1 /*
2 **
3 ** Copyright 2012, The Android Open Source Project
4 **
5 ** Licensed under the Apache License, Version 2.0 (the "License");
6 ** you may not use this file except in compliance with the License.
7 ** You may obtain a copy of the License at
8 **
9 ** http://www.apache.org/licenses/LICENSE-2.0
10 **
11 ** Unless required by applicable law or agreed to in writing, software
12 ** distributed under the License is distributed on an "AS IS" BASIS,
13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 ** See the License for the specific language governing permissions and
15 ** limitations under the License.
16 */
17
18
19 #define LOG_TAG "AudioFlinger"
20 //#define LOG_NDEBUG 0
21 #define ATRACE_TAG ATRACE_TAG_AUDIO
22
23 #include "Configuration.h"
24 #include <math.h>
25 #include <fcntl.h>
26 #include <memory>
27 #include <string>
28 #include <linux/futex.h>
29 #include <sys/stat.h>
30 #include <sys/syscall.h>
31 #include <cutils/bitops.h>
32 #include <cutils/properties.h>
33 #include <media/AudioContainers.h>
34 #include <media/AudioDeviceTypeAddr.h>
35 #include <media/AudioParameter.h>
36 #include <media/AudioResamplerPublic.h>
37 #include <media/RecordBufferConverter.h>
38 #include <media/TypeConverter.h>
39 #include <utils/Log.h>
40 #include <utils/Trace.h>
41
42 #include <private/media/AudioTrackShared.h>
43 #include <private/android_filesystem_config.h>
44 #include <audio_utils/Balance.h>
45 #include <audio_utils/channels.h>
46 #include <audio_utils/mono_blend.h>
47 #include <audio_utils/primitives.h>
48 #include <audio_utils/format.h>
49 #include <audio_utils/minifloat.h>
50 #include <audio_utils/safe_math.h>
51 #include <system/audio_effects/effect_ns.h>
52 #include <system/audio_effects/effect_aec.h>
53 #include <system/audio.h>
54
55 // NBAIO implementations
56 #include <media/nbaio/AudioStreamInSource.h>
57 #include <media/nbaio/AudioStreamOutSink.h>
58 #include <media/nbaio/MonoPipe.h>
59 #include <media/nbaio/MonoPipeReader.h>
60 #include <media/nbaio/Pipe.h>
61 #include <media/nbaio/PipeReader.h>
62 #include <media/nbaio/SourceAudioBufferProvider.h>
63 #include <mediautils/BatteryNotifier.h>
64
65 #include <audiomanager/AudioManager.h>
66 #include <powermanager/PowerManager.h>
67
68 #include <media/audiohal/EffectsFactoryHalInterface.h>
69 #include <media/audiohal/StreamHalInterface.h>
70
71 #include "AudioFlinger.h"
72 #include "FastMixer.h"
73 #include "FastCapture.h"
74 #include <mediautils/SchedulingPolicyService.h>
75 #include <mediautils/ServiceUtilities.h>
76
77 #ifdef ADD_BATTERY_DATA
78 #include <media/IMediaPlayerService.h>
79 #include <media/IMediaDeathNotifier.h>
80 #endif
81
82 #ifdef DEBUG_CPU_USAGE
83 #include <audio_utils/Statistics.h>
84 #include <cpustats/ThreadCpuUsage.h>
85 #endif
86
87 #include "AutoPark.h"
88
89 #include <pthread.h>
90 #include "TypedLogger.h"
91
92 // ----------------------------------------------------------------------------
93
94 // Note: the following macro is used for extremely verbose logging message. In
95 // order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to
96 // 0; but one side effect of this is to turn all LOGV's as well. Some messages
97 // are so verbose that we want to suppress them even when we have ALOG_ASSERT
98 // turned on. Do not uncomment the #def below unless you really know what you
99 // are doing and want to see all of the extremely verbose messages.
100 //#define VERY_VERY_VERBOSE_LOGGING
101 #ifdef VERY_VERY_VERBOSE_LOGGING
102 #define ALOGVV ALOGV
103 #else
104 #define ALOGVV(a...) do { } while(0)
105 #endif
106
107 // TODO: Move these macro/inlines to a header file.
108 #define max(a, b) ((a) > (b) ? (a) : (b))
109 template <typename T>
min(const T & a,const T & b)110 static inline T min(const T& a, const T& b)
111 {
112 return a < b ? a : b;
113 }
114
115 namespace android {
116
117 // retry counts for buffer fill timeout
118 // 50 * ~20msecs = 1 second
119 static const int8_t kMaxTrackRetries = 50;
120 static const int8_t kMaxTrackStartupRetries = 50;
121 // allow less retry attempts on direct output thread.
122 // direct outputs can be a scarce resource in audio hardware and should
123 // be released as quickly as possible.
124 static const int8_t kMaxTrackRetriesDirect = 2;
125
126
127
128 // don't warn about blocked writes or record buffer overflows more often than this
129 static const nsecs_t kWarningThrottleNs = seconds(5);
130
131 // RecordThread loop sleep time upon application overrun or audio HAL read error
132 static const int kRecordThreadSleepUs = 5000;
133
134 // maximum time to wait in sendConfigEvent_l() for a status to be received
135 static const nsecs_t kConfigEventTimeoutNs = seconds(2);
136
137 // minimum sleep time for the mixer thread loop when tracks are active but in underrun
138 static const uint32_t kMinThreadSleepTimeUs = 5000;
139 // maximum divider applied to the active sleep time in the mixer thread loop
140 static const uint32_t kMaxThreadSleepTimeShift = 2;
141
142 // minimum normal sink buffer size, expressed in milliseconds rather than frames
143 // FIXME This should be based on experimentally observed scheduling jitter
144 static const uint32_t kMinNormalSinkBufferSizeMs = 20;
145 // maximum normal sink buffer size
146 static const uint32_t kMaxNormalSinkBufferSizeMs = 24;
147
148 // minimum capture buffer size in milliseconds to _not_ need a fast capture thread
149 // FIXME This should be based on experimentally observed scheduling jitter
150 static const uint32_t kMinNormalCaptureBufferSizeMs = 12;
151
152 // Offloaded output thread standby delay: allows track transition without going to standby
153 static const nsecs_t kOffloadStandbyDelayNs = seconds(1);
154
155 // Direct output thread minimum sleep time in idle or active(underrun) state
156 static const nsecs_t kDirectMinSleepTimeUs = 10000;
157
158 // The universal constant for ubiquitous 20ms value. The value of 20ms seems to provide a good
159 // balance between power consumption and latency, and allows threads to be scheduled reliably
160 // by the CFS scheduler.
161 // FIXME Express other hardcoded references to 20ms with references to this constant and move
162 // it appropriately.
163 #define FMS_20 20
164
165 // Whether to use fast mixer
166 static const enum {
167 FastMixer_Never, // never initialize or use: for debugging only
168 FastMixer_Always, // always initialize and use, even if not needed: for debugging only
169 // normal mixer multiplier is 1
170 FastMixer_Static, // initialize if needed, then use all the time if initialized,
171 // multiplier is calculated based on min & max normal mixer buffer size
172 FastMixer_Dynamic, // initialize if needed, then use dynamically depending on track load,
173 // multiplier is calculated based on min & max normal mixer buffer size
174 // FIXME for FastMixer_Dynamic:
175 // Supporting this option will require fixing HALs that can't handle large writes.
176 // For example, one HAL implementation returns an error from a large write,
177 // and another HAL implementation corrupts memory, possibly in the sample rate converter.
178 // We could either fix the HAL implementations, or provide a wrapper that breaks
179 // up large writes into smaller ones, and the wrapper would need to deal with scheduler.
180 } kUseFastMixer = FastMixer_Static;
181
182 // Whether to use fast capture
183 static const enum {
184 FastCapture_Never, // never initialize or use: for debugging only
185 FastCapture_Always, // always initialize and use, even if not needed: for debugging only
186 FastCapture_Static, // initialize if needed, then use all the time if initialized
187 } kUseFastCapture = FastCapture_Static;
188
189 // Priorities for requestPriority
190 static const int kPriorityAudioApp = 2;
191 static const int kPriorityFastMixer = 3;
192 static const int kPriorityFastCapture = 3;
193
194 // IAudioFlinger::createTrack() has an in/out parameter 'pFrameCount' for the total size of the
195 // track buffer in shared memory. Zero on input means to use a default value. For fast tracks,
196 // AudioFlinger derives the default from HAL buffer size and 'fast track multiplier'.
197
198 // This is the default value, if not specified by property.
199 static const int kFastTrackMultiplier = 2;
200
201 // The minimum and maximum allowed values
202 static const int kFastTrackMultiplierMin = 1;
203 static const int kFastTrackMultiplierMax = 2;
204
205 // The actual value to use, which can be specified per-device via property af.fast_track_multiplier.
206 static int sFastTrackMultiplier = kFastTrackMultiplier;
207
208 // See Thread::readOnlyHeap().
209 // Initially this heap is used to allocate client buffers for "fast" AudioRecord.
210 // Eventually it will be the single buffer that FastCapture writes into via HAL read(),
211 // and that all "fast" AudioRecord clients read from. In either case, the size can be small.
212 static const size_t kRecordThreadReadOnlyHeapSize = 0xD000;
213
214 // ----------------------------------------------------------------------------
215
216 static pthread_once_t sFastTrackMultiplierOnce = PTHREAD_ONCE_INIT;
217
sFastTrackMultiplierInit()218 static void sFastTrackMultiplierInit()
219 {
220 char value[PROPERTY_VALUE_MAX];
221 if (property_get("af.fast_track_multiplier", value, NULL) > 0) {
222 char *endptr;
223 unsigned long ul = strtoul(value, &endptr, 0);
224 if (*endptr == '\0' && kFastTrackMultiplierMin <= ul && ul <= kFastTrackMultiplierMax) {
225 sFastTrackMultiplier = (int) ul;
226 }
227 }
228 }
229
230 // ----------------------------------------------------------------------------
231
232 #ifdef ADD_BATTERY_DATA
233 // To collect the amplifier usage
addBatteryData(uint32_t params)234 static void addBatteryData(uint32_t params) {
235 sp<IMediaPlayerService> service = IMediaDeathNotifier::getMediaPlayerService();
236 if (service == NULL) {
237 // it already logged
238 return;
239 }
240
241 service->addBatteryData(params);
242 }
243 #endif
244
245 // Track the CLOCK_BOOTTIME versus CLOCK_MONOTONIC timebase offset
246 struct {
247 // call when you acquire a partial wakelock
acquireandroid::__anonf7c4eeac0308248 void acquire(const sp<IBinder> &wakeLockToken) {
249 pthread_mutex_lock(&mLock);
250 if (wakeLockToken.get() == nullptr) {
251 adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
252 } else {
253 if (mCount == 0) {
254 adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME);
255 }
256 ++mCount;
257 }
258 pthread_mutex_unlock(&mLock);
259 }
260
261 // call when you release a partial wakelock.
releaseandroid::__anonf7c4eeac0308262 void release(const sp<IBinder> &wakeLockToken) {
263 if (wakeLockToken.get() == nullptr) {
264 return;
265 }
266 pthread_mutex_lock(&mLock);
267 if (--mCount < 0) {
268 ALOGE("negative wakelock count");
269 mCount = 0;
270 }
271 pthread_mutex_unlock(&mLock);
272 }
273
274 // retrieves the boottime timebase offset from monotonic.
getBoottimeOffsetandroid::__anonf7c4eeac0308275 int64_t getBoottimeOffset() {
276 pthread_mutex_lock(&mLock);
277 int64_t boottimeOffset = mBoottimeOffset;
278 pthread_mutex_unlock(&mLock);
279 return boottimeOffset;
280 }
281
282 // Adjusts the timebase offset between TIMEBASE_MONOTONIC
283 // and the selected timebase.
284 // Currently only TIMEBASE_BOOTTIME is allowed.
285 //
286 // This only needs to be called upon acquiring the first partial wakelock
287 // after all other partial wakelocks are released.
288 //
289 // We do an empirical measurement of the offset rather than parsing
290 // /proc/timer_list since the latter is not a formal kernel ABI.
adjustTimebaseOffsetandroid::__anonf7c4eeac0308291 static void adjustTimebaseOffset(int64_t *offset, ExtendedTimestamp::Timebase timebase) {
292 int clockbase;
293 switch (timebase) {
294 case ExtendedTimestamp::TIMEBASE_BOOTTIME:
295 clockbase = SYSTEM_TIME_BOOTTIME;
296 break;
297 default:
298 LOG_ALWAYS_FATAL("invalid timebase %d", timebase);
299 break;
300 }
301 // try three times to get the clock offset, choose the one
302 // with the minimum gap in measurements.
303 const int tries = 3;
304 nsecs_t bestGap, measured;
305 for (int i = 0; i < tries; ++i) {
306 const nsecs_t tmono = systemTime(SYSTEM_TIME_MONOTONIC);
307 const nsecs_t tbase = systemTime(clockbase);
308 const nsecs_t tmono2 = systemTime(SYSTEM_TIME_MONOTONIC);
309 const nsecs_t gap = tmono2 - tmono;
310 if (i == 0 || gap < bestGap) {
311 bestGap = gap;
312 measured = tbase - ((tmono + tmono2) >> 1);
313 }
314 }
315
316 // to avoid micro-adjusting, we don't change the timebase
317 // unless it is significantly different.
318 //
319 // Assumption: It probably takes more than toleranceNs to
320 // suspend and resume the device.
321 static int64_t toleranceNs = 10000; // 10 us
322 if (llabs(*offset - measured) > toleranceNs) {
323 ALOGV("Adjusting timebase offset old: %lld new: %lld",
324 (long long)*offset, (long long)measured);
325 *offset = measured;
326 }
327 }
328
329 pthread_mutex_t mLock;
330 int32_t mCount;
331 int64_t mBoottimeOffset;
332 } gBoottime = { PTHREAD_MUTEX_INITIALIZER, 0, 0 }; // static, so use POD initialization
333
334 // ----------------------------------------------------------------------------
335 // CPU Stats
336 // ----------------------------------------------------------------------------
337
338 class CpuStats {
339 public:
340 CpuStats();
341 void sample(const String8 &title);
342 #ifdef DEBUG_CPU_USAGE
343 private:
344 ThreadCpuUsage mCpuUsage; // instantaneous thread CPU usage in wall clock ns
345 audio_utils::Statistics<double> mWcStats; // statistics on thread CPU usage in wall clock ns
346
347 audio_utils::Statistics<double> mHzStats; // statistics on thread CPU usage in cycles
348
349 int mCpuNum; // thread's current CPU number
350 int mCpukHz; // frequency of thread's current CPU in kHz
351 #endif
352 };
353
CpuStats()354 CpuStats::CpuStats()
355 #ifdef DEBUG_CPU_USAGE
356 : mCpuNum(-1), mCpukHz(-1)
357 #endif
358 {
359 }
360
sample(const String8 & title __unused)361 void CpuStats::sample(const String8 &title
362 #ifndef DEBUG_CPU_USAGE
363 __unused
364 #endif
365 ) {
366 #ifdef DEBUG_CPU_USAGE
367 // get current thread's delta CPU time in wall clock ns
368 double wcNs;
369 bool valid = mCpuUsage.sampleAndEnable(wcNs);
370
371 // record sample for wall clock statistics
372 if (valid) {
373 mWcStats.add(wcNs);
374 }
375
376 // get the current CPU number
377 int cpuNum = sched_getcpu();
378
379 // get the current CPU frequency in kHz
380 int cpukHz = mCpuUsage.getCpukHz(cpuNum);
381
382 // check if either CPU number or frequency changed
383 if (cpuNum != mCpuNum || cpukHz != mCpukHz) {
384 mCpuNum = cpuNum;
385 mCpukHz = cpukHz;
386 // ignore sample for purposes of cycles
387 valid = false;
388 }
389
390 // if no change in CPU number or frequency, then record sample for cycle statistics
391 if (valid && mCpukHz > 0) {
392 const double cycles = wcNs * cpukHz * 0.000001;
393 mHzStats.add(cycles);
394 }
395
396 const unsigned n = mWcStats.getN();
397 // mCpuUsage.elapsed() is expensive, so don't call it every loop
398 if ((n & 127) == 1) {
399 const long long elapsed = mCpuUsage.elapsed();
400 if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) {
401 const double perLoop = elapsed / (double) n;
402 const double perLoop100 = perLoop * 0.01;
403 const double perLoop1k = perLoop * 0.001;
404 const double mean = mWcStats.getMean();
405 const double stddev = mWcStats.getStdDev();
406 const double minimum = mWcStats.getMin();
407 const double maximum = mWcStats.getMax();
408 const double meanCycles = mHzStats.getMean();
409 const double stddevCycles = mHzStats.getStdDev();
410 const double minCycles = mHzStats.getMin();
411 const double maxCycles = mHzStats.getMax();
412 mCpuUsage.resetElapsed();
413 mWcStats.reset();
414 mHzStats.reset();
415 ALOGD("CPU usage for %s over past %.1f secs\n"
416 " (%u mixer loops at %.1f mean ms per loop):\n"
417 " us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n"
418 " %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n"
419 " MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f",
420 title.string(),
421 elapsed * .000000001, n, perLoop * .000001,
422 mean * .001,
423 stddev * .001,
424 minimum * .001,
425 maximum * .001,
426 mean / perLoop100,
427 stddev / perLoop100,
428 minimum / perLoop100,
429 maximum / perLoop100,
430 meanCycles / perLoop1k,
431 stddevCycles / perLoop1k,
432 minCycles / perLoop1k,
433 maxCycles / perLoop1k);
434
435 }
436 }
437 #endif
438 };
439
440 // ----------------------------------------------------------------------------
441 // ThreadBase
442 // ----------------------------------------------------------------------------
443
444 // static
threadTypeToString(AudioFlinger::ThreadBase::type_t type)445 const char *AudioFlinger::ThreadBase::threadTypeToString(AudioFlinger::ThreadBase::type_t type)
446 {
447 switch (type) {
448 case MIXER:
449 return "MIXER";
450 case DIRECT:
451 return "DIRECT";
452 case DUPLICATING:
453 return "DUPLICATING";
454 case RECORD:
455 return "RECORD";
456 case OFFLOAD:
457 return "OFFLOAD";
458 case MMAP:
459 return "MMAP";
460 default:
461 return "unknown";
462 }
463 }
464
ThreadBase(const sp<AudioFlinger> & audioFlinger,audio_io_handle_t id,type_t type,bool systemReady)465 AudioFlinger::ThreadBase::ThreadBase(const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
466 type_t type, bool systemReady)
467 : Thread(false /*canCallJava*/),
468 mType(type),
469 mAudioFlinger(audioFlinger),
470 // mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, mFormat, mBufferSize
471 // are set by PlaybackThread::readOutputParameters_l() or
472 // RecordThread::readInputParameters_l()
473 //FIXME: mStandby should be true here. Is this some kind of hack?
474 mStandby(false),
475 mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id),
476 // mName will be set by concrete (non-virtual) subclass
477 mDeathRecipient(new PMDeathRecipient(this)),
478 mSystemReady(systemReady),
479 mSignalPending(false)
480 {
481 memset(&mPatch, 0, sizeof(struct audio_patch));
482 }
483
~ThreadBase()484 AudioFlinger::ThreadBase::~ThreadBase()
485 {
486 // mConfigEvents should be empty, but just in case it isn't, free the memory it owns
487 mConfigEvents.clear();
488
489 // do not lock the mutex in destructor
490 releaseWakeLock_l();
491 if (mPowerManager != 0) {
492 sp<IBinder> binder = IInterface::asBinder(mPowerManager);
493 binder->unlinkToDeath(mDeathRecipient);
494 }
495
496 sendStatistics(true /* force */);
497 }
498
readyToRun()499 status_t AudioFlinger::ThreadBase::readyToRun()
500 {
501 status_t status = initCheck();
502 if (status == NO_ERROR) {
503 ALOGI("AudioFlinger's thread %p tid=%d ready to run", this, getTid());
504 } else {
505 ALOGE("No working audio driver found.");
506 }
507 return status;
508 }
509
exit()510 void AudioFlinger::ThreadBase::exit()
511 {
512 ALOGV("ThreadBase::exit");
513 // do any cleanup required for exit to succeed
514 preExit();
515 {
516 // This lock prevents the following race in thread (uniprocessor for illustration):
517 // if (!exitPending()) {
518 // // context switch from here to exit()
519 // // exit() calls requestExit(), what exitPending() observes
520 // // exit() calls signal(), which is dropped since no waiters
521 // // context switch back from exit() to here
522 // mWaitWorkCV.wait(...);
523 // // now thread is hung
524 // }
525 AutoMutex lock(mLock);
526 requestExit();
527 mWaitWorkCV.broadcast();
528 }
529 // When Thread::requestExitAndWait is made virtual and this method is renamed to
530 // "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();"
531 requestExitAndWait();
532 }
533
setParameters(const String8 & keyValuePairs)534 status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs)
535 {
536 ALOGV("ThreadBase::setParameters() %s", keyValuePairs.string());
537 Mutex::Autolock _l(mLock);
538
539 return sendSetParameterConfigEvent_l(keyValuePairs);
540 }
541
542 // sendConfigEvent_l() must be called with ThreadBase::mLock held
543 // Can temporarily release the lock if waiting for a reply from processConfigEvents_l().
sendConfigEvent_l(sp<ConfigEvent> & event)544 status_t AudioFlinger::ThreadBase::sendConfigEvent_l(sp<ConfigEvent>& event)
545 {
546 status_t status = NO_ERROR;
547
548 if (event->mRequiresSystemReady && !mSystemReady) {
549 event->mWaitStatus = false;
550 mPendingConfigEvents.add(event);
551 return status;
552 }
553 mConfigEvents.add(event);
554 ALOGV("sendConfigEvent_l() num events %zu event %d", mConfigEvents.size(), event->mType);
555 mWaitWorkCV.signal();
556 mLock.unlock();
557 {
558 Mutex::Autolock _l(event->mLock);
559 while (event->mWaitStatus) {
560 if (event->mCond.waitRelative(event->mLock, kConfigEventTimeoutNs) != NO_ERROR) {
561 event->mStatus = TIMED_OUT;
562 event->mWaitStatus = false;
563 }
564 }
565 status = event->mStatus;
566 }
567 mLock.lock();
568 return status;
569 }
570
sendIoConfigEvent(audio_io_config_event event,pid_t pid,audio_port_handle_t portId)571 void AudioFlinger::ThreadBase::sendIoConfigEvent(audio_io_config_event event, pid_t pid,
572 audio_port_handle_t portId)
573 {
574 Mutex::Autolock _l(mLock);
575 sendIoConfigEvent_l(event, pid, portId);
576 }
577
578 // sendIoConfigEvent_l() must be called with ThreadBase::mLock held
sendIoConfigEvent_l(audio_io_config_event event,pid_t pid,audio_port_handle_t portId)579 void AudioFlinger::ThreadBase::sendIoConfigEvent_l(audio_io_config_event event, pid_t pid,
580 audio_port_handle_t portId)
581 {
582 // The audio statistics history is exponentially weighted to forget events
583 // about five or more seconds in the past. In order to have
584 // crisper statistics for mediametrics, we reset the statistics on
585 // an IoConfigEvent, to reflect different properties for a new device.
