceType requested_type) {
1376 if (!isValidModeId(current_mode_id_)) {
1377 LOG(ERROR) << "Chip not configured in a mode yet";
1378 return false;
1379 }
1380 const auto combinations = getCurrentModeIfaceCombinations();
1381 for (const auto& combination : combinations) {
1382 const auto expanded_combos = expandIfaceCombinations(combination);
1383 for (const auto& expanded_combo : expanded_combos) {
1384 if (canExpandedIfaceComboSupportIfaceOfTypeWithCurrentIfaces(
1385 expanded_combo, requested_type)) {
1386 return true;
1387 }
1388 }
1389 }
1390 return false;
1391 }
1392
1393 // Note: This does not consider ifaces already active. It only checks if the
1394 // provided expanded iface combination can support the requested combo.
canExpandedIfaceComboSupportIfaceCombo(const std::map<IfaceType,size_t> & expanded_combo,const std::map<IfaceType,size_t> & req_combo)1395 bool WifiChip::canExpandedIfaceComboSupportIfaceCombo(
1396 const std::map<IfaceType, size_t>& expanded_combo,
1397 const std::map<IfaceType, size_t>& req_combo) {
1398 // Check if we have space for 1 more iface of |type| in this combo
1399 for (const auto type :
1400 {IfaceType::AP, IfaceType::NAN, IfaceType::P2P, IfaceType::STA}) {
1401 if (req_combo.count(type) == 0) {
1402 // Iface of "type" not in the req_combo.
1403 continue;
1404 }
1405 size_t num_ifaces_needed = req_combo.at(type);
1406 size_t num_ifaces_allowed = expanded_combo.at(type);
1407 if (num_ifaces_needed > num_ifaces_allowed) {
1408 return false;
1409 }
1410 }
1411 return true;
1412 }
1413 // This method does the following:
1414 // a) Enumerate all possible iface combos by expanding the current
1415 // ChipIfaceCombination.
1416 // b) Check if the requested iface combo can be added to the current mode.
1417 // Note: This does not consider ifaces already active. It only checks if the
1418 // current mode can support the requested combo.
canCurrentModeSupportIfaceCombo(const std::map<IfaceType,size_t> & req_combo)1419 bool WifiChip::canCurrentModeSupportIfaceCombo(
1420 const std::map<IfaceType, size_t>& req_combo) {
1421 if (!isValidModeId(current_mode_id_)) {
1422 LOG(ERROR) << "Chip not configured in a mode yet";
1423 return false;
1424 }
1425 const auto combinations = getCurrentModeIfaceCombinations();
1426 for (const auto& combination : combinations) {
1427 const auto expanded_combos = expandIfaceCombinations(combination);
1428 for (const auto& expanded_combo : expanded_combos) {
1429 if (canExpandedIfaceComboSupportIfaceCombo(expanded_combo,
1430 req_combo)) {
1431 return true;
1432 }
1433 }
1434 }
1435 return false;
1436 }
1437
1438 // This method does the following:
1439 // a) Enumerate all possible iface combos by expanding the current
1440 // ChipIfaceCombination.
1441 // b) Check if the requested iface type can be added to the current mode.
canCurrentModeSupportIfaceOfType(IfaceType requested_type)1442 bool WifiChip::canCurrentModeSupportIfaceOfType(IfaceType requested_type) {
1443 // Check if we can support atleast 1 iface of type.
1444 std::map<IfaceType, size_t> req_iface_combo;
1445 req_iface_combo[requested_type] = 1;
1446 return canCurrentModeSupportIfaceCombo(req_iface_combo);
1447 }
1448
isValidModeId(ChipModeId mode_id)1449 bool WifiChip::isValidModeId(ChipModeId mode_id) {
1450 for (const auto& mode : modes_) {
1451 if (mode.id == mode_id) {
1452 return true;
1453 }
1454 }
1455 return false;
1456 }
1457
isStaApConcurrencyAllowedInCurrentMode()1458 bool WifiChip::isStaApConcurrencyAllowedInCurrentMode() {
1459 // Check if we can support atleast 1 STA & 1 AP concurrently.