586 mIoJitterMs.reset();
587 mLatencyMs.reset();
588 mProcessTimeMs.reset();
589 mTimestampVerifier.discontinuity();
590
591 sp<ConfigEvent> configEvent = (ConfigEvent *)new IoConfigEvent(event, pid, portId);
592 sendConfigEvent_l(configEvent);
593 }
594
sendPrioConfigEvent(pid_t pid,pid_t tid,int32_t prio,bool forApp)595 void AudioFlinger::ThreadBase::sendPrioConfigEvent(pid_t pid, pid_t tid, int32_t prio, bool forApp)
596 {
597 Mutex::Autolock _l(mLock);
598 sendPrioConfigEvent_l(pid, tid, prio, forApp);
599 }
600
601 // sendPrioConfigEvent_l() must be called with ThreadBase::mLock held
sendPrioConfigEvent_l(pid_t pid,pid_t tid,int32_t prio,bool forApp)602 void AudioFlinger::ThreadBase::sendPrioConfigEvent_l(
603 pid_t pid, pid_t tid, int32_t prio, bool forApp)
604 {
605 sp<ConfigEvent> configEvent = (ConfigEvent *)new PrioConfigEvent(pid, tid, prio, forApp);
606 sendConfigEvent_l(configEvent);
607 }
608
609 // sendSetParameterConfigEvent_l() must be called with ThreadBase::mLock held
sendSetParameterConfigEvent_l(const String8 & keyValuePair)610 status_t AudioFlinger::ThreadBase::sendSetParameterConfigEvent_l(const String8& keyValuePair)
611 {
612 sp<ConfigEvent> configEvent;
613 AudioParameter param(keyValuePair);
614 int value;
615 if (param.getInt(String8(AudioParameter::keyMonoOutput), value) == NO_ERROR) {
616 setMasterMono_l(value != 0);
617 if (param.size() == 1) {
618 return NO_ERROR; // should be a solo parameter - we don't pass down
619 }
620 param.remove(String8(AudioParameter::keyMonoOutput));
621 configEvent = new SetParameterConfigEvent(param.toString());
622 } else {
623 configEvent = new SetParameterConfigEvent(keyValuePair);
624 }
625 return sendConfigEvent_l(configEvent);
626 }
627
sendCreateAudioPatchConfigEvent(const struct audio_patch * patch,audio_patch_handle_t * handle)628 status_t AudioFlinger::ThreadBase::sendCreateAudioPatchConfigEvent(
629 const struct audio_patch *patch,
630 audio_patch_handle_t *handle)
631 {
632 Mutex::Autolock _l(mLock);
633 sp<ConfigEvent> configEvent = (ConfigEvent *)new CreateAudioPatchConfigEvent(*patch, *handle);
634 status_t status = sendConfigEvent_l(configEvent);
635 if (status == NO_ERROR) {
636 CreateAudioPatchConfigEventData *data =
637 (CreateAudioPatchConfigEventData *)configEvent->mData.get();
638 *handle = data->mHandle;
639 }
640 return status;
641 }
642
sendReleaseAudioPatchConfigEvent(const audio_patch_handle_t handle)643 status_t AudioFlinger::ThreadBase::sendReleaseAudioPatchConfigEvent(
644 const audio_patch_handle_t handle)
645 {
646 Mutex::Autolock _l(mLock);
647 sp<ConfigEvent> configEvent = (ConfigEvent *)new ReleaseAudioPatchConfigEvent(handle);
648 return sendConfigEvent_l(configEvent);
649 }
650
sendUpdateOutDeviceConfigEvent(const DeviceDescriptorBaseVector & outDevices)651 status_t AudioFlinger::ThreadBase::sendUpdateOutDeviceConfigEvent(
652 const DeviceDescriptorBaseVector& outDevices)
653 {
654 if (type() != RECORD) {
655 // The update out device operation is only for record thread.
656 return INVALID_OPERATION;
657 }
658 Mutex::Autolock _l(mLock);
659 sp<ConfigEvent> configEvent = (ConfigEvent *)new UpdateOutDevicesConfigEvent(outDevices);
660 return sendConfigEvent_l(configEvent);
661 }
662
663
664 // post condition: mConfigEvents.isEmpty()
processConfigEvents_l()665 void AudioFlinger::ThreadBase::processConfigEvents_l()
666 {
667 bool configChanged = false;
668
669 while (!mConfigEvents.isEmpty()) {
670 ALOGV("processConfigEvents_l() remaining events %zu", mConfigEvents.size());
671 sp<ConfigEvent> event = mConfigEvents[0];
672 mConfigEvents.removeAt(0);
673 switch (event->mType) {
674 case CFG_EVENT_PRIO: {
675 PrioConfigEventData *data = (PrioConfigEventData *)event->mData.get();
676 // FIXME Need to understand why this has to be done asynchronously
677 int err = requestPriority(data->mPid, data->mTid, data->mPrio, data->mForApp,
678 true /*asynchronous*/);
679 if (err != 0) {
680 ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
681 data->mPrio, data->mPid, data->mTid, err);
682 }
683 } break;
684 case CFG_EVENT_IO: {
685 IoConfigEventData *data = (IoConfigEventData *)event->mData.get();
686 ioConfigChanged(data->mEvent, data->mPid, data->mPortId);
687 } break;
688 case CFG_EVENT_SET_PARAMETER: {
689 SetParameterConfigEventData *data = (SetParameterConfigEventData *)event->mData.get();
690 if (checkForNewParameter_l(data->mKeyValuePairs, event->mStatus)) {
691 configChanged = true;
692 mLocalLog.log("CFG_EVENT_SET_PARAMETER: (%s) configuration changed",
693 data->mKeyValuePairs.string());
694 }
695 } break;
696 case CFG_EVENT_CREATE_AUDIO_PATCH: {
697 const DeviceTypeSet oldDevices = getDeviceTypes();
698 CreateAudioPatchConfigEventData *data =
699 (CreateAudioPatchConfigEventData *)event->mData.get();
700 event->mStatus = createAudioPatch_l(&data->mPatch, &data->mHandle);
701 const DeviceTypeSet newDevices = getDeviceTypes();
702 mLocalLog.log("CFG_EVENT_CREATE_AUDIO_PATCH: old device %s (%s) new device %s (%s)",
703 dumpDeviceTypes(oldDevices).c_str(), toString(oldDevices).c_str(),
704 dumpDeviceTypes(newDevices).c_str(), toString(newDevices).c_str());
705 } break;
706 case CFG_EVENT_RELEASE_AUDIO_PATCH: {
707 const DeviceTypeSet oldDevices = getDeviceTypes();
708 ReleaseAudioPatchConfigEventData *data =
709 (ReleaseAudioPatchConfigEventData *)event->mData.get();
710 event->mStatus = releaseAudioPatch_l(data->mHandle);
711 const DeviceTypeSet newDevices = getDeviceTypes();
712 mLocalLog.log("CFG_EVENT_RELEASE_AUDIO_PATCH: old device %s (%s) new device %s (%s)",
713 dumpDeviceTypes(oldDevices).c_str(), toString(oldDevices).c_str(),
714 dumpDeviceTypes(newDevices).c_str(), toString(newDevices).c_str());
715 } break;
716 case CFG_EVENT_UPDATE_OUT_DEVICE: {
717 UpdateOutDevicesConfigEventData *data =
718 (UpdateOutDevicesConfigEventData *)event->mData.get();
719 updateOutDevices(data->mOutDevices);
720 } break;
721 default:
722 ALOG_ASSERT(false, "processConfigEvents_l() unknown event type %d", event->mType);
723 break;
724 }
725 {
726 Mutex::Autolock _l(event->mLock);
727 if (event->mWaitStatus) {
728 event->mWaitStatus = false;
729 event->mCond.signal();
730 }
731 }
732 ALOGV_IF(mConfigEvents.isEmpty(), "processConfigEvents_l() DONE thread %p", this);
733 }
734
735 if (configChanged) {
736 cacheParameters_l();
737 }
738 }
739
channelMaskToString(audio_channel_mask_t mask,bool output)740 String8 channelMaskToString(audio_channel_mask_t mask, bool output) {
741 String8 s;
742 const audio_channel_representation_t representation =
743 audio_channel_mask_get_representation(mask);
744
745 switch (representation) {
746 // Travel all single bit channel mask to convert channel mask to string.
747 case AUDIO_CHANNEL_REPRESENTATION_POSITION: {
748 if (output) {
749 if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT) s.append("front-left, ");
750 if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT) s.append("front-right, ");
751 if (mask & AUDIO_CHANNEL_OUT_FRONT_CENTER) s.append("front-center, ");
752 if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY) s.append("low freq, ");
753 if (mask & AUDIO_CHANNEL_OUT_BACK_LEFT) s.append("back-left, ");
754 if (mask & AUDIO_CHANNEL_OUT_BACK_RIGHT) s.append("back-right, ");
755 if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT_OF_CENTER) s.append("front-left-of-center, ");
756 if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT_OF_CENTER) s.append("front-right-of-center, ");
757 if (mask & AUDIO_CHANNEL_OUT_BACK_CENTER) s.append("back-center, ");
758 if (mask & AUDIO_CHANNEL_OUT_SIDE_LEFT) s.append("side-left, ");
759 if (mask & AUDIO_CHANNEL_OUT_SIDE_RIGHT) s.append("side-right, ");
760 if (mask & AUDIO_CHANNEL_OUT_TOP_CENTER) s.append("top-center ,");
761 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_LEFT) s.append("top-front-left, ");
762 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_CENTER) s.append("top-front-center, ");
763 if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_RIGHT) s.append("top-front-right, ");
764 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_LEFT) s.append("top-back-left, ");
765 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_CENTER) s.append("top-back-center, " );
766 if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_RIGHT) s.append("top-back-right, " );
767 if (mask & AUDIO_CHANNEL_OUT_TOP_SIDE_LEFT) s.append("top-side-left, " );
768 if (mask & AUDIO_CHANNEL_OUT_TOP_SIDE_RIGHT) s.append("top-side-right, " );
769 if (mask & AUDIO_CHANNEL_OUT_HAPTIC_B) s.append("haptic-B, " );
770 if (mask & AUDIO_CHANNEL_OUT_HAPTIC_A) s.append("haptic-A, " );
771 if (mask & ~AUDIO_CHANNEL_OUT_ALL) s.append("unknown, ");
772 } else {
773 if (mask & AUDIO_CHANNEL_IN_LEFT) s.append("left, ");
774 if (mask & AUDIO_CHANNEL_IN_RIGHT) s.append("right, ");
775 if (mask & AUDIO_CHANNEL_IN_FRONT) s.append("front, ");
776 if (mask & AUDIO_CHANNEL_IN_BACK) s.append("back, ");
777 if (mask & AUDIO_CHANNEL_IN_LEFT_PROCESSED) s.append("left-processed, ");
778 if (mask & AUDIO_CHANNEL_IN_RIGHT_PROCESSED) s.append("right-processed, ");
779 if (mask & AUDIO_CHANNEL_IN_FRONT_PROCESSED) s.append("front-processed, ");
780 if (mask & AUDIO_CHANNEL_IN_BACK_PROCESSED) s.append("back-processed, ");
781 if (mask & AUDIO_CHANNEL_IN_PRESSURE) s.append("pressure, ");
782 if (mask & AUDIO_CHANNEL_IN_X_AXIS) s.append("X, ");
783 if (mask & AUDIO_CHANNEL_IN_Y_AXIS) s.append("Y, ");
784 if (mask & AUDIO_CHANNEL_IN_Z_AXIS) s.append("Z, ");
785 if (mask & AUDIO_CHANNEL_IN_BACK_LEFT) s.append("back-left, ");
786 if (mask & AUDIO_CHANNEL_IN_BACK_RIGHT) s.append("back-right, ");
787 if (mask & AUDIO_CHANNEL_IN_CENTER) s.append("center, ");
788 if (mask & AUDIO_CHANNEL_IN_LOW_FREQUENCY) s.append("low freq, ");
789 if (mask & AUDIO_CHANNEL_IN_TOP_LEFT) s.append("top-left, " );
790 if (mask & AUDIO_CHANNEL_IN_TOP_RIGHT) s.append("top-right, " );
791 if (mask & AUDIO_CHANNEL_IN_VOICE_UPLINK) s.append("voice-uplink, ");
792 if (mask & AUDIO_CHANNEL_IN_VOICE_DNLINK) s.append("voice-dnlink, ");
793 if (mask & ~AUDIO_CHANNEL_IN_ALL) s.append("unknown, ");
794 }
795 const int len = s.length();
796 if (len > 2) {
797 (void) s.lockBuffer(len); // needed?
798 s.unlockBuffer(len - 2); // remove trailing ", "
799 }
800 return s;
801 }
802 case AUDIO_CHANNEL_REPRESENTATION_INDEX:
803 s.appendFormat("index mask, bits:%#x", audio_channel_mask_get_bits(mask));
804 return s;
805 default:
806 s.appendFormat("unknown mask, representation:%d bits:%#x",
807 representation, audio_channel_mask_get_bits(mask));
808 return s;
809 }
810 }
811
dump(int fd,const Vector<String16> & args)812 void AudioFlinger::ThreadBase::dump(int fd, const Vector<String16>& args)
813 {
814 dprintf(fd, "\n%s thread %p, name %s, tid %d, type %d (%s):\n", isOutput() ? "Output" : "Input",
815 this, mThreadName, getTid(), type(), threadTypeToString(type()));
816
817 bool locked = AudioFlinger::dumpTryLock(mLock);
818 if (!locked) {
819 dprintf(fd, " Thread may be deadlocked\n");
820 }
821
822 dumpBase_l(fd, args);
823 dumpInternals_l(fd, args);
824 dumpTracks_l(fd, args);
825 dumpEffectChains_l(fd, args);
826
827 if (locked) {
828 mLock.unlock();
829 }
830
831 dprintf(fd, " Local log:\n");
832 mLocalLog.dump(fd, " " /* prefix */, 40 /* lines */);
833 }
834
dumpBase_l(int fd,const Vector<String16> & args __unused)835 void AudioFlinger::ThreadBase::dumpBase_l(int fd, const Vector<String16>& args __unused)
836 {
837 dprintf(fd, " I/O handle: %d\n", mId);
838 dprintf(fd, " Standby: %s\n", mStandby ? "yes" : "no");
839 dprintf(fd, " Sample rate: %u Hz\n", mSampleRate);
840 dprintf(fd, " HAL frame count: %zu\n", mFrameCount);
841 dprintf(fd, " HAL format: 0x%x (%s)\n", mHALFormat, formatToString(mHALFormat).c_str());
842 dprintf(fd, " HAL buffer size: %zu bytes\n", mBufferSize);
843 dprintf(fd, " Channel count: %u\n", mChannelCount);
844 dprintf(fd, " Channel mask: 0x%08x (%s)\n", mChannelMask,
845 channelMaskToString(mChannelMask, mType != RECORD).string());
846 dprintf(fd, " Processing format: 0x%x (%s)\n", mFormat, formatToString(mFormat).c_str());
847 dprintf(fd, " Processing frame size: %zu bytes\n", mFrameSize);
848 dprintf(fd, " Pending config events:");
849 size_t numConfig = mConfigEvents.size();
850 if (numConfig) {
851 const size_t SIZE = 256;
852 char buffer[SIZE];
853 for (size_t i = 0; i < numConfig; i++) {
854 mConfigEvents[i]->dump(buffer, SIZE);
855 dprintf(fd, "\n %s", buffer);
856 }
857 dprintf(fd, "\n");
858 } else {
859 dprintf(fd, " none\n");
860 }
861 // Note: output device may be used by capture threads for effects such as AEC.
862 dprintf(fd, " Output devices: %s (%s)\n",
863 dumpDeviceTypes(outDeviceTypes()).c_str(), toString(outDeviceTypes()).c_str());
864 dprintf(fd, " Input device: %#x (%s)\n",
865 inDeviceType(), toString(inDeviceType()).c_str());
866 dprintf(fd, " Audio source: %d (%s)\n", mAudioSource, toString(mAudioSource).c_str());
867
868 // Dump timestamp statistics for the Thread types that support it.
869 if (mType == RECORD
870 || mType == MIXER
871 || mType == DUPLICATING
872 || mType == DIRECT
873 || mType == OFFLOAD) {
874 dprintf(fd, " Timestamp stats: %s\n", mTimestampVerifier.toString().c_str());
875 dprintf(fd, " Timestamp corrected: %s\n", isTimestampCorrectionEnabled() ? "yes" : "no");
876 }
877
878 if (mLastIoBeginNs > 0) { // MMAP may not set this
879 dprintf(fd, " Last %s occurred (msecs): %lld\n",
880 isOutput() ? "write" : "read",
881 (long long) (systemTime() - mLastIoBeginNs) / NANOS_PER_MILLISECOND);
882 }
883
884 if (mProcessTimeMs.getN() > 0) {
885 dprintf(fd, " Process time ms stats: %s\n", mProcessTimeMs.toString().c_str());
886 }
887
888 if (mIoJitterMs.getN() > 0) {
889 dprintf(fd, " Hal %s jitter ms stats: %s\n",
890 isOutput() ? "write" : "read",
891 mIoJitterMs.toString().c_str());
892 }
893
894 if (mLatencyMs.getN() > 0) {
895 dprintf(fd, " Threadloop %s latency stats: %s\n",
896 isOutput() ? "write" : "read",
897 mLatencyMs.toString().c_str());
898 }
899 }
900
dumpEffectChains_l(int fd,const Vector<String16> & args)901 void AudioFlinger::ThreadBase::dumpEffectChains_l(int fd, const Vector<String16>& args)
902 {
903 const size_t SIZE = 256;
904 char buffer[SIZE];
905
906 size_t numEffectChains = mEffectChains.size();
907 snprintf(buffer, SIZE, " %zu Effect Chains\n", numEffectChains);
908 write(fd, buffer, strlen(buffer));
909
910 for (size_t i = 0; i < numEffectChains; ++i) {
911 sp<EffectChain> chain = mEffectChains[i];
912 if (chain != 0) {
913 chain->dump(fd, args);
914 }
915 }
916 }
917
acquireWakeLock()918 void AudioFlinger::ThreadBase::acquireWakeLock()
919 {
920 Mutex::Autolock _l(mLock);
921 acquireWakeLock_l();
922 }
923
getWakeLockTag()924 String16 AudioFlinger::ThreadBase::getWakeLockTag()
925 {
926 switch (mType) {
927 case MIXER:
928 return String16("AudioMix");
929 case DIRECT:
930 return String16("AudioDirectOut");
931 case DUPLICATING:
932 return String16("AudioDup");
933 case RECORD:
934 return String16("AudioIn");
935 case OFFLOAD:
936 return String16("AudioOffload");
937 case MMAP:
938 return String16("Mmap");
939 default:
940 ALOG_ASSERT(false);
941 return String16("AudioUnknown");
942 }
943 }
944
acquireWakeLock_l()945 void AudioFlinger::ThreadBase::acquireWakeLock_l()
946 {
947 getPowerManager_l();
948 if (mPowerManager != 0) {
949 sp<IBinder> binder = new BBinder();
950 // Uses AID_AUDIOSERVER for wakelock. updateWakeLockUids_l() updates with client uids.
951 status_t status = mPowerManager->acquireWakeLock(POWERMANAGER_PARTIAL_WAKE_LOCK,
952 binder,
953 getWakeLockTag(),
954 String16("audioserver"),
955 true /* FIXME force oneway contrary to .aidl */);
956 if (status == NO_ERROR) {
957 mWakeLockToken = binder;
958 }
959 ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status);
960 }
961
962 gBoottime.acquire(mWakeLockToken);
963 mTimestamp.mTimebaseOffset[ExtendedTimestamp::TIMEBASE_BOOTTIME] =
964 gBoottime.getBoottimeOffset();
965 }
966
releaseWakeLock()967 void AudioFlinger::ThreadBase::releaseWakeLock()
968 {
969 Mutex::Autolock _l(mLock);
970 releaseWakeLock_l();
971 }
972
releaseWakeLock_l()973 void AudioFlinger::ThreadBase::releaseWakeLock_l()
974 {
975 gBoottime.release(mWakeLockToken);
976 if (mWakeLockToken != 0) {
977 ALOGV("releaseWakeLock_l() %s", mThreadName);
978 if (mPowerManager != 0) {
979 mPowerManager->releaseWakeLock(mWakeLockToken, 0,
980 true /* FIXME force oneway contrary to .aidl */);
981 }
982 mWakeLockToken.clear();
983 }
984 }
985
getPowerManager_l()986 void AudioFlinger::ThreadBase::getPowerManager_l() {
987 if (mSystemReady && mPowerManager == 0) {
988 // use checkService() to avoid blocking if power service is not up yet
989 sp<IBinder> binder =
990 defaultServiceManager()->checkService(String16("power"));
991 if (binder == 0) {
992 ALOGW("Thread %s cannot connect to the power manager service", mThreadName);
993 } else {
994 mPowerManager = interface_cast<IPowerManager>(binder);
995 binder->linkToDeath(mDeathRecipient);
996 }
997 }
998 }
999
updateWakeLockUids_l(const SortedVector<uid_t> & uids)1000 void AudioFlinger::ThreadBase::updateWakeLockUids_l(const SortedVector<uid_t> &uids) {
1001 getPowerManager_l();
1002
1003 #if !LOG_NDEBUG
1004 std::stringstream s;
1005 for (uid_t uid : uids) {
1006 s << uid << " ";
1007 }
1008 ALOGD("updateWakeLockUids_l %s uids:%s", mThreadName, s.str().c_str());
1009 #endif
1010
1011 if (mWakeLockToken == NULL) { // token may be NULL if AudioFlinger::systemReady() not called.
1012 if (mSystemReady) {
1013 ALOGE("no wake lock to update, but system ready!");
1014 } else {
1015 ALOGW("no wake lock to update, system not ready yet");
1016 }
1017 return;
1018 }
1019 if (mPowerManager != 0) {
1020 std::vector<int> uidsAsInt(uids.begin(), uids.end()); // powermanager expects uids as ints
1021 status_t status = mPowerManager->updateWakeLockUids(
1022 mWakeLockToken, uidsAsInt.size(), uidsAsInt.data(),
1023 true /* FIXME force oneway contrary to .aidl */);
1024 ALOGV("updateWakeLockUids_l() %s status %d", mThreadName, status);
1025 }
1026 }
1027
clearPowerManager()1028 void AudioFlinger::ThreadBase::clearPowerManager()
1029 {
1030 Mutex::Autolock _l(mLock);
1031 releaseWakeLock_l();
1032 mPowerManager.clear();
1033 }
1034
updateOutDevices(const DeviceDescriptorBaseVector & outDevices __unused)1035 void AudioFlinger::ThreadBase::updateOutDevices(
1036 const DeviceDescriptorBaseVector& outDevices __unused)
1037 {
1038 ALOGE("%s should only be called in RecordThread", __func__);
1039 }
1040
binderDied(const wp<IBinder> & who __unused)1041 void AudioFlinger::ThreadBase::PMDeathRecipient::binderDied(const wp<IBinder>& who __unused)
1042 {
1043 sp<ThreadBase> thread = mThread.promote();
1044 if (thread != 0) {
1045 thread->clearPowerManager();
1046 }
1047 ALOGW("power manager service died !!!");
1048 }
1049
setEffectSuspended_l(const effect_uuid_t * type,bool suspend,audio_session_t sessionId)1050 void AudioFlinger::ThreadBase::setEffectSuspended_l(
1051 const effect_uuid_t *type, bool suspend, audio_session_t sessionId)
1052 {
1053 sp<EffectChain> chain = getEffectChain_l(sessionId);
1054 if (chain != 0) {
1055 if (type != NULL) {
1056 chain->setEffectSuspended_l(type, suspend);
1057 } else {
1058 chain->setEffectSuspendedAll_l(suspend);
1059 }
1060 }
1061
1062 updateSuspendedSessions_l(type, suspend, sessionId);
1063 }
1064
checkSuspendOnAddEffectChain_l(const sp<EffectChain> & chain)1065 void AudioFlinger::ThreadBase::checkSuspendOnAddEffectChain_l(const sp<EffectChain>& chain)
1066 {
1067 ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId());
1068 if (index < 0) {
1069 return;
1070 }
1071
1072 const KeyedVector <int, sp<SuspendedSessionDesc> >& sessionEffects =
1073 mSuspendedSessions.valueAt(index);
1074
1075 for (size_t i = 0; i < sessionEffects.size(); i++) {
1076 const sp<SuspendedSessionDesc>& desc = sessionEffects.valueAt(i);
1077 for (int j = 0; j < desc->mRefCount; j++) {
1078 if (sessionEffects.keyAt(i) == EffectChain::kKeyForSuspendAll) {
1079 chain->setEffectSuspendedAll_l(true);
1080 } else {
1081 ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x",
1082 desc->mType.timeLow);
1083 chain->setEffectSuspended_l(&desc->mType, true);
1084 }
1085 }
1086 }
1087 }
1088
updateSuspendedSessions_l(const effect_uuid_t * type,bool suspend,audio_session_t sessionId)1089 void AudioFlinger::ThreadBase::updateSuspendedSessions_l(const effect_uuid_t *type,
1090 bool suspend,
1091 audio_session_t sessionId)
1092 {
1093 ssize_t index = mSuspendedSessions.indexOfKey(sessionId);
1094
1095 KeyedVector <int, sp<SuspendedSessionDesc> > sessionEffects;
1096
1097 if (suspend) {
1098 if (index >= 0) {
1099 sessionEffects = mSuspendedSessions.valueAt(index);
1100 } else {
1101 mSuspendedSessions.add(sessionId, sessionEffects);
1102 }
1103 } else {
1104 if (index < 0) {
1105 return;
1106 }
1107 sessionEffects = mSuspendedSessions.valueAt(index);
1108 }
1109
1110
1111 int key = EffectChain::kKeyForSuspendAll;
1112 if (type != NULL) {
1113 key = type->timeLow;
1114 }
1115 index = sessionEffects.indexOfKey(key);
1116
1117 sp<SuspendedSessionDesc> desc;
1118 if (suspend) {
1119 if (index >= 0) {
1120 desc = sessionEffects.valueAt(index);
1121 } else {
1122 desc = new SuspendedSessionDesc();
1123 if (type != NULL) {
1124 desc->mType = *type;
1125 }
1126 sessionEffects.add(key, desc);
1127 ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key);
1128 }
1129 desc->mRefCount++;
1130 } else {
1131 if (index < 0) {
1132 return;
1133 }
1134 desc = sessionEffects.valueAt(index);
1135 if (--desc->mRefCount == 0) {
1136 ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key);
1137 sessionEffects.removeItemsAt(index);
1138 if (sessionEffects.isEmpty()) {
1139 ALOGV("updateSuspendedSessions_l() restore removing session %d",
1140 sessionId);
1141 mSuspendedSessions.removeItem(sessionId);
1142 }
1143 }
1144 }
1145 if (!sessionEffects.isEmpty()) {
1146 mSuspendedSessions.replaceValueFor(sessionId, sessionEffects);
1147 }
1148 }
1149
checkSuspendOnEffectEnabled(bool enabled,audio_session_t sessionId,bool threadLocked)1150 void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled(bool enabled,
1151 audio_session_t sessionId,
1152 bool threadLocked) {
1153 if (!threadLocked) {
1154 mLock.lock();
1155 }
1156
1157 if (mType != RECORD) {
1158 // suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on
1159 // another session. This gives the priority to well behaved effect control panels
1160 // and applications not using global effects.
1161 // Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect
1162 // global effects
1163 if (!audio_is_global_session(sessionId)) {
1164 setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX);
1165 }
1166 }
1167
1168 if (!threadLocked) {
1169 mLock.unlock();
1170 }
1171 }
1172
1173 // checkEffectCompatibility_l() must be called with ThreadBase::mLock held
checkEffectCompatibility_l(const effect_descriptor_t * desc,audio_session_t sessionId)1174 status_t AudioFlinger::RecordThread::checkEffectCompatibility_l(
1175 const effect_descriptor_t *desc, audio_session_t sessionId)
1176 {
1177 // No global output effect sessions on record threads
1178 if (sessionId == AUDIO_SESSION_OUTPUT_MIX
1179 || sessionId == AUDIO_SESSION_OUTPUT_STAGE) {
1180 ALOGW("checkEffectCompatibility_l(): global effect %s on record thread %s",
1181 desc->name, mThreadName);
1182 return BAD_VALUE;
1183 }
1184 // only pre processing effects on record thread
1185 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_PRE_PROC) {
1186 ALOGW("checkEffectCompatibility_l(): non pre processing effect %s on record thread %s",
1187 desc->name, mThreadName);
1188 return BAD_VALUE;
1189 }
1190
1191 // always allow effects without processing load or latency
1192 if ((desc->flags & EFFECT_FLAG_NO_PROCESS_MASK) == EFFECT_FLAG_NO_PROCESS) {
1193 return NO_ERROR;
1194 }
1195
1196 audio_input_flags_t flags = mInput->flags;
1197 if (hasFastCapture() || (flags & AUDIO_INPUT_FLAG_FAST)) {
1198 if (flags & AUDIO_INPUT_FLAG_RAW) {
1199 ALOGW("checkEffectCompatibility_l(): effect %s on record thread %s in raw mode",
1200 desc->name, mThreadName);
1201 return BAD_VALUE;
1202 }
1203 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1204 ALOGW("checkEffectCompatibility_l(): non HW effect %s on record thread %s in fast mode",
1205 desc->name, mThreadName);
1206 return BAD_VALUE;
1207 }
1208 }
1209 return NO_ERROR;
1210 }
1211
1212 // checkEffectCompatibility_l() must be called with ThreadBase::mLock held
checkEffectCompatibility_l(const effect_descriptor_t * desc,audio_session_t sessionId)1213 status_t AudioFlinger::PlaybackThread::checkEffectCompatibility_l(
1214 const effect_descriptor_t *desc, audio_session_t sessionId)
1215 {
1216 // no preprocessing on playback threads
1217 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC) {
1218 ALOGW("checkEffectCompatibility_l(): pre processing effect %s created on playback"
1219 " thread %s", desc->name, mThreadName);
1220 return BAD_VALUE;
1221 }
1222
1223 // always allow effects without processing load or latency
1224 if ((desc->flags & EFFECT_FLAG_NO_PROCESS_MASK) == EFFECT_FLAG_NO_PROCESS) {
1225 return NO_ERROR;
1226 }
1227
1228 switch (mType) {
1229 case MIXER: {
1230 #ifndef MULTICHANNEL_EFFECT_CHAIN
1231 // Reject any effect on mixer multichannel sinks.
1232 // TODO: fix both format and multichannel issues with effects.
1233 if (mChannelCount != FCC_2) {
1234 ALOGW("checkEffectCompatibility_l(): effect %s for multichannel(%d) on MIXER"
1235 " thread %s", desc->name, mChannelCount, mThreadName);
1236 return BAD_VALUE;
1237 }
1238 #endif
1239 audio_output_flags_t flags = mOutput->flags;
1240 if (hasFastMixer() || (flags & AUDIO_OUTPUT_FLAG_FAST)) {
1241 if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
1242 // global effects are applied only to non fast tracks if they are SW
1243 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1244 break;
1245 }
1246 } else if (sessionId == AUDIO_SESSION_OUTPUT_STAGE) {
1247 // only post processing on output stage session
1248 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_POST_PROC) {
1249 ALOGW("checkEffectCompatibility_l(): non post processing effect %s not allowed"
1250 " on output stage session", desc->name);
1251 return BAD_VALUE;
1252 }
1253 } else if (sessionId == AUDIO_SESSION_DEVICE) {
1254 // only post processing on output stage session
1255 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_POST_PROC) {
1256 ALOGW("checkEffectCompatibility_l(): non post processing effect %s not allowed"
1257 " on device session", desc->name);
1258 return BAD_VALUE;
1259 }
1260 } else {
1261 // no restriction on effects applied on non fast tracks
1262 if ((hasAudioSession_l(sessionId) & ThreadBase::FAST_SESSION) == 0) {
1263 break;
1264 }
1265 }
1266
1267 if (flags & AUDIO_OUTPUT_FLAG_RAW) {
1268 ALOGW("checkEffectCompatibility_l(): effect %s on playback thread in raw mode",
1269 desc->name);
1270 return BAD_VALUE;
1271 }
1272 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) {
1273 ALOGW("checkEffectCompatibility_l(): non HW effect %s on playback thread"
1274 " in fast mode", desc->name);
1275 return BAD_VALUE;
1276 }
1277 }
1278 } break;
1279 case OFFLOAD:
1280 // nothing actionable on offload threads, if the effect:
1281 // - is offloadable: the effect can be created
1282 // - is NOT offloadable: the effect should still be created, but EffectHandle::enable()
1283 // will take care of invalidating the tracks of the thread
1284 break;
1285 case DIRECT:
1286 // Reject any effect on Direct output threads for now, since the format of
1287 // mSinkBuffer is not guaranteed to be compatible with effect processing (PCM 16 stereo).
1288 ALOGW("checkEffectCompatibility_l(): effect %s on DIRECT output thread %s",
1289 desc->name, mThreadName);
1290 return BAD_VALUE;
1291 case DUPLICATING:
1292 #ifndef MULTICHANNEL_EFFECT_CHAIN
1293 // Reject any effect on mixer multichannel sinks.
1294 // TODO: fix both format and multichannel issues with effects.
1295 if (mChannelCount != FCC_2) {
1296 ALOGW("checkEffectCompatibility_l(): effect %s for multichannel(%d)"
1297 " on DUPLICATING thread %s", desc->name, mChannelCount, mThreadName);
1298 return BAD_VALUE;
1299 }
1300 #endif
1301 if (audio_is_global_session(sessionId)) {
1302 ALOGW("checkEffectCompatibility_l(): global effect %s on DUPLICATING"
1303 " thread %s", desc->name, mThreadName);
1304 return BAD_VALUE;
1305 }
1306 if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_POST_PROC) {
1307 ALOGW("checkEffectCompatibility_l(): post processing effect %s on"
1308 " DUPLICATING thread %s", desc->name, mThreadName);
1309 return BAD_VALUE;
1310 }
1311 if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) != 0) {
1312 ALOGW("checkEffectCompatibility_l(): HW tunneled effect %s on"
1313 " DUPLICATING thread %s", desc->name, mThreadName);
1314 return BAD_VALUE;
1315 }
1316 break;
1317 default:
1318 LOG_ALWAYS_FATAL("checkEffectCompatibility_l(): wrong thread type %d", mType);
1319 }
1320
1321 return NO_ERROR;
1322 }
1323
1324 // ThreadBase::createEffect_l() must be called with AudioFlinger::mLock held
createEffect_l(const sp<AudioFlinger::Client> & client,const sp<IEffectClient> & effectClient,int32_t priority,audio_session_t sessionId,effect_descriptor_t * desc,int * enabled,status_t * status,bool pinned)1325 sp<AudioFlinger::EffectHandle> AudioFlinger::ThreadBase::createEffect_l(
1326 const sp<AudioFlinger::Client>& client,
1327 const sp<IEffectClient>& effectClient,
1328 int32_t priority,
1329 audio_session_t sessionId,
1330 effect_descriptor_t *desc,
1331 int *enabled,
1332 status_t *status,
1333 bool pinned)
1334 {
1335 sp<EffectModule> effect;
1336 sp<EffectHandle> handle;
1337 status_t lStatus;
1338 sp<EffectChain> chain;
1339 bool chainCreated = false;
1340 bool effectCreated = false;
1341 audio_unique_id_t effectId = AUDIO_UNIQUE_ID_USE_UNSPECIFIED;
1342
1343 lStatus = initCheck();
1344 if (lStatus != NO_ERROR) {
1345 ALOGW("createEffect_l() Audio driver not initialized.");
1346 goto Exit;
1347 }
1348
1349 ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId);
1350
1351 { // scope for mLock
1352 Mutex::Autolock _l(mLock);
1353
1354 lStatus = checkEffectCompatibility_l(desc, sessionId);
1355 if (lStatus != NO_ERROR) {
1356 goto Exit;
1357 }
1358
1359 // check for existing effect chain with the requested audio session
1360 chain = getEffectChain_l(sessionId);
1361 if (chain == 0) {
1362 // create a new chain for this session
1363 ALOGV("createEffect_l() new effect chain for session %d", sessionId);
1364 chain = new EffectChain(this, sessionId);
1365 addEffectChain_l(chain);
1366 chain->setStrategy(getStrategyForSession_l(sessionId));
1367 chainCreated = true;
1368 } else {
1369 effect = chain->getEffectFromDesc_l(desc);
1370 }
1371
1372 ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get());
1373
1374 if (effect == 0) {
1375 effectId = mAudioFlinger->nextUniqueId(AUDIO_UNIQUE_ID_USE_EFFECT);
1376 // create a new effect module if none present in the chain
1377 lStatus = chain->createEffect_l(effect, desc, effectId, sessionId, pinned);
1378 if (lStatus != NO_ERROR) {
1379 goto Exit;
1380 }
1381 effectCreated = true;
1382
1383 // FIXME: use vector of device and address when effect interface is ready.
1384 effect->setDevices(outDeviceTypeAddrs());
1385 effect->setInputDevice(inDeviceTypeAddr());
1386 effect->setMode(mAudioFlinger->getMode());
1387 effect->setAudioSource(mAudioSource);
1388 }
1389 // create effect handle and connect it to effect module
1390 handle = new EffectHandle(effect, client, effectClient, priority);
1391 lStatus = handle->initCheck();
1392 if (lStatus == OK) {
1393 lStatus = effect->addHandle(handle.get());
1394 }
1395 if (enabled != NULL) {
1396 *enabled = (int)effect->isEnabled();
1397 }
1398 }
1399
1400 Exit:
1401 if (lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) {
1402 Mutex::Autolock _l(mLock);
1403 if (effectCreated) {
1404 chain->removeEffect_l(effect);
1405 }
1406 if (chainCreated) {
1407 removeEffectChain_l(chain);
1408 }
1409 // handle must be cleared by caller to avoid deadlock.
1410 }
1411
1412 *status = lStatus;
1413 return handle;
1414 }
1415
disconnectEffectHandle(EffectHandle * handle,bool unpinIfLast)1416 void AudioFlinger::ThreadBase::disconnectEffectHandle(EffectHandle *handle,
1417 bool unpinIfLast)
1418 {
1419 bool remove = false;
1420 sp<EffectModule> effect;
1421 {
1422 Mutex::Autolock _l(mLock);
1423 sp<EffectBase> effectBase = handle->effect().promote();
1424 if (effectBase == nullptr) {
1425 return;
1426 }
1427 effect = effectBase->asEffectModule();
1428 if (effect == nullptr) {
1429 return;
1430 }
1431 // restore suspended effects if the disconnected handle was enabled and the last one.
1432 remove = (effect->removeHandle(handle) == 0) && (!effect->isPinned() || unpinIfLast);
1433 if (remove) {
1434 removeEffect_l(effect, true);
1435 }
1436 }
1437 if (remove) {
1438 mAudioFlinger->updateOrphanEffectChains(effect);
1439 if (handle->enabled()) {
1440 effect->checkSuspendOnEffectEnabled(false, false /*threadLocked*/);
1441 }
1442 }
1443 }
1444
onEffectEnable(const sp<EffectModule> & effect)1445 void AudioFlinger::ThreadBase::onEffectEnable(const sp<EffectModule>& effect) {
1446 if (mType == OFFLOAD || mType == MMAP) {
1447 Mutex::Autolock _l(mLock);
1448 broadcast_l();
1449 }
1450 if (!effect->isOffloadable()) {
1451 if (mType == ThreadBase::OFFLOAD) {
1452 PlaybackThread *t = (PlaybackThread *)this;
1453 t->invalidateTracks(AUDIO_STREAM_MUSIC);
1454 }
1455 if (effect->sessionId() == AUDIO_SESSION_OUTPUT_MIX) {
1456 mAudioFlinger->onNonOffloadableGlobalEffectEnable();
1457 }
1458 }
1459 }
1460
onEffectDisable()1461 void AudioFlinger::ThreadBase::onEffectDisable() {
1462 if (mType == OFFLOAD || mType == MMAP) {
1463 Mutex::Autolock _l(mLock);
1464 broadcast_l();
1465 }
1466 }
1467
getEffect(audio_session_t sessionId,int effectId)1468 sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect(audio_session_t sessionId,
1469 int effectId)
1470 {
1471 Mutex::Autolock _l(mLock);
1472 return getEffect_l(sessionId, effectId);
1473 }
1474
getEffect_l(audio_session_t sessionId,int effectId)1475 sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect_l(audio_session_t sessionId,
1476 int effectId)
1477 {
1478 sp<EffectChain> chain = getEffectChain_l(sessionId);
1479 return chain != 0 ? chain->getEffectFromId_l(effectId) : 0;
1480 }
1481
getEffectIds_l(audio_session_t sessionId)1482 std::vector<int> AudioFlinger::ThreadBase::getEffectIds_l(audio_session_t sessionId)
1483 {
1484 sp<EffectChain> chain = getEffectChain_l(sessionId);
1485 return chain != nullptr ? chain->getEffectIds() : std::vector<int>{};
1486 }
1487
1488 // PlaybackThread::addEffect_l() must be called with AudioFlinger::mLock and
1489 // PlaybackThread::mLock held
addEffect_l(const sp<EffectModule> & effect)1490 status_t AudioFlinger::ThreadBase::addEffect_l(const sp<EffectModule>& effect)
1491 {
1492 // check for existing effect chain with the requested audio session
1493 audio_session_t sessionId = effect->sessionId();
1494 sp<EffectChain> chain = getEffectChain_l(sessionId);
1495 bool chainCreated = false;
1496
1497 ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(),
1498 "addEffect_l() on offloaded thread %p: effect %s does not support offload flags %#x",
1499 this, effect->desc().name, effect->desc().flags);
1500
1501 if (chain == 0) {
1502 // create a new chain for this session
1503 ALOGV("addEffect_l() new effect chain for session %d", sessionId);
1504 chain = new EffectChain(this, sessionId);
1505 addEffectChain_l(chain);
1506 chain->setStrategy(getStrategyForSession_l(sessionId));
1507 chainCreated = true;
1508 }
1509 ALOGV("addEffect_l() %p chain %p effect %p", this, chain.get(), effect.get());
1510
1511 if (chain->getEffectFromId_l(effect->id()) != 0) {
1512 ALOGW("addEffect_l() %p effect %s already present in chain %p",
1513 this, effect->desc().name, chain.get());
1514 return BAD_VALUE;
1515 }
1516
1517 effect->setOffloaded(mType == OFFLOAD, mId);
1518
1519 status_t status = chain->addEffect_l(effect);
1520 if (status != NO_ERROR) {
1521 if (chainCreated) {
1522 removeEffectChain_l(chain);
1523 }
1524 return status;
1525 }
1526
1527 effect->setDevices(outDeviceTypeAddrs());
1528 effect->setInputDevice(inDeviceTypeAddr());
1529 effect->setMode(mAudioFlinger->getMode());
1530 effect->setAudioSource(mAudioSource);
1531
1532 return NO_ERROR;
1533 }
1534
removeEffect_l(const sp<EffectModule> & effect,bool release)1535 void AudioFlinger::ThreadBase::removeEffect_l(const sp<EffectModule>& effect, bool release) {
1536
1537 ALOGV("%s %p effect %p", __FUNCTION__, this, effect.get());
1538 effect_descriptor_t desc = effect->desc();
1539 if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
1540 detachAuxEffect_l(effect->id());
1541 }
1542
1543 sp<EffectChain> chain = effect->callback()->chain().promote();
1544 if (chain != 0) {
1545 // remove effect chain if removing last effect
1546 if (chain->removeEffect_l(effect, release) == 0) {
1547 removeEffectChain_l(chain);
1548 }
1549 } else {
1550 ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get());
1551 }
1552 }
1553
lockEffectChains_l(Vector<sp<AudioFlinger::EffectChain>> & effectChains)1554 void AudioFlinger::ThreadBase::lockEffectChains_l(
1555 Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1556 {
1557 effectChains = mEffectChains;
1558 for (size_t i = 0; i < mEffectChains.size(); i++) {
1559 mEffectChains[i]->lock();
1560 }
1561 }
1562
unlockEffectChains(const Vector<sp<AudioFlinger::EffectChain>> & effectChains)1563 void AudioFlinger::ThreadBase::unlockEffectChains(
1564 const Vector< sp<AudioFlinger::EffectChain> >& effectChains)
1565 {
1566 for (size_t i = 0; i < effectChains.size(); i++) {
1567 effectChains[i]->unlock();
1568 }
1569 }
1570
getEffectChain(audio_session_t sessionId)1571 sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain(audio_session_t sessionId)
1572 {
1573 Mutex::Autolock _l(mLock);
1574 return getEffectChain_l(sessionId);
1575 }
1576
getEffectChain_l(audio_session_t sessionId) const1577 sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain_l(audio_session_t sessionId)
1578 const
1579 {
1580 size_t size = mEffectChains.size();
1581 for (size_t i = 0; i < size; i++) {
1582 if (mEffectChains[i]->sessionId() == sessionId) {
1583 return mEffectChains[i];
1584 }
1585 }
1586 return 0;
1587 }
1588
setMode(audio_mode_t mode)1589 void AudioFlinger::ThreadBase::setMode(audio_mode_t mode)
1590 {
1591 Mutex::Autolock _l(mLock);
1592 size_t size = mEffectChains.size();
1593 for (size_t i = 0; i < size; i++) {
1594 mEffectChains[i]->setMode_l(mode);
1595 }
1596 }
1597
toAudioPortConfig(struct audio_port_config * config)1598 void AudioFlinger::ThreadBase::toAudioPortConfig(struct audio_port_config *config)
1599 {
1600 config->type = AUDIO_PORT_TYPE_MIX;
1601 config->ext.mix.handle = mId;
1602 config->sample_rate = mSampleRate;
1603 config->format = mFormat;
1604 config->channel_mask = mChannelMask;
1605 config->config_mask = AUDIO_PORT_CONFIG_SAMPLE_RATE|AUDIO_PORT_CONFIG_CHANNEL_MASK|
1606 AUDIO_PORT_CONFIG_FORMAT;
1607 }
1608
systemReady()1609 void AudioFlinger::ThreadBase::systemReady()
1610 {
1611 Mutex::Autolock _l(mLock);
1612 if (mSystemReady) {
1613 return;
1614 }
1615 mSystemReady = true;
1616
1617 for (size_t i = 0; i < mPendingConfigEvents.size(); i++) {
1618 sendConfigEvent_l(mPendingConfigEvents.editItemAt(i));
1619 }
1620 mPendingConfigEvents.clear();
1621 }
1622
1623 template <typename T>
add(const sp<T> & track)1624 ssize_t AudioFlinger::ThreadBase::ActiveTracks<T>::add(const sp<T> &track) {
1625 ssize_t index = mActiveTracks.indexOf(track);
1626 if (index >= 0) {
1627 ALOGW("ActiveTracks<T>::add track %p already there", track.get());
1628 return index;
1629 }
1630 logTrack("add", track);
1631 mActiveTracksGeneration++;
1632 mLatestActiveTrack = track;
1633 ++mBatteryCounter[track->uid()].second;
1634 mHasChanged = true;
1635 return mActiveTracks.add(track);
1636 }
1637
1638 template <typename T>
remove(const sp<T> & track)1639 ssize_t AudioFlinger::ThreadBase::ActiveTracks<T>::remove(const sp<T> &track) {
1640 ssize_t index = mActiveTracks.remove(track);
1641 if (index < 0) {
1642 ALOGW("ActiveTracks<T>::remove nonexistent track %p", track.get());
1643 return index;
1644 }
1645 logTrack("remove", track);
1646 mActiveTracksGeneration++;
1647 --mBatteryCounter[track->uid()].second;
1648 // mLatestActiveTrack is not cleared even if is the same as track.