1460 std::map<IfaceType, size_t> req_iface_combo;
1461 req_iface_combo[IfaceType::AP] = 1;
1462 req_iface_combo[IfaceType::STA] = 1;
1463 return canCurrentModeSupportIfaceCombo(req_iface_combo);
1464 }
1465
isDualApAllowedInCurrentMode()1466 bool WifiChip::isDualApAllowedInCurrentMode() {
1467 // Check if we can support atleast 1 STA & 1 AP concurrently.
1468 std::map<IfaceType, size_t> req_iface_combo;
1469 req_iface_combo[IfaceType::AP] = 2;
1470 return canCurrentModeSupportIfaceCombo(req_iface_combo);
1471 }
1472
getFirstActiveWlanIfaceName()1473 std::string WifiChip::getFirstActiveWlanIfaceName() {
1474 if (sta_ifaces_.size() > 0) return sta_ifaces_[0]->getName();
1475 if (ap_ifaces_.size() > 0) return ap_ifaces_[0]->getName();
1476 // This could happen if the chip call is made before any STA/AP
1477 // iface is created. Default to wlan0 for such cases.
1478 LOG(WARNING) << "No active wlan interfaces in use! Using default";
1479 return getWlanIfaceName(0);
1480 }
1481
1482 // Return the first wlan (wlan0, wlan1 etc.) starting from |start_idx|
1483 // not already in use.
1484 // Note: This doesn't check the actual presence of these interfaces.
allocateApOrStaIfaceName(uint32_t start_idx)1485 std::string WifiChip::allocateApOrStaIfaceName(uint32_t start_idx) {
1486 for (unsigned idx = start_idx; idx < kMaxWlanIfaces; idx++) {
1487 const auto ifname = getWlanIfaceName(idx);
1488 if (findUsingName(ap_ifaces_, ifname)) continue;
1489 if (findUsingName(sta_ifaces_, ifname)) continue;
1490 return ifname;
1491 }
1492 // This should never happen. We screwed up somewhere if it did.
1493 CHECK(false) << "All wlan interfaces in use already!";
1494 return {};
1495 }
1496
1497 // AP iface names start with idx 1 for modes supporting
1498 // concurrent STA and not dual AP, else start with idx 0.
allocateApIfaceName()1499 std::string WifiChip::allocateApIfaceName() {
1500 return allocateApOrStaIfaceName((isStaApConcurrencyAllowedInCurrentMode() &&
1501 !isDualApAllowedInCurrentMode())
1502 ? 1
1503 : 0);
1504 }
1505
1506 // STA iface names start with idx 0.
1507 // Primary STA iface will always be 0.
allocateStaIfaceName()1508 std::string WifiChip::allocateStaIfaceName() {
1509 return allocateApOrStaIfaceName(0);
1510 }
1511
writeRingbufferFilesInternal()1512 bool WifiChip::writeRingbufferFilesInternal() {
1513 if (!removeOldFilesInternal()) {
1514 LOG(ERROR) << "Error occurred while deleting old tombstone files";
1515 return false;
1516 }
1517 // write ringbuffers to file
1518 for (const auto& item : ringbuffer_map_) {
1519 const Ringbuffer& cur_buffer = item.second;
1520 if (cur_buffer.getData().empty()) {
1521 continue;
1522 }
1523 const std::string file_path_raw =
1524 kTombstoneFolderPath + item.first + "XXXXXXXXXX";
1525 const int dump_fd = mkstemp(makeCharVec(file_path_raw).data());
1526 if (dump_fd == -1) {
1527 PLOG(ERROR) << "create file failed";
1528 return false;
1529 }
1530 unique_fd file_auto_closer(dump_fd);
1531 for (const auto& cur_block : cur_buffer.getData()) {
1532 if (write(dump_fd, cur_block.data(),
1533 sizeof(cur_block[0]) * cur_block.size()) == -1) {
1534 PLOG(ERROR) << "Error writing to file";
1535 }
1536 }
1537 }
1538 return true;
1539 }
1540
1541 } // namespace implementation
1542 } // namespace V1_3
1543 } // namespace wifi
1544 } // namespace hardware
1545 } // namespace android
1546