1649 mHasChanged = true;
1650 #ifdef TEE_SINK
1651 track->dumpTee(-1 /* fd */, "_REMOVE");
1652 #endif
1653 return index;
1654 }
1655
1656 template <typename T>
clear()1657 void AudioFlinger::ThreadBase::ActiveTracks<T>::clear() {
1658 for (const sp<T> &track : mActiveTracks) {
1659 BatteryNotifier::getInstance().noteStopAudio(track->uid());
1660 logTrack("clear", track);
1661 }
1662 mLastActiveTracksGeneration = mActiveTracksGeneration;
1663 if (!mActiveTracks.empty()) { mHasChanged = true; }
1664 mActiveTracks.clear();
1665 mLatestActiveTrack.clear();
1666 mBatteryCounter.clear();
1667 }
1668
1669 template <typename T>
updatePowerState(sp<ThreadBase> thread,bool force)1670 void AudioFlinger::ThreadBase::ActiveTracks<T>::updatePowerState(
1671 sp<ThreadBase> thread, bool force) {
1672 // Updates ActiveTracks client uids to the thread wakelock.
1673 if (mActiveTracksGeneration != mLastActiveTracksGeneration || force) {
1674 thread->updateWakeLockUids_l(getWakeLockUids());
1675 mLastActiveTracksGeneration = mActiveTracksGeneration;
1676 }
1677
1678 // Updates BatteryNotifier uids
1679 for (auto it = mBatteryCounter.begin(); it != mBatteryCounter.end();) {
1680 const uid_t uid = it->first;
1681 ssize_t &previous = it->second.first;
1682 ssize_t ¤t = it->second.second;
1683 if (current > 0) {
1684 if (previous == 0) {
1685 BatteryNotifier::getInstance().noteStartAudio(uid);
1686 }
1687 previous = current;
1688 ++it;
1689 } else if (current == 0) {
1690 if (previous > 0) {
1691 BatteryNotifier::getInstance().noteStopAudio(uid);
1692 }
1693 it = mBatteryCounter.erase(it); // std::map<> is stable on iterator erase.
1694 } else /* (current < 0) */ {
1695 LOG_ALWAYS_FATAL("negative battery count %zd", current);
1696 }
1697 }
1698 }
1699
1700 template <typename T>
readAndClearHasChanged()1701 bool AudioFlinger::ThreadBase::ActiveTracks<T>::readAndClearHasChanged() {
1702 const bool hasChanged = mHasChanged;
1703 mHasChanged = false;
1704 return hasChanged;
1705 }
1706
1707 template <typename T>
logTrack(const char * funcName,const sp<T> & track) const1708 void AudioFlinger::ThreadBase::ActiveTracks<T>::logTrack(
1709 const char *funcName, const sp<T> &track) const {
1710 if (mLocalLog != nullptr) {
1711 String8 result;
1712 track->appendDump(result, false /* active */);
1713 mLocalLog->log("AT::%-10s(%p) %s", funcName, track.get(), result.string());
1714 }
1715 }
1716
broadcast_l()1717 void AudioFlinger::ThreadBase::broadcast_l()
1718 {
1719 // Thread could be blocked waiting for async
1720 // so signal it to handle state changes immediately
1721 // If threadLoop is currently unlocked a signal of mWaitWorkCV will
1722 // be lost so we also flag to prevent it blocking on mWaitWorkCV
1723 mSignalPending = true;
1724 mWaitWorkCV.broadcast();
1725 }
1726
1727 // Call only from threadLoop() or when it is idle.
1728 // Do not call from high performance code as this may do binder rpc to the MediaMetrics service.
sendStatistics(bool force)1729 void AudioFlinger::ThreadBase::sendStatistics(bool force)
1730 {
1731 // Do not log if we have no stats.
1732 // We choose the timestamp verifier because it is the most likely item to be present.
1733 const int64_t nstats = mTimestampVerifier.getN() - mLastRecordedTimestampVerifierN;
1734 if (nstats == 0) {
1735 return;
1736 }
1737
1738 // Don't log more frequently than once per 12 hours.
1739 // We use BOOTTIME to include suspend time.
1740 const int64_t timeNs = systemTime(SYSTEM_TIME_BOOTTIME);
1741 const int64_t sinceNs = timeNs - mLastRecordedTimeNs; // ok if mLastRecordedTimeNs = 0
1742 if (!force && sinceNs <= 12 * NANOS_PER_HOUR) {
1743 return;
1744 }
1745
1746 mLastRecordedTimestampVerifierN = mTimestampVerifier.getN();
1747 mLastRecordedTimeNs = timeNs;
1748
1749 std::unique_ptr<MediaAnalyticsItem> item(MediaAnalyticsItem::create("audiothread"));
1750
1751 #define MM_PREFIX "android.media.audiothread." // avoid cut-n-paste errors.
1752
1753 // thread configuration
1754 item->setInt32(MM_PREFIX "id", (int32_t)mId); // IO handle
1755 // item->setInt32(MM_PREFIX "portId", (int32_t)mPortId);
1756 item->setCString(MM_PREFIX "type", threadTypeToString(mType));
1757 item->setInt32(MM_PREFIX "sampleRate", (int32_t)mSampleRate);
1758 item->setInt64(MM_PREFIX "channelMask", (int64_t)mChannelMask);
1759 item->setCString(MM_PREFIX "encoding", toString(mFormat).c_str());
1760 item->setInt32(MM_PREFIX "frameCount", (int32_t)mFrameCount);
1761 item->setCString(MM_PREFIX "outDevice", toString(outDeviceTypes()).c_str());
1762 item->setCString(MM_PREFIX "inDevice", toString(inDeviceType()).c_str());
1763
1764 // thread statistics
1765 if (mIoJitterMs.getN() > 0) {
1766 item->setDouble(MM_PREFIX "ioJitterMs.mean", mIoJitterMs.getMean());
1767 item->setDouble(MM_PREFIX "ioJitterMs.std", mIoJitterMs.getStdDev());
1768 }
1769 if (mProcessTimeMs.getN() > 0) {
1770 item->setDouble(MM_PREFIX "processTimeMs.mean", mProcessTimeMs.getMean());
1771 item->setDouble(MM_PREFIX "processTimeMs.std", mProcessTimeMs.getStdDev());
1772 }
1773 const auto tsjitter = mTimestampVerifier.getJitterMs();
1774 if (tsjitter.getN() > 0) {
1775 item->setDouble(MM_PREFIX "timestampJitterMs.mean", tsjitter.getMean());
1776 item->setDouble(MM_PREFIX "timestampJitterMs.std", tsjitter.getStdDev());
1777 }
1778 if (mLatencyMs.getN() > 0) {
1779 item->setDouble(MM_PREFIX "latencyMs.mean", mLatencyMs.getMean());
1780 item->setDouble(MM_PREFIX "latencyMs.std", mLatencyMs.getStdDev());
1781 }
1782
1783 item->selfrecord();
1784 }
1785
1786 // ----------------------------------------------------------------------------
1787 // Playback
1788 // ----------------------------------------------------------------------------
1789
PlaybackThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,type_t type,bool systemReady)1790 AudioFlinger::PlaybackThread::PlaybackThread(const sp<AudioFlinger>& audioFlinger,
1791 AudioStreamOut* output,
1792 audio_io_handle_t id,
1793 type_t type,
1794 bool systemReady)
1795 : ThreadBase(audioFlinger, id, type, systemReady),
1796 mNormalFrameCount(0), mSinkBuffer(NULL),
1797 mMixerBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1798 mMixerBuffer(NULL),
1799 mMixerBufferSize(0),
1800 mMixerBufferFormat(AUDIO_FORMAT_INVALID),
1801 mMixerBufferValid(false),
1802 mEffectBufferEnabled(AudioFlinger::kEnableExtendedPrecision),
1803 mEffectBuffer(NULL),
1804 mEffectBufferSize(0),
1805 mEffectBufferFormat(AUDIO_FORMAT_INVALID),
1806 mEffectBufferValid(false),
1807 mSuspended(0), mBytesWritten(0),
1808 mFramesWritten(0),
1809 mSuspendedFrames(0),
1810 mActiveTracks(&this->mLocalLog),
1811 // mStreamTypes[] initialized in constructor body
1812 mTracks(type == MIXER),
1813 mOutput(output),
1814 mNumWrites(0), mNumDelayedWrites(0), mInWrite(false),
1815 mMixerStatus(MIXER_IDLE),
1816 mMixerStatusIgnoringFastTracks(MIXER_IDLE),
1817 mStandbyDelayNs(AudioFlinger::mStandbyTimeInNsecs),
1818 mBytesRemaining(0),
1819 mCurrentWriteLength(0),
1820 mUseAsyncWrite(false),
1821 mWriteAckSequence(0),
1822 mDrainSequence(0),
1823 mScreenState(AudioFlinger::mScreenState),
1824 // index 0 is reserved for normal mixer's submix
1825 mFastTrackAvailMask(((1 << FastMixerState::sMaxFastTracks) - 1) & ~1),
1826 mHwSupportsPause(false), mHwPaused(false), mFlushPending(false),
1827 mLeftVolFloat(-1.0), mRightVolFloat(-1.0)
1828 {
1829 snprintf(mThreadName, kThreadNameLength, "AudioOut_%X", id);
1830 mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
1831
1832 // Assumes constructor is called by AudioFlinger with it's mLock held, but
1833 // it would be safer to explicitly pass initial masterVolume/masterMute as
1834 // parameter.
1835 //
1836 // If the HAL we are using has support for master volume or master mute,
1837 // then do not attenuate or mute during mixing (just leave the volume at 1.0
1838 // and the mute set to false).
1839 mMasterVolume = audioFlinger->masterVolume_l();
1840 mMasterMute = audioFlinger->masterMute_l();
1841 if (mOutput && mOutput->audioHwDev) {
1842 if (mOutput->audioHwDev->canSetMasterVolume()) {
1843 mMasterVolume = 1.0;
1844 }
1845
1846 if (mOutput->audioHwDev->canSetMasterMute()) {
1847 mMasterMute = false;
1848 }
1849 mIsMsdDevice = strcmp(
1850 mOutput->audioHwDev->moduleName(), AUDIO_HARDWARE_MODULE_ID_MSD) == 0;
1851 }
1852
1853 readOutputParameters_l();
1854
1855 // TODO: We may also match on address as well as device type for
1856 // AUDIO_DEVICE_OUT_BUS, AUDIO_DEVICE_OUT_ALL_A2DP, AUDIO_DEVICE_OUT_REMOTE_SUBMIX
1857 if (type == MIXER || type == DIRECT || type == OFFLOAD) {
1858 // TODO: This property should be ensure that only contains one single device type.
1859 mTimestampCorrectedDevice = (audio_devices_t)property_get_int64(
1860 "audio.timestamp.corrected_output_device",
1861 (int64_t)(mIsMsdDevice ? AUDIO_DEVICE_OUT_BUS // turn on by default for MSD
1862 : AUDIO_DEVICE_NONE));
1863 }
1864
1865 // ++ operator does not compile
1866 for (audio_stream_type_t stream = AUDIO_STREAM_MIN; stream < AUDIO_STREAM_FOR_POLICY_CNT;
1867 stream = (audio_stream_type_t) (stream + 1)) {
1868 mStreamTypes[stream].volume = 0.0f;
1869 mStreamTypes[stream].mute = mAudioFlinger->streamMute_l(stream);
1870 }
1871 // Audio patch volume is always max
1872 mStreamTypes[AUDIO_STREAM_PATCH].volume = 1.0f;
1873 mStreamTypes[AUDIO_STREAM_PATCH].mute = false;
1874 }
1875
~PlaybackThread()1876 AudioFlinger::PlaybackThread::~PlaybackThread()
1877 {
1878 mAudioFlinger->unregisterWriter(mNBLogWriter);
1879 free(mSinkBuffer);
1880 free(mMixerBuffer);
1881 free(mEffectBuffer);
1882 }
1883
1884 // Thread virtuals
1885
onFirstRef()1886 void AudioFlinger::PlaybackThread::onFirstRef()
1887 {
1888 run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
1889 }
1890
1891 // ThreadBase virtuals
preExit()1892 void AudioFlinger::PlaybackThread::preExit()
1893 {
1894 ALOGV(" preExit()");
1895 // FIXME this is using hard-coded strings but in the future, this functionality will be
1896 // converted to use audio HAL extensions required to support tunneling
1897 status_t result = mOutput->stream->setParameters(String8("exiting=1"));
1898 ALOGE_IF(result != OK, "Error when setting parameters on exit: %d", result);
1899 }
1900
dumpTracks_l(int fd,const Vector<String16> & args __unused)1901 void AudioFlinger::PlaybackThread::dumpTracks_l(int fd, const Vector<String16>& args __unused)
1902 {
1903 String8 result;
1904
1905 result.appendFormat(" Stream volumes in dB: ");
1906 for (int i = 0; i < AUDIO_STREAM_CNT; ++i) {
1907 const stream_type_t *st = &mStreamTypes[i];
1908 if (i > 0) {
1909 result.appendFormat(", ");
1910 }
1911 result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume));
1912 if (st->mute) {
1913 result.append("M");
1914 }
1915 }
1916 result.append("\n");
1917 write(fd, result.string(), result.length());
1918 result.clear();
1919
1920 // These values are "raw"; they will wrap around. See prepareTracks_l() for a better way.
1921 FastTrackUnderruns underruns = getFastTrackUnderruns(0);
1922 dprintf(fd, " Normal mixer raw underrun counters: partial=%u empty=%u\n",
1923 underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty);
1924
1925 size_t numtracks = mTracks.size();
1926 size_t numactive = mActiveTracks.size();
1927 dprintf(fd, " %zu Tracks", numtracks);
1928 size_t numactiveseen = 0;
1929 const char *prefix = " ";
1930 if (numtracks) {
1931 dprintf(fd, " of which %zu are active\n", numactive);
1932 result.append(prefix);
1933 mTracks[0]->appendDumpHeader(result);
1934 for (size_t i = 0; i < numtracks; ++i) {
1935 sp<Track> track = mTracks[i];
1936 if (track != 0) {
1937 bool active = mActiveTracks.indexOf(track) >= 0;
1938 if (active) {
1939 numactiveseen++;
1940 }
1941 result.append(prefix);
1942 track->appendDump(result, active);
1943 }
1944 }
1945 } else {
1946 result.append("\n");
1947 }
1948 if (numactiveseen != numactive) {
1949 // some tracks in the active list were not in the tracks list
1950 result.append(" The following tracks are in the active list but"
1951 " not in the track list\n");
1952 result.append(prefix);
1953 mActiveTracks[0]->appendDumpHeader(result);
1954 for (size_t i = 0; i < numactive; ++i) {
1955 sp<Track> track = mActiveTracks[i];
1956 if (mTracks.indexOf(track) < 0) {
1957 result.append(prefix);
1958 track->appendDump(result, true /* active */);
1959 }
1960 }
1961 }
1962
1963 write(fd, result.string(), result.size());
1964 }
1965
dumpInternals_l(int fd,const Vector<String16> & args __unused)1966 void AudioFlinger::PlaybackThread::dumpInternals_l(int fd, const Vector<String16>& args __unused)
1967 {
1968 dprintf(fd, " Master mute: %s\n", mMasterMute ? "on" : "off");
1969 if (mHapticChannelMask != AUDIO_CHANNEL_NONE) {
1970 dprintf(fd, " Haptic channel mask: %#x (%s)\n", mHapticChannelMask,
1971 channelMaskToString(mHapticChannelMask, true /* output */).c_str());
1972 }
1973 dprintf(fd, " Normal frame count: %zu\n", mNormalFrameCount);
1974 dprintf(fd, " Total writes: %d\n", mNumWrites);
1975 dprintf(fd, " Delayed writes: %d\n", mNumDelayedWrites);
1976 dprintf(fd, " Blocked in write: %s\n", mInWrite ? "yes" : "no");
1977 dprintf(fd, " Suspend count: %d\n", mSuspended);
1978 dprintf(fd, " Sink buffer : %p\n", mSinkBuffer);
1979 dprintf(fd, " Mixer buffer: %p\n", mMixerBuffer);
1980 dprintf(fd, " Effect buffer: %p\n", mEffectBuffer);
1981 dprintf(fd, " Fast track availMask=%#x\n", mFastTrackAvailMask);
1982 dprintf(fd, " Standby delay ns=%lld\n", (long long)mStandbyDelayNs);
1983 AudioStreamOut *output = mOutput;
1984 audio_output_flags_t flags = output != NULL ? output->flags : AUDIO_OUTPUT_FLAG_NONE;
1985 dprintf(fd, " AudioStreamOut: %p flags %#x (%s)\n",
1986 output, flags, toString(flags).c_str());
1987 dprintf(fd, " Frames written: %lld\n", (long long)mFramesWritten);
1988 dprintf(fd, " Suspended frames: %lld\n", (long long)mSuspendedFrames);
1989 if (mPipeSink.get() != nullptr) {
1990 dprintf(fd, " PipeSink frames written: %lld\n", (long long)mPipeSink->framesWritten());
1991 }
1992 if (output != nullptr) {
1993 dprintf(fd, " Hal stream dump:\n");
1994 (void)output->stream->dump(fd);
1995 }
1996 }
1997
1998 // PlaybackThread::createTrack_l() must be called with AudioFlinger::mLock held
createTrack_l(const sp<AudioFlinger::Client> & client,audio_stream_type_t streamType,const audio_attributes_t & attr,uint32_t * pSampleRate,audio_format_t format,audio_channel_mask_t channelMask,size_t * pFrameCount,size_t * pNotificationFrameCount,uint32_t notificationsPerBuffer,float speed,const sp<IMemory> & sharedBuffer,audio_session_t sessionId,audio_output_flags_t * flags,pid_t creatorPid,pid_t tid,uid_t uid,status_t * status,audio_port_handle_t portId)1999 sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l(
2000 const sp<AudioFlinger::Client>& client,
2001 audio_stream_type_t streamType,
2002 const audio_attributes_t& attr,
2003 uint32_t *pSampleRate,
2004 audio_format_t format,
2005 audio_channel_mask_t channelMask,
2006 size_t *pFrameCount,
2007 size_t *pNotificationFrameCount,
2008 uint32_t notificationsPerBuffer,
2009 float speed,
2010 const sp<IMemory>& sharedBuffer,
2011 audio_session_t sessionId,
2012 audio_output_flags_t *flags,
2013 pid_t creatorPid,
2014 pid_t tid,
2015 uid_t uid,
2016 status_t *status,
2017 audio_port_handle_t portId)
2018 {
2019 size_t frameCount = *pFrameCount;
2020 size_t notificationFrameCount = *pNotificationFrameCount;
2021 sp<Track> track;
2022 status_t lStatus;
2023 audio_output_flags_t outputFlags = mOutput->flags;
2024 audio_output_flags_t requestedFlags = *flags;
2025 uint32_t sampleRate;
2026
2027 if (sharedBuffer != 0 && checkIMemory(sharedBuffer) != NO_ERROR) {
2028 lStatus = BAD_VALUE;
2029 goto Exit;
2030 }
2031
2032 if (*pSampleRate == 0) {
2033 *pSampleRate = mSampleRate;
2034 }
2035 sampleRate = *pSampleRate;
2036
2037 // special case for FAST flag considered OK if fast mixer is present
2038 if (hasFastMixer()) {
2039 outputFlags = (audio_output_flags_t)(outputFlags | AUDIO_OUTPUT_FLAG_FAST);
2040 }
2041
2042 // Check if requested flags are compatible with output stream flags
2043 if ((*flags & outputFlags) != *flags) {
2044 ALOGW("createTrack_l(): mismatch between requested flags (%08x) and output flags (%08x)",
2045 *flags, outputFlags);
2046 *flags = (audio_output_flags_t)(*flags & outputFlags);
2047 }
2048
2049 // client expresses a preference for FAST, but we get the final say
2050 if (*flags & AUDIO_OUTPUT_FLAG_FAST) {
2051 if (
2052 // PCM data
2053 audio_is_linear_pcm(format) &&
2054 // TODO: extract as a data library function that checks that a computationally
2055 // expensive downmixer is not required: isFastOutputChannelConversion()
2056 (channelMask == (mChannelMask | mHapticChannelMask) ||
2057 mChannelMask != AUDIO_CHANNEL_OUT_STEREO ||
2058 (channelMask == AUDIO_CHANNEL_OUT_MONO
2059 /* && mChannelMask == AUDIO_CHANNEL_OUT_STEREO */)) &&
2060 // hardware sample rate
2061 (sampleRate == mSampleRate) &&
2062 // normal mixer has an associated fast mixer
2063 hasFastMixer() &&
2064 // there are sufficient fast track slots available
2065 (mFastTrackAvailMask != 0)
2066 // FIXME test that MixerThread for this fast track has a capable output HAL
2067 // FIXME add a permission test also?
2068 ) {
2069 // static tracks can have any nonzero framecount, streaming tracks check against minimum.
2070 if (sharedBuffer == 0) {
2071 // read the fast track multiplier property the first time it is needed
2072 int ok = pthread_once(&sFastTrackMultiplierOnce, sFastTrackMultiplierInit);
2073 if (ok != 0) {
2074 ALOGE("%s pthread_once failed: %d", __func__, ok);
2075 }
2076 frameCount = max(frameCount, mFrameCount * sFastTrackMultiplier); // incl framecount 0
2077 }
2078
2079 // check compatibility with audio effects.
2080 { // scope for mLock
2081 Mutex::Autolock _l(mLock);
2082 for (audio_session_t session : {
2083 AUDIO_SESSION_DEVICE,
2084 AUDIO_SESSION_OUTPUT_STAGE,
2085 AUDIO_SESSION_OUTPUT_MIX,
2086 sessionId,
2087 }) {
2088 sp<EffectChain> chain = getEffectChain_l(session);
2089 if (chain.get() != nullptr) {
2090 audio_output_flags_t old = *flags;
2091 chain->checkOutputFlagCompatibility(flags);
2092 if (old != *flags) {
2093 ALOGV("AUDIO_OUTPUT_FLAGS denied by effect, session=%d old=%#x new=%#x",
2094 (int)session, (int)old, (int)*flags);
2095 }
2096 }
2097 }
2098 }
2099 ALOGV_IF((*flags & AUDIO_OUTPUT_FLAG_FAST) != 0,
2100 "AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
2101 frameCount, mFrameCount);
2102 } else {
2103 ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: sharedBuffer=%p frameCount=%zu "
2104 "mFrameCount=%zu format=%#x mFormat=%#x isLinear=%d channelMask=%#x "
2105 "sampleRate=%u mSampleRate=%u "
2106 "hasFastMixer=%d tid=%d fastTrackAvailMask=%#x",
2107 sharedBuffer.get(), frameCount, mFrameCount, format, mFormat,
2108 audio_is_linear_pcm(format),
2109 channelMask, sampleRate, mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask);
2110 *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_FAST);
2111 }
2112 }
2113
2114 if (!audio_has_proportional_frames(format)) {
2115 if (sharedBuffer != 0) {
2116 // Same comment as below about ignoring frameCount parameter for set()
2117 frameCount = sharedBuffer->size();
2118 } else if (frameCount == 0) {
2119 frameCount = mNormalFrameCount;
2120 }
2121 if (notificationFrameCount != frameCount) {
2122 notificationFrameCount = frameCount;
2123 }
2124 } else if (sharedBuffer != 0) {
2125 // FIXME: Ensure client side memory buffers need
2126 // not have additional alignment beyond sample
2127 // (e.g. 16 bit stereo accessed as 32 bit frame).
2128 size_t alignment = audio_bytes_per_sample(format);
2129 if (alignment & 1) {
2130 // for AUDIO_FORMAT_PCM_24_BIT_PACKED (not exposed through Java).
2131 alignment = 1;
2132 }
2133 uint32_t channelCount = audio_channel_count_from_out_mask(channelMask);
2134 size_t frameSize = channelCount * audio_bytes_per_sample(format);
2135 if (channelCount > 1) {
2136 // More than 2 channels does not require stronger alignment than stereo
2137 alignment <<= 1;
2138 }
2139 if (((uintptr_t)sharedBuffer->pointer() & (alignment - 1)) != 0) {
2140 ALOGE("Invalid buffer alignment: address %p, channel count %u",
2141 sharedBuffer->pointer(), channelCount);
2142 lStatus = BAD_VALUE;
2143 goto Exit;
2144 }
2145
2146 // When initializing a shared buffer AudioTrack via constructors,
2147 // there's no frameCount parameter.
2148 // But when initializing a shared buffer AudioTrack via set(),
2149 // there _is_ a frameCount parameter. We silently ignore it.
2150 frameCount = sharedBuffer->size() / frameSize;
2151 } else {
2152 size_t minFrameCount = 0;
2153 // For fast tracks we try to respect the application's request for notifications per buffer.
2154 if (*flags & AUDIO_OUTPUT_FLAG_FAST) {
2155 if (notificationsPerBuffer > 0) {
2156 // Avoid possible arithmetic overflow during multiplication.
2157 if (notificationsPerBuffer > SIZE_MAX / mFrameCount) {
2158 ALOGE("Requested notificationPerBuffer=%u ignored for HAL frameCount=%zu",
2159 notificationsPerBuffer, mFrameCount);
2160 } else {
2161 minFrameCount = mFrameCount * notificationsPerBuffer;
2162 }
2163 }
2164 } else {
2165 // For normal PCM streaming tracks, update minimum frame count.
2166 // Buffer depth is forced to be at least 2 x the normal mixer frame count and
2167 // cover audio hardware latency.
2168 // This is probably too conservative, but legacy application code may depend on it.
2169 // If you change this calculation, also review the start threshold which is related.
2170 uint32_t latencyMs = latency_l();
2171 if (latencyMs == 0) {
2172 ALOGE("Error when retrieving output stream latency");
2173 lStatus = UNKNOWN_ERROR;
2174 goto Exit;
2175 }
2176
2177 minFrameCount = AudioSystem::calculateMinFrameCount(latencyMs, mNormalFrameCount,
2178 mSampleRate, sampleRate, speed /*, 0 mNotificationsPerBufferReq*/);
2179
2180 }
2181 if (frameCount < minFrameCount) {
2182 frameCount = minFrameCount;
2183 }
2184 }
2185
2186 // Make sure that application is notified with sufficient margin before underrun.
2187 // The client can divide the AudioTrack buffer into sub-buffers,
2188 // and expresses its desire to server as the notification frame count.
2189 if (sharedBuffer == 0 && audio_is_linear_pcm(format)) {
2190 size_t maxNotificationFrames;
2191 if (*flags & AUDIO_OUTPUT_FLAG_FAST) {
2192 // notify every HAL buffer, regardless of the size of the track buffer
2193 maxNotificationFrames = mFrameCount;
2194 } else {
2195 // Triple buffer the notification period for a triple buffered mixer period;
2196 // otherwise, double buffering for the notification period is fine.
2197 //
2198 // TODO: This should be moved to AudioTrack to modify the notification period
2199 // on AudioTrack::setBufferSizeInFrames() changes.
2200 const int nBuffering =
2201 (uint64_t{frameCount} * mSampleRate)
2202 / (uint64_t{mNormalFrameCount} * sampleRate) == 3 ? 3 : 2;
2203
2204 maxNotificationFrames = frameCount / nBuffering;
2205 // If client requested a fast track but this was denied, then use the smaller maximum.
2206 if (requestedFlags & AUDIO_OUTPUT_FLAG_FAST) {
2207 size_t maxNotificationFramesFastDenied = FMS_20 * sampleRate / 1000;
2208 if (maxNotificationFrames > maxNotificationFramesFastDenied) {
2209 maxNotificationFrames = maxNotificationFramesFastDenied;
2210 }
2211 }
2212 }
2213 if (notificationFrameCount == 0 || notificationFrameCount > maxNotificationFrames) {
2214 if (notificationFrameCount == 0) {
2215 ALOGD("Client defaulted notificationFrames to %zu for frameCount %zu",
2216 maxNotificationFrames, frameCount);
2217 } else {
2218 ALOGW("Client adjusted notificationFrames from %zu to %zu for frameCount %zu",
2219 notificationFrameCount, maxNotificationFrames, frameCount);
2220 }
2221 notificationFrameCount = maxNotificationFrames;
2222 }
2223 }
2224
2225 *pFrameCount = frameCount;
2226 *pNotificationFrameCount = notificationFrameCount;
2227
2228 switch (mType) {
2229
2230 case DIRECT:
2231 if (audio_is_linear_pcm(format)) { // TODO maybe use audio_has_proportional_frames()?
2232 if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
2233 ALOGE("createTrack_l() Bad parameter: sampleRate %u format %#x, channelMask 0x%08x "
2234 "for output %p with format %#x",
2235 sampleRate, format, channelMask, mOutput, mFormat);
2236 lStatus = BAD_VALUE;
2237 goto Exit;
2238 }
2239 }
2240 break;
2241
2242 case OFFLOAD:
2243 if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
2244 ALOGE("createTrack_l() Bad parameter: sampleRate %d format %#x, channelMask 0x%08x \""
2245 "for output %p with format %#x",
2246 sampleRate, format, channelMask, mOutput, mFormat);
2247 lStatus = BAD_VALUE;
2248 goto Exit;
2249 }
2250 break;
2251
2252 default:
2253 if (!audio_is_linear_pcm(format)) {
2254 ALOGE("createTrack_l() Bad parameter: format %#x \""
2255 "for output %p with format %#x",
2256 format, mOutput, mFormat);
2257 lStatus = BAD_VALUE;
2258 goto Exit;
2259 }
2260 if (sampleRate > mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) {
2261 ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate);
2262 lStatus = BAD_VALUE;
2263 goto Exit;
2264 }
2265 break;
2266
2267 }
2268
2269 lStatus = initCheck();
2270 if (lStatus != NO_ERROR) {
2271 ALOGE("createTrack_l() audio driver not initialized");
2272 goto Exit;
2273 }
2274
2275 { // scope for mLock
2276 Mutex::Autolock _l(mLock);
2277
2278 // all tracks in same audio session must share the same routing strategy otherwise
2279 // conflicts will happen when tracks are moved from one output to another by audio policy
2280 // manager
2281 uint32_t strategy = AudioSystem::getStrategyForStream(streamType);
2282 for (size_t i = 0; i < mTracks.size(); ++i) {
2283 sp<Track> t = mTracks[i];
2284 if (t != 0 && t->isExternalTrack()) {
2285 uint32_t actual = AudioSystem::getStrategyForStream(t->streamType());
2286 if (sessionId == t->sessionId() && strategy != actual) {
2287 ALOGE("createTrack_l() mismatched strategy; expected %u but found %u",
2288 strategy, actual);
2289 lStatus = BAD_VALUE;
2290 goto Exit;
2291 }
2292 }
2293 }
2294
2295 track = new Track(this, client, streamType, attr, sampleRate, format,
2296 channelMask, frameCount,
2297 nullptr /* buffer */, (size_t)0 /* bufferSize */, sharedBuffer,
2298 sessionId, creatorPid, uid, *flags, TrackBase::TYPE_DEFAULT, portId);
2299
2300 lStatus = track != 0 ? track->initCheck() : (status_t) NO_MEMORY;
2301 if (lStatus != NO_ERROR) {
2302 ALOGE("createTrack_l() initCheck failed %d; no control block?", lStatus);
2303 // track must be cleared from the caller as the caller has the AF lock
2304 goto Exit;
2305 }
2306 mTracks.add(track);
2307
2308 sp<EffectChain> chain = getEffectChain_l(sessionId);
2309 if (chain != 0) {
2310 ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer());
2311 track->setMainBuffer(chain->inBuffer());
2312 chain->setStrategy(AudioSystem::getStrategyForStream(track->streamType()));
2313 chain->incTrackCnt();
2314 }
2315
2316 if ((*flags & AUDIO_OUTPUT_FLAG_FAST) && (tid != -1)) {
2317 pid_t callingPid = IPCThreadState::self()->getCallingPid();
2318 // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
2319 // so ask activity manager to do this on our behalf
2320 sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp, true /*forApp*/);
2321 }
2322 }
2323
2324 lStatus = NO_ERROR;
2325
2326 Exit:
2327 *status = lStatus;
2328 return track;
2329 }
2330
2331 template<typename T>
remove(const sp<T> & track)2332 ssize_t AudioFlinger::PlaybackThread::Tracks<T>::remove(const sp<T> &track)
2333 {
2334 const int trackId = track->id();
2335 const ssize_t index = mTracks.remove(track);
2336 if (index >= 0) {
2337 if (mSaveDeletedTrackIds) {
2338 // We can't directly access mAudioMixer since the caller may be outside of threadLoop.
2339 // Instead, we add to mDeletedTrackIds which is solely used for mAudioMixer update,
2340 // to be handled when MixerThread::prepareTracks_l() next changes mAudioMixer.
2341 mDeletedTrackIds.emplace(trackId);
2342 }
2343 }
2344 return index;
2345 }
2346
correctLatency_l(uint32_t latency) const2347 uint32_t AudioFlinger::PlaybackThread::correctLatency_l(uint32_t latency) const
2348 {
2349 return latency;
2350 }
2351
latency() const2352 uint32_t AudioFlinger::PlaybackThread::latency() const
2353 {
2354 Mutex::Autolock _l(mLock);
2355 return latency_l();
2356 }
latency_l() const2357 uint32_t AudioFlinger::PlaybackThread::latency_l() const
2358 {
2359 uint32_t latency;
2360 if (initCheck() == NO_ERROR && mOutput->stream->getLatency(&latency) == OK) {
2361 return correctLatency_l(latency);
2362 }
2363 return 0;
2364 }
2365
setMasterVolume(float value)2366 void AudioFlinger::PlaybackThread::setMasterVolume(float value)
2367 {
2368 Mutex::Autolock _l(mLock);
2369 // Don't apply master volume in SW if our HAL can do it for us.
2370 if (mOutput && mOutput->audioHwDev &&
2371 mOutput->audioHwDev->canSetMasterVolume()) {
2372 mMasterVolume = 1.0;
2373 } else {
2374 mMasterVolume = value;
2375 }
2376 }
2377
setMasterBalance(float balance)2378 void AudioFlinger::PlaybackThread::setMasterBalance(float balance)
2379 {
2380 mMasterBalance.store(balance);
2381 }
2382
setMasterMute(bool muted)2383 void AudioFlinger::PlaybackThread::setMasterMute(bool muted)
2384 {
2385 if (isDuplicating()) {
2386 return;
2387 }
2388 Mutex::Autolock _l(mLock);
2389 // Don't apply master mute in SW if our HAL can do it for us.
2390 if (mOutput && mOutput->audioHwDev &&
2391 mOutput->audioHwDev->canSetMasterMute()) {
2392 mMasterMute = false;
2393 } else {
2394 mMasterMute = muted;
2395 }
2396 }
2397
setStreamVolume(audio_stream_type_t stream,float value)2398 void AudioFlinger::PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
2399 {
2400 Mutex::Autolock _l(mLock);
2401 mStreamTypes[stream].volume = value;
2402 broadcast_l();
2403 }
2404
setStreamMute(audio_stream_type_t stream,bool muted)2405 void AudioFlinger::PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
2406 {
2407 Mutex::Autolock _l(mLock);
2408 mStreamTypes[stream].mute = muted;
2409 broadcast_l();
2410 }
2411
streamVolume(audio_stream_type_t stream) const2412 float AudioFlinger::PlaybackThread::streamVolume(audio_stream_type_t stream) const
2413 {
2414 Mutex::Autolock _l(mLock);
2415 return mStreamTypes[stream].volume;
2416 }
2417
setVolumeForOutput_l(float left,float right) const2418 void AudioFlinger::PlaybackThread::setVolumeForOutput_l(float left, float right) const
2419 {
2420 mOutput->stream->setVolume(left, right);
2421 }
2422
2423 // addTrack_l() must be called with ThreadBase::mLock held
addTrack_l(const sp<Track> & track)2424 status_t AudioFlinger::PlaybackThread::addTrack_l(const sp<Track>& track)
2425 {
2426 status_t status = ALREADY_EXISTS;
2427
2428 if (mActiveTracks.indexOf(track) < 0) {
2429 // the track is newly added, make sure it fills up all its
2430 // buffers before playing. This is to ensure the client will
2431 // effectively get the latency it requested.
2432 if (track->isExternalTrack()) {
2433 TrackBase::track_state state = track->mState;
2434 mLock.unlock();
2435 status = AudioSystem::startOutput(track->portId());
2436 mLock.lock();
2437 // abort track was stopped/paused while we released the lock
2438 if (state != track->mState) {
2439 if (status == NO_ERROR) {
2440 mLock.unlock();
2441 AudioSystem::stopOutput(track->portId());
2442 mLock.lock();
2443 }
2444 return INVALID_OPERATION;
2445 }
2446 // abort if start is rejected by audio policy manager
2447 if (status != NO_ERROR) {
2448 return PERMISSION_DENIED;
2449 }
2450 #ifdef ADD_BATTERY_DATA
2451 // to track the speaker usage
2452 addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart);
2453 #endif
2454 sendIoConfigEvent_l(AUDIO_CLIENT_STARTED, track->creatorPid(), track->portId());
2455 }
2456
2457 // set retry count for buffer fill
2458 if (track->isOffloaded()) {
2459 if (track->isStopping_1()) {
2460 track->mRetryCount = kMaxTrackStopRetriesOffload;
2461 } else {
2462 track->mRetryCount = kMaxTrackStartupRetriesOffload;
2463 }
2464 track->mFillingUpStatus = mStandby ? Track::FS_FILLING : Track::FS_FILLED;
2465 } else {
2466 track->mRetryCount = kMaxTrackStartupRetries;
2467 track->mFillingUpStatus =
2468 track->sharedBuffer() != 0 ? Track::FS_FILLED : Track::FS_FILLING;
2469 }
2470
2471 if ((track->channelMask() & AUDIO_CHANNEL_HAPTIC_ALL) != AUDIO_CHANNEL_NONE
2472 && mHapticChannelMask != AUDIO_CHANNEL_NONE) {
2473 // Unlock due to VibratorService will lock for this call and will
2474 // call Tracks.mute/unmute which also require thread's lock.
2475 mLock.unlock();
2476 const int intensity = AudioFlinger::onExternalVibrationStart(
2477 track->getExternalVibration());
2478 mLock.lock();
2479 track->setHapticIntensity(static_cast<AudioMixer::haptic_intensity_t>(intensity));
2480 // Haptic playback should be enabled by vibrator service.
2481 if (track->getHapticPlaybackEnabled()) {
2482 // Disable haptic playback of all active track to ensure only
2483 // one track playing haptic if current track should play haptic.
2484 for (const auto &t : mActiveTracks) {
2485 t->setHapticPlaybackEnabled(false);
2486 }
2487 }
2488 }
2489
2490 track->mResetDone = false;
2491 track->mPresentationCompleteFrames = 0;
2492 mActiveTracks.add(track);
2493 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2494 if (chain != 0) {
2495 ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(),
2496 track->sessionId());
2497 chain->incActiveTrackCnt();
2498 }
2499
2500 status = NO_ERROR;
2501 }
2502
2503 onAddNewTrack_l();
2504 return status;
2505 }
2506
destroyTrack_l(const sp<Track> & track)2507 bool AudioFlinger::PlaybackThread::destroyTrack_l(const sp<Track>& track)
2508 {
2509 track->terminate();
2510 // active tracks are removed by threadLoop()
2511 bool trackActive = (mActiveTracks.indexOf(track) >= 0);
2512 track->mState = TrackBase::STOPPED;
2513 if (!trackActive) {
2514 removeTrack_l(track);
2515 } else if (track->isFastTrack() || track->isOffloaded() || track->isDirect()) {
2516 track->mState = TrackBase::STOPPING_1;
2517 }
2518
2519 return trackActive;
2520 }
2521
removeTrack_l(const sp<Track> & track)2522 void AudioFlinger::PlaybackThread::removeTrack_l(const sp<Track>& track)
2523 {
2524 track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE);
2525
2526 String8 result;
2527 track->appendDump(result, false /* active */);
2528 mLocalLog.log("removeTrack_l (%p) %s", track.get(), result.string());
2529
2530 mTracks.remove(track);
2531 if (track->isFastTrack()) {
2532 int index = track->mFastIndex;
2533 ALOG_ASSERT(0 < index && index < (int)FastMixerState::sMaxFastTracks);
2534 ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index)));
2535 mFastTrackAvailMask |= 1 << index;
2536 // redundant as track is about to be destroyed, for dumpsys only
2537 track->mFastIndex = -1;
2538 }
2539 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2540 if (chain != 0) {
2541 chain->decTrackCnt();
2542 }
2543 }
2544
getParameters(const String8 & keys)2545 String8 AudioFlinger::PlaybackThread::getParameters(const String8& keys)
2546 {
2547 Mutex::Autolock _l(mLock);
2548 String8 out_s8;
2549 if (initCheck() == NO_ERROR && mOutput->stream->getParameters(keys, &out_s8) == OK) {
2550 return out_s8;
2551 }
2552 return String8();
2553 }
2554
selectPresentation(int presentationId,int programId)2555 status_t AudioFlinger::DirectOutputThread::selectPresentation(int presentationId, int programId) {
2556 Mutex::Autolock _l(mLock);
2557 if (mOutput == nullptr || mOutput->stream == nullptr) {
2558 return NO_INIT;
2559 }
2560 return mOutput->stream->selectPresentation(presentationId, programId);
2561 }
2562
ioConfigChanged(audio_io_config_event event,pid_t pid,audio_port_handle_t portId)2563 void AudioFlinger::PlaybackThread::ioConfigChanged(audio_io_config_event event, pid_t pid,
2564 audio_port_handle_t portId) {
2565 sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
2566 ALOGV("PlaybackThread::ioConfigChanged, thread %p, event %d", this, event);
2567
2568 desc->mIoHandle = mId;
2569
2570 switch (event) {
2571 case AUDIO_OUTPUT_OPENED:
2572 case AUDIO_OUTPUT_REGISTERED:
2573 case AUDIO_OUTPUT_CONFIG_CHANGED:
2574 desc->mPatch = mPatch;
2575 desc->mChannelMask = mChannelMask;
2576 desc->mSamplingRate = mSampleRate;
2577 desc->mFormat = mFormat;
2578 desc->mFrameCount = mNormalFrameCount; // FIXME see
2579 // AudioFlinger::frameCount(audio_io_handle_t)
2580 desc->mFrameCountHAL = mFrameCount;
2581 desc->mLatency = latency_l();
2582 break;
2583 case AUDIO_CLIENT_STARTED:
2584 desc->mPatch = mPatch;
2585 desc->mPortId = portId;
2586 break;
2587 case AUDIO_OUTPUT_CLOSED:
2588 default:
2589 break;
2590 }
2591 mAudioFlinger->ioConfigChanged(event, desc, pid);
2592 }
2593
onWriteReady()2594 void AudioFlinger::PlaybackThread::onWriteReady()
2595 {
2596 mCallbackThread->resetWriteBlocked();
2597 }
2598
onDrainReady()2599 void AudioFlinger::PlaybackThread::onDrainReady()
2600 {
2601 mCallbackThread->resetDraining();
2602 }
2603
onError()2604 void AudioFlinger::PlaybackThread::onError()
2605 {
2606 mCallbackThread->setAsyncError();
2607 }
2608
resetWriteBlocked(uint32_t sequence)2609 void AudioFlinger::PlaybackThread::resetWriteBlocked(uint32_t sequence)
2610 {
2611 Mutex::Autolock _l(mLock);
2612 // reject out of sequence requests
2613 if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) {
2614 mWriteAckSequence &= ~1;
2615 mWaitWorkCV.signal();
2616 }
2617 }
2618
resetDraining(uint32_t sequence)2619 void AudioFlinger::PlaybackThread::resetDraining(uint32_t sequence)
2620 {
2621 Mutex::Autolock _l(mLock);
2622 // reject out of sequence requests
2623 if ((mDrainSequence & 1) && (sequence == mDrainSequence)) {
2624 // Register discontinuity when HW drain is completed because that can cause
2625 // the timestamp frame position to reset to 0 for direct and offload threads.
2626 // (Out of sequence requests are ignored, since the discontinuity would be handled
2627 // elsewhere, e.g. in flush).
2628 mTimestampVerifier.discontinuity();
2629 mDrainSequence &= ~1;
2630 mWaitWorkCV.signal();
2631 }
2632 }
2633
readOutputParameters_l()2634 void AudioFlinger::PlaybackThread::readOutputParameters_l()
2635 {
2636 // unfortunately we have no way of recovering from errors here, hence the LOG_ALWAYS_FATAL
2637 mSampleRate = mOutput->getSampleRate();
2638 mChannelMask = mOutput->getChannelMask();
2639 if (!audio_is_output_channel(mChannelMask)) {
2640 LOG_ALWAYS_FATAL("HAL channel mask %#x not valid for output", mChannelMask);
2641 }
2642 if ((mType == MIXER || mType == DUPLICATING)
2643 && !isValidPcmSinkChannelMask(mChannelMask)) {
2644 LOG_ALWAYS_FATAL("HAL channel mask %#x not supported for mixed output",
2645 mChannelMask);
2646 }
2647 mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
2648 mBalance.setChannelMask(mChannelMask);
2649
2650 // Get actual HAL format.
2651 status_t result = mOutput->stream->getFormat(&mHALFormat);
2652 LOG_ALWAYS_FATAL_IF(result != OK, "Error when retrieving output stream format: %d", result);
2653 // Get format from the shim, which will be different than the HAL format
2654 // if playing compressed audio over HDMI passthrough.
2655 mFormat = mOutput->getFormat();
2656 if (!audio_is_valid_format(mFormat)) {
2657 LOG_ALWAYS_FATAL("HAL format %#x not valid for output", mFormat);
2658 }
2659 if ((mType == MIXER || mType == DUPLICATING)
2660 && !isValidPcmSinkFormat(mFormat)) {
2661 LOG_FATAL("HAL format %#x not supported for mixed output",
2662 mFormat);
2663 }
2664 mFrameSize = mOutput->getFrameSize();
2665 result = mOutput->stream->getBufferSize(&mBufferSize);
2666 LOG_ALWAYS_FATAL_IF(result != OK,
2667 "Error when retrieving output stream buffer size: %d", result);
2668 mFrameCount = mBufferSize / mFrameSize;
2669 if (mFrameCount & 15) {
2670 ALOGW("HAL output buffer size is %zu frames but AudioMixer requires multiples of 16 frames",
2671 mFrameCount);
2672 }
2673
2674 if (mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING) {
2675 if (mOutput->stream->setCallback(this) == OK) {
2676 mUseAsyncWrite = true;
2677 mCallbackThread = new AudioFlinger::AsyncCallbackThread(this);
2678 }
2679 }
2680
2681 mHwSupportsPause = false;
2682 if (mOutput->flags & AUDIO_OUTPUT_FLAG_DIRECT) {
2683 bool supportsPause = false, supportsResume = false;
2684 if (mOutput->stream->supportsPauseAndResume(&supportsPause, &supportsResume) == OK) {
2685 if (supportsPause && supportsResume) {
2686 mHwSupportsPause = true;
2687 } else if (supportsPause) {
2688 ALOGW("direct output implements pause but not resume");
2689 } else if (supportsResume) {
2690 ALOGW("direct output implements resume but not pause");
2691 }
2692 }
2693 }
2694 if (!mHwSupportsPause && mOutput->flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) {
2695 LOG_ALWAYS_FATAL("HW_AV_SYNC requested but HAL does not implement pause and resume");
2696 }
2697
2698 if (mType == DUPLICATING && mMixerBufferEnabled && mEffectBufferEnabled) {
2699 // For best precision, we use float instead of the associated output
2700 // device format (typically PCM 16 bit).
2701
2702 mFormat = AUDIO_FORMAT_PCM_FLOAT;
2703 mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat);
2704 mBufferSize = mFrameSize * mFrameCount;
2705
2706 // TODO: We currently use the associated output device channel mask and sample rate.
2707 // (1) Perhaps use the ORed channel mask of all downstream MixerThreads
2708 // (if a valid mask) to avoid premature downmix.
2709 // (2) Perhaps use the maximum sample rate of all downstream MixerThreads
2710 // instead of the output device sample rate to avoid loss of high frequency information.
2711 // This may need to be updated as MixerThread/OutputTracks are added and not here.
2712 }
2713
2714 // Calculate size of normal sink buffer relative to the HAL output buffer size
2715 double multiplier = 1.0;
2716 if (mType == MIXER && (kUseFastMixer == FastMixer_Static ||
2717 kUseFastMixer == FastMixer_Dynamic)) {
2718 size_t minNormalFrameCount = (kMinNormalSinkBufferSizeMs * mSampleRate) / 1000;
2719 size_t maxNormalFrameCount = (kMaxNormalSinkBufferSizeMs * mSampleRate) / 1000;
2720
2721 // round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer
2722 minNormalFrameCount = (minNormalFrameCount + 15) & ~15;
2723 maxNormalFrameCount = maxNormalFrameCount & ~15;
2724 if (maxNormalFrameCount < minNormalFrameCount) {
2725 maxNormalFrameCount = minNormalFrameCount;
2726 }
2727 multiplier = (double) minNormalFrameCount / (double) mFrameCount;
2728 if (multiplier <= 1.0) {
2729 multiplier = 1.0;
2730 } else if (multiplier <= 2.0) {
2731 if (2 * mFrameCount <= maxNormalFrameCount) {
2732 multiplier = 2.0;
2733 } else {
2734 multiplier = (double) maxNormalFrameCount / (double) mFrameCount;
2735 }
2736 } else {
2737 multiplier = floor(multiplier);
2738 }
2739 }
2740 mNormalFrameCount = multiplier * mFrameCount;
2741 // round up to nearest 16 frames to satisfy AudioMixer
2742 if (mType == MIXER || mType == DUPLICATING) {
2743 mNormalFrameCount = (mNormalFrameCount + 15) & ~15;
2744 }
2745 ALOGI("HAL output buffer size %zu frames, normal sink buffer size %zu frames", mFrameCount,
2746 mNormalFrameCount);
2747
2748 // Check if we want to throttle the processing to no more than 2x normal rate
2749 mThreadThrottle = property_get_bool("af.thread.throttle", true /* default_value */);
2750 mThreadThrottleTimeMs = 0;
2751 mThreadThrottleEndMs = 0;
2752 mHalfBufferMs = mNormalFrameCount * 1000 / (2 * mSampleRate);
2753
2754 // mSinkBuffer is the sink buffer. Size is always multiple-of-16 frames.
2755 // Originally this was int16_t[] array, need to remove legacy implications.
2756 free(mSinkBuffer);
2757 mSinkBuffer = NULL;
2758 // For sink buffer size, we use the frame size from the downstream sink to avoid problems
2759 // with non PCM formats for compressed music, e.g. AAC, and Offload threads.
2760 const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
2761 (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
2762
2763 // We resize the mMixerBuffer according to the requirements of the sink buffer which
2764 // drives the output.
2765 free(mMixerBuffer);
2766 mMixerBuffer = NULL;
2767 if (mMixerBufferEnabled) {
2768 mMixerBufferFormat = AUDIO_FORMAT_PCM_FLOAT; // no longer valid: AUDIO_FORMAT_PCM_16_BIT.
2769 mMixerBufferSize = mNormalFrameCount * mChannelCount
2770 * audio_bytes_per_sample(mMixerBufferFormat);
2771 (void)posix_memalign(&mMixerBuffer, 32, mMixerBufferSize);
2772 }
2773 free(mEffectBuffer);
2774 mEffectBuffer = NULL;
2775 if (mEffectBufferEnabled) {
2776 mEffectBufferFormat = EFFECT_BUFFER_FORMAT;
2777 mEffectBufferSize = mNormalFrameCount * mChannelCount
2778 * audio_bytes_per_sample(mEffectBufferFormat);
2779 (void)posix_memalign(&mEffectBuffer, 32, mEffectBufferSize);
2780 }
2781
2782 mHapticChannelMask = mChannelMask & AUDIO_CHANNEL_HAPTIC_ALL;
2783 mChannelMask &= ~mHapticChannelMask;
2784 mHapticChannelCount = audio_channel_count_from_out_mask(mHapticChannelMask);
2785 mChannelCount -= mHapticChannelCount;
2786
2787 // force reconfiguration of effect chains and engines to take new buffer size and audio
2788 // parameters into account
2789 // Note that mLock is not held when readOutputParameters_l() is called from the constructor
2790 // but in this case nothing is done below as no audio sessions have effect yet so it doesn't
2791 // matter.
2792 // create a copy of mEffectChains as calling moveEffectChain_l() can reorder some effect chains
2793 Vector< sp<EffectChain> > effectChains = mEffectChains;
2794 for (size_t i = 0; i < effectChains.size(); i ++) {
2795 mAudioFlinger->moveEffectChain_l(effectChains[i]->sessionId(),
2796 this/* srcThread */, this/* dstThread */);
2797 }
2798 }
2799
updateMetadata_l()2800 void AudioFlinger::PlaybackThread::updateMetadata_l()
2801 {
2802 if (mOutput == nullptr || mOutput->stream == nullptr ) {
2803 return; // That should not happen
2804 }
2805 bool hasChanged = mActiveTracks.readAndClearHasChanged();
2806 for (const sp<Track> &track : mActiveTracks) {
2807 // Do not short-circuit as all hasChanged states must be reset
2808 // as all the metadata are going to be sent
2809 hasChanged |= track->readAndClearHasChanged();
2810 }
2811 if (!hasChanged) {
2812 return; // nothing to do
2813 }
2814 StreamOutHalInterface::SourceMetadata metadata;
2815 auto backInserter = std::back_inserter(metadata.tracks);
2816 for (const sp<Track> &track : mActiveTracks) {
2817 // No track is invalid as this is called after prepareTrack_l in the same critical section
2818 track->copyMetadataTo(backInserter);
2819 }
2820 sendMetadataToBackend_l(metadata);
2821 }
2822
sendMetadataToBackend_l(const StreamOutHalInterface::SourceMetadata & metadata)2823 void AudioFlinger::PlaybackThread::sendMetadataToBackend_l(
2824 const StreamOutHalInterface::SourceMetadata& metadata)
2825 {
2826 mOutput->stream->updateSourceMetadata(metadata);
2827 };
2828
getRenderPosition(uint32_t * halFrames,uint32_t * dspFrames)2829 status_t AudioFlinger::PlaybackThread::getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames)
2830 {
2831 if (halFrames == NULL || dspFrames == NULL) {
2832 return BAD_VALUE;
2833 }
2834 Mutex::Autolock _l(mLock);
2835 if (initCheck() != NO_ERROR) {
2836 return INVALID_OPERATION;
2837 }
2838 int64_t framesWritten = mBytesWritten / mFrameSize;
2839 *halFrames = framesWritten;
2840
2841 if (isSuspended()) {
2842 // return an estimation of rendered frames when the output is suspended
2843 size_t latencyFrames = (latency_l() * mSampleRate) / 1000;
2844 *dspFrames = (uint32_t)
2845 (framesWritten >= (int64_t)latencyFrames ? framesWritten - latencyFrames : 0);
2846 return NO_ERROR;
2847 } else {
2848 status_t status;
2849 uint32_t frames;
2850 status = mOutput->getRenderPosition(&frames);
2851 *dspFrames = (size_t)frames;
2852 return status;
2853 }
2854 }
2855
getStrategyForSession_l(audio_session_t sessionId)2856 uint32_t AudioFlinger::PlaybackThread::getStrategyForSession_l(audio_session_t sessionId)
2857 {
2858 // session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that
2859 // it is moved to correct output by audio policy manager when A2DP is connected or disconnected
2860 if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
2861 return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2862 }
2863 for (size_t i = 0; i < mTracks.size(); i++) {
2864 sp<Track> track = mTracks[i];
2865 if (sessionId == track->sessionId() && !track->isInvalid()) {
2866 return AudioSystem::getStrategyForStream(track->streamType());
2867 }
2868 }
2869 return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
2870 }
2871
2872
getOutput() const2873 AudioStreamOut* AudioFlinger::PlaybackThread::getOutput() const
2874 {
2875 Mutex::Autolock _l(mLock);
2876 return mOutput;
2877 }
2878
clearOutput()2879 AudioStreamOut* AudioFlinger::PlaybackThread::clearOutput()
2880 {
2881 Mutex::Autolock _l(mLock);
2882 AudioStreamOut *output = mOutput;
2883 mOutput = NULL;
2884 // FIXME FastMixer might also have a raw ptr to mOutputSink;
2885 // must push a NULL and wait for ack
2886 mOutputSink.clear();
2887 mPipeSink.clear();
2888 mNormalSink.clear();
2889 return output;
2890 }
2891
2892 // this method must always be called either with ThreadBase mLock held or inside the thread loop
stream() const2893 sp<StreamHalInterface> AudioFlinger::PlaybackThread::stream() const
2894 {
2895 if (mOutput == NULL) {
2896 return NULL;
2897 }
2898 return mOutput->stream;
2899 }
2900
activeSleepTimeUs() const2901 uint32_t AudioFlinger::PlaybackThread::activeSleepTimeUs() const
2902 {
2903 return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000);
2904 }
2905
setSyncEvent(const sp<SyncEvent> & event)2906 status_t AudioFlinger::PlaybackThread::setSyncEvent(const sp<SyncEvent>& event)
2907 {
2908 if (!isValidSyncEvent(event)) {
2909 return BAD_VALUE;
2910 }
2911
2912 Mutex::Autolock _l(mLock);
2913
2914 for (size_t i = 0; i < mTracks.size(); ++i) {
2915 sp<Track> track = mTracks[i];
2916 if (event->triggerSession() == track->sessionId()) {
2917 (void) track->setSyncEvent(event);
2918 return NO_ERROR;
2919 }
2920 }
2921
2922 return NAME_NOT_FOUND;
2923 }
2924
isValidSyncEvent(const sp<SyncEvent> & event) const2925 bool AudioFlinger::PlaybackThread::isValidSyncEvent(const sp<SyncEvent>& event) const
2926 {
2927 return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE;
2928 }
2929
threadLoop_removeTracks(const Vector<sp<Track>> & tracksToRemove)2930 void AudioFlinger::PlaybackThread::threadLoop_removeTracks(
2931 const Vector< sp<Track> >& tracksToRemove)
2932 {
2933 // Miscellaneous track cleanup when removed from the active list,
2934 // called without Thread lock but synchronized with threadLoop processing.
2935 #ifdef ADD_BATTERY_DATA
2936 for (const auto& track : tracksToRemove) {
2937 if (track->isExternalTrack()) {
2938 // to track the speaker usage
2939 addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop);
2940 }
2941 }
2942 #else
2943 (void)tracksToRemove; // suppress unused warning
2944 #endif
2945 }
2946
checkSilentMode_l()2947 void AudioFlinger::PlaybackThread::checkSilentMode_l()
2948 {
2949 if (!mMasterMute) {
2950 char value[PROPERTY_VALUE_MAX];
2951 if (isSingleDeviceType(outDeviceTypes(), AUDIO_DEVICE_OUT_REMOTE_SUBMIX)) {
2952 ALOGD("ro.audio.silent will be ignored for threads on AUDIO_DEVICE_OUT_REMOTE_SUBMIX");
2953 return;
2954 }
2955 if (property_get("ro.audio.silent", value, "0") > 0) {
2956 char *endptr;
2957 unsigned long ul = strtoul(value, &endptr, 0);
2958 if (*endptr == '\0' && ul != 0) {
2959 ALOGD("Silence is golden");
2960 // The setprop command will not allow a property to be changed after
2961 // the first time it is set, so we don't have to worry about un-muting.
2962 setMasterMute_l(true);
2963 }
2964 }
2965 }
2966 }
2967
2968 // shared by MIXER and DIRECT, overridden by DUPLICATING
threadLoop_write()2969 ssize_t AudioFlinger::PlaybackThread::threadLoop_write()
2970 {
2971 LOG_HIST_TS();
2972 mInWrite = true;
2973 ssize_t bytesWritten;
2974 const size_t offset = mCurrentWriteLength - mBytesRemaining;
2975
2976 // If an NBAIO sink is present, use it to write the normal mixer's submix
2977 if (mNormalSink != 0) {
2978
2979 const size_t count = mBytesRemaining / mFrameSize;
2980
2981 ATRACE_BEGIN("write");
2982 // update the setpoint when AudioFlinger::mScreenState changes
2983 uint32_t screenState = AudioFlinger::mScreenState;
2984 if (screenState != mScreenState) {
2985 mScreenState = screenState;
2986 MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
2987 if (pipe != NULL) {
2988 pipe->setAvgFrames((mScreenState & 1) ?
2989 (pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
2990 }
2991 }
2992 ssize_t framesWritten = mNormalSink->write((char *)mSinkBuffer + offset, count);
2993 ATRACE_END();
2994 if (framesWritten > 0) {
2995 bytesWritten = framesWritten * mFrameSize;
2996 #ifdef TEE_SINK
2997 mTee.write((char *)mSinkBuffer + offset, framesWritten);
2998 #endif
2999 } else {
3000 bytesWritten = framesWritten;
3001 }
3002 // otherwise use the HAL / AudioStreamOut directly
3003 } else {
3004 // Direct output and offload threads
3005
3006 if (mUseAsyncWrite) {
3007 ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request");
3008 mWriteAckSequence += 2;
3009 mWriteAckSequence |= 1;
3010 ALOG_ASSERT(mCallbackThread != 0);
3011 mCallbackThread->setWriteBlocked(mWriteAckSequence);
3012 }
3013 ATRACE_BEGIN("write");
3014 // FIXME We should have an implementation of timestamps for direct output threads.
3015 // They are used e.g for multichannel PCM playback over HDMI.
3016 bytesWritten = mOutput->write((char *)mSinkBuffer + offset, mBytesRemaining);
3017 ATRACE_END();
3018
3019 if (mUseAsyncWrite &&
3020 ((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) {
3021 // do not wait for async callback in case of error of full write
3022 mWriteAckSequence &= ~1;
3023 ALOG_ASSERT(mCallbackThread != 0);
3024 mCallbackThread->setWriteBlocked(mWriteAckSequence);
3025 }
3026 }
3027
3028 mNumWrites++;
3029 mInWrite = false;
3030 mStandby = false;
3031 return bytesWritten;
3032 }
3033
threadLoop_drain()3034 void AudioFlinger::PlaybackThread::threadLoop_drain()
3035 {
3036 bool supportsDrain = false;
3037 if (mOutput->stream->supportsDrain(&supportsDrain) == OK && supportsDrain) {
3038 ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full");
3039 if (mUseAsyncWrite) {
3040 ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request");
3041 mDrainSequence |= 1;
3042 ALOG_ASSERT(mCallbackThread != 0);
3043 mCallbackThread->setDraining(mDrainSequence);
3044 }
3045 status_t result = mOutput->stream->drain(mMixerStatus == MIXER_DRAIN_TRACK);
3046 ALOGE_IF(result != OK, "Error when draining stream: %d", result);
3047 }
3048 }
3049
threadLoop_exit()3050 void AudioFlinger::PlaybackThread::threadLoop_exit()
3051 {
3052 {
3053 Mutex::Autolock _l(mLock);
3054 for (size_t i = 0; i < mTracks.size(); i++) {
3055 sp<Track> track = mTracks[i];
3056 track->invalidate();
3057 }
3058 // Clear ActiveTracks to update BatteryNotifier in case active tracks remain.
3059 // After we exit there are no more track changes sent to BatteryNotifier
3060 // because that requires an active threadLoop.
3061 // TODO: should we decActiveTrackCnt() of the cleared track effect chain?
3062 mActiveTracks.clear();
3063 }
3064 }
3065
3066 /*
3067 The derived values that are cached:
3068 - mSinkBufferSize from frame count * frame size
3069 - mActiveSleepTimeUs from activeSleepTimeUs()
3070 - mIdleSleepTimeUs from idleSleepTimeUs()
3071 - mStandbyDelayNs from mActiveSleepTimeUs (DIRECT only) or forced to at least
3072 kDefaultStandbyTimeInNsecs when connected to an A2DP device.
3073 - maxPeriod from frame count and sample rate (MIXER only)
3074
3075 The parameters that affect these derived values are:
3076 - frame count
3077 - frame size
3078 - sample rate
3079 - device type: A2DP or not
3080 - device latency
3081 - format: PCM or not
3082 - active sleep time
3083 - idle sleep time
3084 */
3085
cacheParameters_l()3086 void AudioFlinger::PlaybackThread::cacheParameters_l()
3087 {
3088 mSinkBufferSize = mNormalFrameCount * mFrameSize;
3089 mActiveSleepTimeUs = activeSleepTimeUs();
3090 mIdleSleepTimeUs = idleSleepTimeUs();
3091
3092 // make sure standby delay is not too short when connected to an A2DP sink to avoid
3093 // truncating audio when going to standby.
3094 mStandbyDelayNs = AudioFlinger::mStandbyTimeInNsecs;
3095 if (!Intersection(outDeviceTypes(), getAudioDeviceOutAllA2dpSet()).empty()) {
3096 if (mStandbyDelayNs < kDefaultStandbyTimeInNsecs) {
3097 mStandbyDelayNs = kDefaultStandbyTimeInNsecs;
3098 }
3099 }
3100 }
3101
invalidateTracks_l(audio_stream_type_t streamType)3102 bool AudioFlinger::PlaybackThread::invalidateTracks_l(audio_stream_type_t streamType)
3103 {
3104 ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %zu",
3105 this, streamType, mTracks.size());
3106 bool trackMatch = false;
3107 size_t size = mTracks.size();
3108 for (size_t i = 0; i < size; i++) {
3109 sp<Track> t = mTracks[i];
3110 if (t->streamType() == streamType && t->isExternalTrack()) {
3111 t->invalidate();
3112 trackMatch = true;
3113 }
3114 }
3115 return trackMatch;
3116 }
3117
invalidateTracks(audio_stream_type_t streamType)3118 void AudioFlinger::PlaybackThread::invalidateTracks(audio_stream_type_t streamType)
3119 {
3120 Mutex::Autolock _l(mLock);
3121 invalidateTracks_l(streamType);
3122 }
3123
addEffectChain_l(const sp<EffectChain> & chain)3124 status_t AudioFlinger::PlaybackThread::addEffectChain_l(const sp<EffectChain>& chain)
3125 {
3126 audio_session_t session = chain->sessionId();
3127 sp<EffectBufferHalInterface> halInBuffer, halOutBuffer;
3128 status_t result = mAudioFlinger->mEffectsFactoryHal->mirrorBuffer(
3129 mEffectBufferEnabled ? mEffectBuffer : mSinkBuffer,
3130 mEffectBufferEnabled ? mEffectBufferSize : mSinkBufferSize,
3131 &halInBuffer);
3132 if (result != OK) return result;
3133 halOutBuffer = halInBuffer;
3134 effect_buffer_t *buffer = reinterpret_cast<effect_buffer_t*>(halInBuffer->externalData());
3135 ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
3136 if (!audio_is_global_session(session)) {
3137 // Only one effect chain can be present in direct output thread and it uses
3138 // the sink buffer as input
3139 if (mType != DIRECT) {
3140 size_t numSamples = mNormalFrameCount * (mChannelCount + mHapticChannelCount);
3141 status_t result = mAudioFlinger->mEffectsFactoryHal->allocateBuffer(
3142 numSamples * sizeof(effect_buffer_t),
3143 &halInBuffer);
3144 if (result != OK) return result;
3145 #ifdef FLOAT_EFFECT_CHAIN
3146 buffer = halInBuffer->audioBuffer()->f32;
3147 #else
3148 buffer = halInBuffer->audioBuffer()->s16;
3149 #endif
3150 ALOGV("addEffectChain_l() creating new input buffer %p session %d",
3151 buffer, session);
3152 }
3153
3154 // Attach all tracks with same session ID to this chain.
3155 for (size_t i = 0; i < mTracks.size(); ++i) {
3156 sp<Track> track = mTracks[i];
3157 if (session == track->sessionId()) {
3158 ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p", track.get(),
3159 buffer);
3160 track->setMainBuffer(buffer);
3161 chain->incTrackCnt();
3162 }
3163 }
3164
3165 // indicate all active tracks in the chain
3166 for (const sp<Track> &track : mActiveTracks) {
3167 if (session == track->sessionId()) {
3168 ALOGV("addEffectChain_l() activating track %p on session %d", track.get(), session);
3169 chain->incActiveTrackCnt();
3170 }
3171 }
3172 }
3173 chain->setThread(this);
3174 chain->setInBuffer(halInBuffer);
3175 chain->setOutBuffer(halOutBuffer);
3176 // Effect chain for session AUDIO_SESSION_DEVICE is inserted at end of effect
3177 // chains list in order to be processed last as it contains output device effects.
3178 // Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted just before to apply post
3179 // processing effects specific to an output stream before effects applied to all streams
3180 // routed to a given device.
3181 // Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before
3182 // session AUDIO_SESSION_OUTPUT_STAGE to be processed
3183 // after track specific effects and before output stage.
3184 // It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and
3185 // that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX.
3186 // Effect chain for other sessions are inserted at beginning of effect
3187 // chains list to be processed before output mix effects. Relative order between other
3188 // sessions is not important.
3189 static_assert(AUDIO_SESSION_OUTPUT_MIX == 0 &&
3190 AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX &&
3191 AUDIO_SESSION_DEVICE < AUDIO_SESSION_OUTPUT_STAGE,
3192 "audio_session_t constants misdefined");
3193 size_t size = mEffectChains.size();
3194 size_t i = 0;
3195 for (i = 0; i < size; i++) {
3196 if (mEffectChains[i]->sessionId() < session) {
3197 break;
3198 }
3199 }
3200 mEffectChains.insertAt(chain, i);
3201 checkSuspendOnAddEffectChain_l(chain);
3202
3203 return NO_ERROR;
3204 }
3205
removeEffectChain_l(const sp<EffectChain> & chain)3206 size_t AudioFlinger::PlaybackThread::removeEffectChain_l(const sp<EffectChain>& chain)
3207 {
3208 audio_session_t session = chain->sessionId();
3209
3210 ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
3211
3212 for (size_t i = 0; i < mEffectChains.size(); i++) {
3213 if (chain == mEffectChains[i]) {
3214 mEffectChains.removeAt(i);
3215 // detach all active tracks from the chain
3216 for (const sp<Track> &track : mActiveTracks) {
3217 if (session == track->sessionId()) {
3218 ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d",
3219 chain.get(), session);
3220 chain->decActiveTrackCnt();
3221 }
3222 }
3223
3224 // detach all tracks with same session ID from this chain
3225 for (size_t i = 0; i < mTracks.size(); ++i) {
3226 sp<Track> track = mTracks[i];
3227 if (session == track->sessionId()) {
3228 track->setMainBuffer(reinterpret_cast<effect_buffer_t*>(mSinkBuffer));
3229 chain->decTrackCnt();
3230 }
3231 }
3232 break;
3233 }
3234 }
3235 return mEffectChains.size();
3236 }
3237
attachAuxEffect(const sp<AudioFlinger::PlaybackThread::Track> & track,int EffectId)3238 status_t AudioFlinger::PlaybackThread::attachAuxEffect(
3239 const sp<AudioFlinger::PlaybackThread::Track>& track, int EffectId)
3240 {
3241 Mutex::Autolock _l(mLock);
3242 return attachAuxEffect_l(track, EffectId);
3243 }
3244
attachAuxEffect_l(const sp<AudioFlinger::PlaybackThread::Track> & track,int EffectId)3245 status_t AudioFlinger::PlaybackThread::attachAuxEffect_l(
3246 const sp<AudioFlinger::PlaybackThread::Track>& track, int EffectId)
3247 {
3248 status_t status = NO_ERROR;
3249
3250 if (EffectId == 0) {
3251 track->setAuxBuffer(0, NULL);
3252 } else {
3253 // Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX
3254 sp<EffectModule> effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId);
3255 if (effect != 0) {
3256 if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
3257 track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer());
3258 } else {
3259 status = INVALID_OPERATION;
3260 }
3261 } else {
3262 status = BAD_VALUE;
3263 }
3264 }
3265 return status;
3266 }
3267
detachAuxEffect_l(int effectId)3268 void AudioFlinger::PlaybackThread::detachAuxEffect_l(int effectId)
3269 {
3270 for (size_t i = 0; i < mTracks.size(); ++i) {
3271 sp<Track> track = mTracks[i];
3272 if (track->auxEffectId() == effectId) {
3273 attachAuxEffect_l(track, 0);
3274 }
3275 }
3276 }
3277
threadLoop()3278 bool AudioFlinger::PlaybackThread::threadLoop()
3279 {
3280 tlNBLogWriter = mNBLogWriter.get();
3281
3282 Vector< sp<Track> > tracksToRemove;
3283
3284 mStandbyTimeNs = systemTime();
3285 int64_t lastLoopCountWritten = -2; // never matches "previous" loop, when loopCount = 0.
3286 int64_t lastFramesWritten = -1; // track changes in timestamp server frames written
3287
3288 // MIXER
3289 nsecs_t lastWarning = 0;
3290
3291 // DUPLICATING
3292 // FIXME could this be made local to while loop?
3293 writeFrames = 0;
3294
3295 cacheParameters_l();
3296 mSleepTimeUs = mIdleSleepTimeUs;
3297
3298 if (mType == MIXER) {
3299 sleepTimeShift = 0;
3300 }
3301
3302 CpuStats cpuStats;
3303 const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
3304
3305 acquireWakeLock();
3306
3307 // mNBLogWriter logging APIs can only be called by a single thread, typically the
3308 // thread associated with this PlaybackThread.
3309 // If you want to share the mNBLogWriter with other threads (for example, binder threads)
3310 // then all such threads must agree to hold a common mutex before logging.
3311 // So if you need to log when mutex is unlocked, set logString to a non-NULL string,
3312 // and then that string will be logged at the next convenient opportunity.
3313 // See reference to logString below.
3314 const char *logString = NULL;
3315
3316 // Estimated time for next buffer to be written to hal. This is used only on
3317 // suspended mode (for now) to help schedule the wait time until next iteration.
3318 nsecs_t timeLoopNextNs = 0;
3319
3320 checkSilentMode_l();
3321
3322 // DIRECT and OFFLOAD threads should reset frame count to zero on stop/flush
3323 // TODO: add confirmation checks:
3324 // 1) DIRECT threads and linear PCM format really resets to 0?
3325 // 2) Is frame count really valid if not linear pcm?
3326 // 3) Are all 64 bits of position returned, not just lowest 32 bits?
3327 if (mType == OFFLOAD || mType == DIRECT) {
3328 mTimestampVerifier.setDiscontinuityMode(mTimestampVerifier.DISCONTINUITY_MODE_ZERO);
3329 }
3330 audio_patch_handle_t lastDownstreamPatchHandle = AUDIO_PATCH_HANDLE_NONE;
3331
3332 // loopCount is used for statistics and diagnostics.
3333 for (int64_t loopCount = 0; !exitPending(); ++loopCount)
3334 {
3335 // Log merge requests are performed during AudioFlinger binder transactions, but
3336 // that does not cover audio playback. It's requested here for that reason.
3337 mAudioFlinger->requestLogMerge();
3338
3339 cpuStats.sample(myName);
3340
3341 Vector< sp<EffectChain> > effectChains;
3342 audio_session_t activeHapticSessionId = AUDIO_SESSION_NONE;
3343 std::vector<sp<Track>> activeTracks;
3344
3345 // If the device is AUDIO_DEVICE_OUT_BUS, check for downstream latency.
3346 //
3347 // Note: we access outDeviceTypes() outside of mLock.
3348 if (isMsdDevice() && outDeviceTypes().count(AUDIO_DEVICE_OUT_BUS) != 0) {
3349 // Here, we try for the AF lock, but do not block on it as the latency
3350 // is more informational.
3351 if (mAudioFlinger->mLock.tryLock() == NO_ERROR) {
3352 std::vector<PatchPanel::SoftwarePatch> swPatches;
3353 double latencyMs;
3354 status_t status = INVALID_OPERATION;
3355 audio_patch_handle_t downstreamPatchHandle = AUDIO_PATCH_HANDLE_NONE;
3356 if (mAudioFlinger->mPatchPanel.getDownstreamSoftwarePatches(id(), &swPatches) == OK
3357 && swPatches.size() > 0) {
3358 status = swPatches[0].getLatencyMs_l(&latencyMs);
3359 downstreamPatchHandle = swPatches[0].getPatchHandle();
3360 }
3361 if (downstreamPatchHandle != lastDownstreamPatchHandle) {
3362 mDownstreamLatencyStatMs.reset();
3363 lastDownstreamPatchHandle = downstreamPatchHandle;
3364 }
3365 if (status == OK) {
3366 // verify downstream latency (we assume a max reasonable
3367 // latency of 5 seconds).
3368 const double minLatency = 0., maxLatency = 5000.;
3369 if (latencyMs >= minLatency && latencyMs <= maxLatency) {
3370 ALOGVV("new downstream latency %lf ms", latencyMs);
3371 } else {
3372 ALOGD("out of range downstream latency %lf ms", latencyMs);
3373 if (latencyMs < minLatency) latencyMs = minLatency;
3374 else if (latencyMs > maxLatency) latencyMs = maxLatency;
3375 }
3376 mDownstreamLatencyStatMs.add(latencyMs);
3377 }
3378 mAudioFlinger->mLock.unlock();
3379 }
3380 } else {
3381 if (lastDownstreamPatchHandle != AUDIO_PATCH_HANDLE_NONE) {
3382 // our device is no longer AUDIO_DEVICE_OUT_BUS, reset patch handle and stats.
3383 mDownstreamLatencyStatMs.reset();
3384 lastDownstreamPatchHandle = AUDIO_PATCH_HANDLE_NONE;
3385 }
3386 }
3387
3388 { // scope for mLock
3389
3390 Mutex::Autolock _l(mLock);
3391
3392 processConfigEvents_l();
3393
3394 // See comment at declaration of logString for why this is done under mLock
3395 if (logString != NULL) {
3396 mNBLogWriter->logTimestamp();
3397 mNBLogWriter->log(logString);
3398 logString = NULL;
3399 }
3400
3401 // Collect timestamp statistics for the Playback Thread types that support it.
3402 if (mType == MIXER
3403 || mType == DUPLICATING
3404 || mType == DIRECT
3405 || mType == OFFLOAD) { // no indentation
3406 // Gather the framesReleased counters for all active tracks,
3407 // and associate with the sink frames written out. We need
3408 // this to convert the sink timestamp to the track timestamp.
3409 bool kernelLocationUpdate = false;
3410 ExtendedTimestamp timestamp; // use private copy to fetch
3411 if (mStandby) {
3412 mTimestampVerifier.discontinuity();
3413 } else if (threadloop_getHalTimestamp_l(×tamp) == OK) {
3414 mTimestampVerifier.add(timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL],
3415 timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL],
3416 mSampleRate);
3417
3418 if (isTimestampCorrectionEnabled()) {
3419 ALOGVV("TS_BEFORE: %d %lld %lld", id(),
3420 (long long)timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL],
3421 (long long)timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]);
3422 auto correctedTimestamp = mTimestampVerifier.getLastCorrectedTimestamp();
3423 timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]
3424 = correctedTimestamp.mFrames;
3425 timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL]
3426 = correctedTimestamp.mTimeNs;
3427 ALOGVV("TS_AFTER: %d %lld %lld", id(),
3428 (long long)timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL],
3429 (long long)timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]);
3430
3431 // Note: Downstream latency only added if timestamp correction enabled.
3432 if (mDownstreamLatencyStatMs.getN() > 0) { // we have latency info.
3433 const int64_t newPosition =
3434 timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]
3435 - int64_t(mDownstreamLatencyStatMs.getMean() * mSampleRate * 1e-3);
3436 // prevent retrograde
3437 timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] = max(
3438 newPosition,
3439 (mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]
3440 - mSuspendedFrames));
3441 }
3442 }
3443
3444 // We always fetch the timestamp here because often the downstream
3445 // sink will block while writing.
3446
3447 // We keep track of the last valid kernel position in case we are in underrun
3448 // and the normal mixer period is the same as the fast mixer period, or there
3449 // is some error from the HAL.
3450 if (mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] >= 0) {
3451 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] =
3452 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL];
3453 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] =
3454 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
3455
3456 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] =
3457 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER];
3458 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] =
3459 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER];
3460 }
3461
3462 if (timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] >= 0) {
3463 kernelLocationUpdate = true;
3464 } else {
3465 ALOGVV("getTimestamp error - no valid kernel position");
3466 }
3467
3468 // copy over kernel info
3469 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] =
3470 timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]
3471 + mSuspendedFrames; // add frames discarded when suspended
3472 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] =
3473 timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL];
3474 } else {
3475 mTimestampVerifier.error();
3476 }
3477
3478 // mFramesWritten for non-offloaded tracks are contiguous
3479 // even after standby() is called. This is useful for the track frame
3480 // to sink frame mapping.
3481 bool serverLocationUpdate = false;
3482 if (mFramesWritten != lastFramesWritten) {
3483 serverLocationUpdate = true;
3484 lastFramesWritten = mFramesWritten;
3485 }
3486 // Only update timestamps if there is a meaningful change.
3487 // Either the kernel timestamp must be valid or we have written something.
3488 if (kernelLocationUpdate || serverLocationUpdate) {
3489 if (serverLocationUpdate) {
3490 // use the time before we called the HAL write - it is a bit more accurate
3491 // to when the server last read data than the current time here.
3492 //
3493 // If we haven't written anything, mLastIoBeginNs will be -1
3494 // and we use systemTime().
3495 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] = mFramesWritten;
3496 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = mLastIoBeginNs == -1
3497 ? systemTime() : mLastIoBeginNs;
3498 }
3499
3500 for (const sp<Track> &t : mActiveTracks) {
3501 if (!t->isFastTrack()) {
3502 t->updateTrackFrameInfo(
3503 t->mAudioTrackServerProxy->framesReleased(),
3504 mFramesWritten,
3505 mSampleRate,
3506 mTimestamp);
3507 }
3508 }
3509 }
3510
3511 if (audio_has_proportional_frames(mFormat)) {
3512 const double latencyMs = mTimestamp.getOutputServerLatencyMs(mSampleRate);
3513 if (latencyMs != 0.) { // note 0. means timestamp is empty.
3514 mLatencyMs.add(latencyMs);
3515 }
3516 }
3517
3518 } // if (mType ... ) { // no indentation
3519 #if 0
3520 // logFormat example
3521 if (z % 100 == 0) {
3522 timespec ts;
3523 clock_gettime(CLOCK_MONOTONIC, &ts);
3524 LOGT("This is an integer %d, this is a float %f, this is my "
3525 "pid %p %% %s %t", 42, 3.14, "and this is a timestamp", ts);
3526 LOGT("A deceptive null-terminated string %\0");
3527 }
3528 ++z;
3529 #endif
3530 saveOutputTracks();
3531 if (mSignalPending) {
3532 // A signal was raised while we were unlocked
3533 mSignalPending = false;
3534 } else if (waitingAsyncCallback_l()) {
3535 if (exitPending()) {
3536 break;
3537 }
3538 bool released = false;
3539 if (!keepWakeLock()) {
3540 releaseWakeLock_l();
3541 released = true;
3542 }
3543
3544 const int64_t waitNs = computeWaitTimeNs_l();
3545 ALOGV("wait async completion (wait time: %lld)", (long long)waitNs);
3546 status_t status = mWaitWorkCV.waitRelative(mLock, waitNs);
3547 if (status == TIMED_OUT) {
3548 mSignalPending = true; // if timeout recheck everything
3549 }
3550 ALOGV("async completion/wake");
3551 if (released) {
3552 acquireWakeLock_l();
3553 }
3554 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3555 mSleepTimeUs = 0;
3556
3557 continue;
3558 }
3559 if ((mActiveTracks.isEmpty() && systemTime() > mStandbyTimeNs) ||
3560 isSuspended()) {
3561 // put audio hardware into standby after short delay
3562 if (shouldStandby_l()) {
3563
3564 threadLoop_standby();
3565
3566 // This is where we go into standby
3567 if (!mStandby) {
3568 LOG_AUDIO_STATE();
3569 }
3570 mStandby = true;
3571 sendStatistics(false /* force */);
3572 }
3573
3574 if (mActiveTracks.isEmpty() && mConfigEvents.isEmpty()) {
3575 // we're about to wait, flush the binder command buffer
3576 IPCThreadState::self()->flushCommands();
3577
3578 clearOutputTracks();
3579
3580 if (exitPending()) {
3581 break;
3582 }
3583
3584 releaseWakeLock_l();
3585 // wait until we have something to do...
3586 ALOGV("%s going to sleep", myName.string());
3587 mWaitWorkCV.wait(mLock);
3588 ALOGV("%s waking up", myName.string());
3589 acquireWakeLock_l();
3590
3591 mMixerStatus = MIXER_IDLE;
3592 mMixerStatusIgnoringFastTracks = MIXER_IDLE;
3593 mBytesWritten = 0;
3594 mBytesRemaining = 0;
3595 checkSilentMode_l();
3596
3597 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
3598 mSleepTimeUs = mIdleSleepTimeUs;
3599 if (mType == MIXER) {
3600 sleepTimeShift = 0;
3601 }
3602
3603 continue;
3604 }
3605 }
3606 // mMixerStatusIgnoringFastTracks is also updated internally
3607 mMixerStatus = prepareTracks_l(&tracksToRemove);
3608
3609 mActiveTracks.updatePowerState(this);
3610
3611 updateMetadata_l();
3612
3613 // prevent any changes in effect chain list and in each effect chain
3614 // during mixing and effect process as the audio buffers could be deleted
3615 // or modified if an effect is created or deleted
3616 lockEffectChains_l(effectChains);
3617
3618 // Determine which session to pick up haptic data.
3619 // This must be done under the same lock as prepareTracks_l().
3620 // TODO: Write haptic data directly to sink buffer when mixing.
3621 if (mHapticChannelCount > 0 && effectChains.size() > 0) {
3622 for (const auto& track : mActiveTracks) {
3623 if (track->getHapticPlaybackEnabled()) {
3624 activeHapticSessionId = track->sessionId();
3625 break;
3626 }
3627 }
3628 }
3629
3630 // Acquire a local copy of active tracks with lock (release w/o lock).
3631 //
3632 // Control methods on the track acquire the ThreadBase lock (e.g. start()
3633 // stop(), pause(), etc.), but the threadLoop is entitled to call audio
3634 // data / buffer methods on tracks from activeTracks without the ThreadBase lock.
3635 activeTracks.insert(activeTracks.end(), mActiveTracks.begin(), mActiveTracks.end());
3636 } // mLock scope ends
3637
3638 if (mBytesRemaining == 0) {
3639 mCurrentWriteLength = 0;
3640 if (mMixerStatus == MIXER_TRACKS_READY) {
3641 // threadLoop_mix() sets mCurrentWriteLength
3642 threadLoop_mix();
3643 } else if ((mMixerStatus != MIXER_DRAIN_TRACK)
3644 && (mMixerStatus != MIXER_DRAIN_ALL)) {
3645 // threadLoop_sleepTime sets mSleepTimeUs to 0 if data
3646 // must be written to HAL
3647 threadLoop_sleepTime();
3648 if (mSleepTimeUs == 0) {
3649 mCurrentWriteLength = mSinkBufferSize;
3650
3651 // Tally underrun frames as we are inserting 0s here.
3652 for (const auto& track : activeTracks) {
3653 if (track->mFillingUpStatus == Track::FS_ACTIVE) {
3654 track->mAudioTrackServerProxy->tallyUnderrunFrames(mNormalFrameCount);
3655 }
3656 }
3657 }
3658 }
3659 // Either threadLoop_mix() or threadLoop_sleepTime() should have set
3660 // mMixerBuffer with data if mMixerBufferValid is true and mSleepTimeUs == 0.
3661 // Merge mMixerBuffer data into mEffectBuffer (if any effects are valid)
3662 // or mSinkBuffer (if there are no effects).
3663 //
3664 // This is done pre-effects computation; if effects change to
3665 // support higher precision, this needs to move.
3666 //
3667 // mMixerBufferValid is only set true by MixerThread::prepareTracks_l().
3668 // TODO use mSleepTimeUs == 0 as an additional condition.
3669 if (mMixerBufferValid) {
3670 void *buffer = mEffectBufferValid ? mEffectBuffer : mSinkBuffer;
3671 audio_format_t format = mEffectBufferValid ? mEffectBufferFormat : mFormat;
3672
3673 // mono blend occurs for mixer threads only (not direct or offloaded)
3674 // and is handled here if we're going directly to the sink.
3675 if (requireMonoBlend() && !mEffectBufferValid) {
3676 mono_blend(mMixerBuffer, mMixerBufferFormat, mChannelCount, mNormalFrameCount,
3677 true /*limit*/);
3678 }
3679
3680 if (!hasFastMixer()) {
3681 // Balance must take effect after mono conversion.
3682 // We do it here if there is no FastMixer.
3683 // mBalance detects zero balance within the class for speed (not needed here).
3684 mBalance.setBalance(mMasterBalance.load());
3685 mBalance.process((float *)mMixerBuffer, mNormalFrameCount);
3686 }
3687
3688 memcpy_by_audio_format(buffer, format, mMixerBuffer, mMixerBufferFormat,
3689 mNormalFrameCount * (mChannelCount + mHapticChannelCount));
3690
3691 // If we're going directly to the sink and there are haptic channels,
3692 // we should adjust channels as the sample data is partially interleaved
3693 // in this case.
3694 if (!mEffectBufferValid && mHapticChannelCount > 0) {
3695 adjust_channels_non_destructive(buffer, mChannelCount, buffer,
3696 mChannelCount + mHapticChannelCount,
3697 audio_bytes_per_sample(format),
3698 audio_bytes_per_frame(mChannelCount, format) * mNormalFrameCount);
3699 }
3700 }
3701
3702 mBytesRemaining = mCurrentWriteLength;
3703 if (isSuspended()) {
3704 // Simulate write to HAL when suspended (e.g. BT SCO phone call).
3705 mSleepTimeUs = suspendSleepTimeUs(); // assumes full buffer.
3706 const size_t framesRemaining = mBytesRemaining / mFrameSize;
3707 mBytesWritten += mBytesRemaining;
3708 mFramesWritten += framesRemaining;
3709 mSuspendedFrames += framesRemaining; // to adjust kernel HAL position
3710 mBytesRemaining = 0;
3711 }
3712
3713 // only process effects if we're going to write
3714 if (mSleepTimeUs == 0 && mType != OFFLOAD) {
3715 for (size_t i = 0; i < effectChains.size(); i ++) {
3716 effectChains[i]->process_l();
3717 // TODO: Write haptic data directly to sink buffer when mixing.
3718 if (activeHapticSessionId != AUDIO_SESSION_NONE
3719 && activeHapticSessionId == effectChains[i]->sessionId()) {
3720 // Haptic data is active in this case, copy it directly from
3721 // in buffer to out buffer.
3722 const size_t audioBufferSize = mNormalFrameCount
3723 * audio_bytes_per_frame(mChannelCount, EFFECT_BUFFER_FORMAT);
3724 memcpy_by_audio_format(
3725 (uint8_t*)effectChains[i]->outBuffer() + audioBufferSize,
3726 EFFECT_BUFFER_FORMAT,
3727 (const uint8_t*)effectChains[i]->inBuffer() + audioBufferSize,
3728 EFFECT_BUFFER_FORMAT, mNormalFrameCount * mHapticChannelCount);
3729 }
3730 }
3731 }
3732 }
3733 // Process effect chains for offloaded thread even if no audio
3734 // was read from audio track: process only updates effect state
3735 // and thus does have to be synchronized with audio writes but may have
3736 // to be called while waiting for async write callback
3737 if (mType == OFFLOAD) {
3738 for (size_t i = 0; i < effectChains.size(); i ++) {
3739 effectChains[i]->process_l();
3740 }
3741 }
3742
3743 // Only if the Effects buffer is enabled and there is data in the
3744 // Effects buffer (buffer valid), we need to
3745 // copy into the sink buffer.
3746 // TODO use mSleepTimeUs == 0 as an additional condition.
3747 if (mEffectBufferValid) {
3748 //ALOGV("writing effect buffer to sink buffer format %#x", mFormat);
3749
3750 if (requireMonoBlend()) {
3751 mono_blend(mEffectBuffer, mEffectBufferFormat, mChannelCount, mNormalFrameCount,
3752 true /*limit*/);
3753 }
3754
3755 if (!hasFastMixer()) {
3756 // Balance must take effect after mono conversion.
3757 // We do it here if there is no FastMixer.
3758 // mBalance detects zero balance within the class for speed (not needed here).
3759 mBalance.setBalance(mMasterBalance.load());
3760 mBalance.process((float *)mEffectBuffer, mNormalFrameCount);
3761 }
3762
3763 memcpy_by_audio_format(mSinkBuffer, mFormat, mEffectBuffer, mEffectBufferFormat,
3764 mNormalFrameCount * (mChannelCount + mHapticChannelCount));
3765 // The sample data is partially interleaved when haptic channels exist,
3766 // we need to adjust channels here.
3767 if (mHapticChannelCount > 0) {
3768 adjust_channels_non_destructive(mSinkBuffer, mChannelCount, mSinkBuffer,
3769 mChannelCount + mHapticChannelCount,
3770 audio_bytes_per_sample(mFormat),
3771 audio_bytes_per_frame(mChannelCount, mFormat) * mNormalFrameCount);
3772 }
3773 }
3774
3775 // enable changes in effect chain
3776 unlockEffectChains(effectChains);
3777
3778 if (!waitingAsyncCallback()) {
3779 // mSleepTimeUs == 0 means we must write to audio hardware
3780 if (mSleepTimeUs == 0) {
3781 ssize_t ret = 0;
3782 // writePeriodNs is updated >= 0 when ret > 0.
3783 int64_t writePeriodNs = -1;
3784 if (mBytesRemaining) {
3785 // FIXME rewrite to reduce number of system calls
3786 const int64_t lastIoBeginNs = systemTime();
3787 ret = threadLoop_write();
3788 const int64_t lastIoEndNs = systemTime();
3789 if (ret < 0) {
3790 mBytesRemaining = 0;
3791 } else if (ret > 0) {
3792 mBytesWritten += ret;
3793 mBytesRemaining -= ret;
3794 const int64_t frames = ret / mFrameSize;
3795 mFramesWritten += frames;
3796
3797 writePeriodNs = lastIoEndNs - mLastIoEndNs;
3798 // process information relating to write time.
3799 if (audio_has_proportional_frames(mFormat)) {
3800 // we are in a continuous mixing cycle
3801 if (mMixerStatus == MIXER_TRACKS_READY &&
3802 loopCount == lastLoopCountWritten + 1) {
3803
3804 const double jitterMs =
3805 TimestampVerifier<int64_t, int64_t>::computeJitterMs(
3806 {frames, writePeriodNs},
3807 {0, 0} /* lastTimestamp */, mSampleRate);
3808 const double processMs =
3809 (lastIoBeginNs - mLastIoEndNs) * 1e-6;
3810
3811 Mutex::Autolock _l(mLock);
3812 mIoJitterMs.add(jitterMs);
3813 mProcessTimeMs.add(processMs);
3814 }
3815
3816 // write blocked detection
3817 const int64_t deltaWriteNs = lastIoEndNs - lastIoBeginNs;
3818 if (mType == MIXER && deltaWriteNs > maxPeriod) {
3819 mNumDelayedWrites++;
3820 if ((lastIoEndNs - lastWarning) > kWarningThrottleNs) {
3821 ATRACE_NAME("underrun");
3822 ALOGW("write blocked for %lld msecs, "
3823 "%d delayed writes, thread %d",
3824 (long long)deltaWriteNs / NANOS_PER_MILLISECOND,
3825 mNumDelayedWrites, mId);
3826 lastWarning = lastIoEndNs;
3827 }
3828 }
3829 }
3830 // update timing info.
3831 mLastIoBeginNs = lastIoBeginNs;
3832 mLastIoEndNs = lastIoEndNs;
3833 lastLoopCountWritten = loopCount;
3834 }
3835 } else if ((mMixerStatus == MIXER_DRAIN_TRACK) ||
3836 (mMixerStatus == MIXER_DRAIN_ALL)) {
3837 threadLoop_drain();
3838 }
3839 if (mType == MIXER && !mStandby) {
3840
3841 if (mThreadThrottle
3842 && mMixerStatus == MIXER_TRACKS_READY // we are mixing (active tracks)
3843 && writePeriodNs > 0) { // we have write period info
3844 // Limit MixerThread data processing to no more than twice the
3845 // expected processing rate.
3846 //
3847 // This helps prevent underruns with NuPlayer and other applications
3848 // which may set up buffers that are close to the minimum size, or use
3849 // deep buffers, and rely on a double-buffering sleep strategy to fill.
3850 //
3851 // The throttle smooths out sudden large data drains from the device,
3852 // e.g. when it comes out of standby, which often causes problems with
3853 // (1) mixer threads without a fast mixer (which has its own warm-up)
3854 // (2) minimum buffer sized tracks (even if the track is full,
3855 // the app won't fill fast enough to handle the sudden draw).
3856 //
3857 // Total time spent in last processing cycle equals time spent in
3858 // 1. threadLoop_write, as well as time spent in
3859 // 2. threadLoop_mix (significant for heavy mixing, especially
3860 // on low tier processors)
3861
3862 // it's OK if deltaMs is an overestimate.
3863
3864 const int32_t deltaMs = writePeriodNs / NANOS_PER_MILLISECOND;
3865
3866 const int32_t throttleMs = (int32_t)mHalfBufferMs - deltaMs;
3867 if ((signed)mHalfBufferMs >= throttleMs && throttleMs > 0) {
3868 usleep(throttleMs * 1000);
3869 // notify of throttle start on verbose log
3870 ALOGV_IF(mThreadThrottleEndMs == mThreadThrottleTimeMs,
3871 "mixer(%p) throttle begin:"
3872 " ret(%zd) deltaMs(%d) requires sleep %d ms",
3873 this, ret, deltaMs, throttleMs);
3874 mThreadThrottleTimeMs += throttleMs;
3875 // Throttle must be attributed to the previous mixer loop's write time
3876 // to allow back-to-back throttling.
3877 // This also ensures proper timing statistics.
3878 mLastIoEndNs = systemTime(); // we fetch the write end time again.
3879 } else {
3880 uint32_t diff = mThreadThrottleTimeMs - mThreadThrottleEndMs;
3881 if (diff > 0) {
3882 // notify of throttle end on debug log
3883 // but prevent spamming for bluetooth
3884 ALOGD_IF(!isSingleDeviceType(
3885 outDeviceTypes(), audio_is_a2dp_out_device) &&
3886 !isSingleDeviceType(
3887 outDeviceTypes(), audio_is_hearing_aid_out_device),
3888 "mixer(%p) throttle end: throttle time(%u)", this, diff);
3889 mThreadThrottleEndMs = mThreadThrottleTimeMs;
3890 }
3891 }
3892 }
3893 }
3894
3895 } else {
3896 ATRACE_BEGIN("sleep");
3897 Mutex::Autolock _l(mLock);
3898 // suspended requires accurate metering of sleep time.
3899 if (isSuspended()) {
3900 // advance by expected sleepTime
3901 timeLoopNextNs += microseconds((nsecs_t)mSleepTimeUs);
3902 const nsecs_t nowNs = systemTime();
3903
3904 // compute expected next time vs current time.
3905 // (negative deltas are treated as delays).
3906 nsecs_t deltaNs = timeLoopNextNs - nowNs;
3907 if (deltaNs < -kMaxNextBufferDelayNs) {
3908 // Delays longer than the max allowed trigger a reset.
3909 ALOGV("DelayNs: %lld, resetting timeLoopNextNs", (long long) deltaNs);
3910 deltaNs = microseconds((nsecs_t)mSleepTimeUs);
3911 timeLoopNextNs = nowNs + deltaNs;
3912 } else if (deltaNs < 0) {
3913 // Delays within the max delay allowed: zero the delta/sleepTime
3914 // to help the system catch up in the next iteration(s)
3915 ALOGV("DelayNs: %lld, catching-up", (long long) deltaNs);
3916 deltaNs = 0;
3917 }
3918 // update sleep time (which is >= 0)
3919 mSleepTimeUs = deltaNs / 1000;
3920 }
3921 if (!mSignalPending && mConfigEvents.isEmpty() && !exitPending()) {
3922 mWaitWorkCV.waitRelative(mLock, microseconds((nsecs_t)mSleepTimeUs));
3923 }
3924 ATRACE_END();
3925 }
3926 }
3927
3928 // Finally let go of removed track(s), without the lock held
3929 // since we can't guarantee the destructors won't acquire that
3930 // same lock. This will also mutate and push a new fast mixer state.
3931 threadLoop_removeTracks(tracksToRemove);
3932 tracksToRemove.clear();
3933
3934 // FIXME I don't understand the need for this here;
3935 // it was in the original code but maybe the
3936 // assignment in saveOutputTracks() makes this unnecessary?
3937 clearOutputTracks();
3938
3939 // Effect chains will be actually deleted here if they were removed from
3940 // mEffectChains list during mixing or effects processing
3941 effectChains.clear();
3942
3943 // FIXME Note that the above .clear() is no longer necessary since effectChains
3944 // is now local to this block, but will keep it for now (at least until merge done).
3945 }
3946
3947 threadLoop_exit();
3948
3949 if (!mStandby) {
3950 threadLoop_standby();
3951 mStandby = true;
3952 }
3953
3954 releaseWakeLock();
3955
3956 ALOGV("Thread %p type %d exiting", this, mType);
3957 return false;
3958 }
3959
3960 // removeTracks_l() must be called with ThreadBase::mLock held
removeTracks_l(const Vector<sp<Track>> & tracksToRemove)3961 void AudioFlinger::PlaybackThread::removeTracks_l(const Vector< sp<Track> >& tracksToRemove)
3962 {
3963 for (const auto& track : tracksToRemove) {
3964 mActiveTracks.remove(track);
3965 ALOGV("%s(%d): removing track on session %d", __func__, track->id(), track->sessionId());
3966 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
3967 if (chain != 0) {
3968 ALOGV("%s(%d): stopping track on chain %p for session Id: %d",
3969 __func__, track->id(), chain.get(), track->sessionId());
3970 chain->decActiveTrackCnt();
3971 }
3972 // If an external client track, inform APM we're no longer active, and remove if needed.
3973 // We do this under lock so that the state is consistent if the Track is destroyed.
3974 if (track->isExternalTrack()) {
3975 AudioSystem::stopOutput(track->portId());
3976 if (track->isTerminated()) {
3977 AudioSystem::releaseOutput(track->portId());
3978 }
3979 }
3980 if (track->isTerminated()) {
3981 // remove from our tracks vector
3982 removeTrack_l(track);
3983 }
3984 if ((track->channelMask() & AUDIO_CHANNEL_HAPTIC_ALL) != AUDIO_CHANNEL_NONE
3985 && mHapticChannelCount > 0) {
3986 mLock.unlock();
3987 // Unlock due to VibratorService will lock for this call and will
3988 // call Tracks.mute/unmute which also require thread's lock.
3989 AudioFlinger::onExternalVibrationStop(track->getExternalVibration());
3990 mLock.lock();
3991 }
3992 }
3993 }
3994
getTimestamp_l(AudioTimestamp & timestamp)3995 status_t AudioFlinger::PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp)
3996 {
3997 if (mNormalSink != 0) {
3998 ExtendedTimestamp ets;
3999 status_t status = mNormalSink->getTimestamp(ets);
4000 if (status == NO_ERROR) {
4001 status = ets.getBestTimestamp(×tamp);
4002 }
4003 return status;
4004 }
4005 if ((mType == OFFLOAD || mType == DIRECT) && mOutput != NULL) {
4006 uint64_t position64;
4007 if (mOutput->getPresentationPosition(&position64, ×tamp.mTime) == OK) {
4008 timestamp.mPosition = (uint32_t)position64;
4009 if (mDownstreamLatencyStatMs.getN() > 0) {
4010 const uint32_t positionOffset =
4011 (uint32_t)(mDownstreamLatencyStatMs.getMean() * mSampleRate * 1e-3);
4012 if (positionOffset > timestamp.mPosition) {
4013 timestamp.mPosition = 0;
4014 } else {
4015 timestamp.mPosition -= positionOffset;
4016 }
4017 }
4018 return NO_ERROR;
4019 }
4020 }
4021 return INVALID_OPERATION;
4022 }
4023
4024 // For dedicated VoIP outputs, let the HAL apply the stream volume. Track volume is
4025 // still applied by the mixer.
4026 // All tracks attached to a mixer with flag VOIP_RX are tied to the same
4027 // stream type STREAM_VOICE_CALL so this will only change the HAL volume once even
4028 // if more than one track are active
handleVoipVolume_l(float * volume)4029 status_t AudioFlinger::PlaybackThread::handleVoipVolume_l(float *volume)
4030 {
4031 status_t result = NO_ERROR;
4032 if ((mOutput->flags & AUDIO_OUTPUT_FLAG_VOIP_RX) != 0) {
4033 if (*volume != mLeftVolFloat) {
4034 result = mOutput->stream->setVolume(*volume, *volume);
4035 ALOGE_IF(result != OK,
4036 "Error when setting output stream volume: %d", result);
4037 if (result == NO_ERROR) {
4038 mLeftVolFloat = *volume;
4039 }
4040 }
4041 // if stream volume was successfully sent to the HAL, mLeftVolFloat == v here and we
4042 // remove stream volume contribution from software volume.
4043 if (mLeftVolFloat == *volume) {
4044 *volume = 1.0f;
4045 }
4046 }
4047 return result;
4048 }
4049
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)4050 status_t AudioFlinger::MixerThread::createAudioPatch_l(const struct audio_patch *patch,
4051 audio_patch_handle_t *handle)
4052 {
4053 status_t status;
4054 if (property_get_bool("af.patch_park", false /* default_value */)) {
4055 // Park FastMixer to avoid potential DOS issues with writing to the HAL
4056 // or if HAL does not properly lock against access.
4057 AutoPark<FastMixer> park(mFastMixer);
4058 status = PlaybackThread::createAudioPatch_l(patch, handle);
4059 } else {
4060 status = PlaybackThread::createAudioPatch_l(patch, handle);
4061 }
4062 return status;
4063 }
4064
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)4065 status_t AudioFlinger::PlaybackThread::createAudioPatch_l(const struct audio_patch *patch,
4066 audio_patch_handle_t *handle)
4067 {
4068 status_t status = NO_ERROR;
4069
4070 // store new device and send to effects
4071 audio_devices_t type = AUDIO_DEVICE_NONE;
4072 AudioDeviceTypeAddrVector deviceTypeAddrs;
4073 for (unsigned int i = 0; i < patch->num_sinks; i++) {
4074 LOG_ALWAYS_FATAL_IF(popcount(patch->sinks[i].ext.device.type) > 1
4075 && !mOutput->audioHwDev->supportsAudioPatches(),
4076 "Enumerated device type(%#x) must not be used "
4077 "as it does not support audio patches",
4078 patch->sinks[i].ext.device.type);
4079 type |= patch->sinks[i].ext.device.type;
4080 deviceTypeAddrs.push_back(AudioDeviceTypeAddr(patch->sinks[i].ext.device.type,
4081 patch->sinks[i].ext.device.address));
4082 }
4083
4084 audio_port_handle_t sinkPortId = patch->sinks[0].id;
4085 #ifdef ADD_BATTERY_DATA
4086 // when changing the audio output device, call addBatteryData to notify
4087 // the change
4088 if (outDeviceTypes() != deviceTypes) {
4089 uint32_t params = 0;
4090 // check whether speaker is on
4091 if (deviceTypes.count(AUDIO_DEVICE_OUT_SPEAKER) > 0) {
4092 params |= IMediaPlayerService::kBatteryDataSpeakerOn;
4093 }
4094
4095 // check if any other device (except speaker) is on
4096 if (!isSingleDeviceType(deviceTypes, AUDIO_DEVICE_OUT_SPEAKER)) {
4097 params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
4098 }
4099
4100 if (params != 0) {
4101 addBatteryData(params);
4102 }
4103 }
4104 #endif
4105
4106 for (size_t i = 0; i < mEffectChains.size(); i++) {
4107 mEffectChains[i]->setDevices_l(deviceTypeAddrs);
4108 }
4109
4110 // mPatch.num_sinks is not set when the thread is created so that
4111 // the first patch creation triggers an ioConfigChanged callback
4112 bool configChanged = (mPatch.num_sinks == 0) ||
4113 (mPatch.sinks[0].id != sinkPortId);
4114 mPatch = *patch;
4115 mOutDeviceTypeAddrs = deviceTypeAddrs;
4116
4117 if (mOutput->audioHwDev->supportsAudioPatches()) {
4118 sp<DeviceHalInterface> hwDevice = mOutput->audioHwDev->hwDevice();
4119 status = hwDevice->createAudioPatch(patch->num_sources,
4120 patch->sources,
4121 patch->num_sinks,
4122 patch->sinks,
4123 handle);
4124 } else {
4125 char *address;
4126 if (strcmp(patch->sinks[0].ext.device.address, "") != 0) {
4127 //FIXME: we only support address on first sink with HAL version < 3.0
4128 address = audio_device_address_to_parameter(
4129 patch->sinks[0].ext.device.type,
4130 patch->sinks[0].ext.device.address);
4131 } else {
4132 address = (char *)calloc(1, 1);
4133 }
4134 AudioParameter param = AudioParameter(String8(address));
4135 free(address);
4136 param.addInt(String8(AudioParameter::keyRouting), (int)type);
4137 status = mOutput->stream->setParameters(param.toString());
4138 *handle = AUDIO_PATCH_HANDLE_NONE;
4139 }
4140 if (configChanged) {
4141 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
4142 }
4143 return status;
4144 }
4145
releaseAudioPatch_l(const audio_patch_handle_t handle)4146 status_t AudioFlinger::MixerThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
4147 {
4148 status_t status;
4149 if (property_get_bool("af.patch_park", false /* default_value */)) {
4150 // Park FastMixer to avoid potential DOS issues with writing to the HAL
4151 // or if HAL does not properly lock against access.
4152 AutoPark<FastMixer> park(mFastMixer);
4153 status = PlaybackThread::releaseAudioPatch_l(handle);
4154 } else {
4155 status = PlaybackThread::releaseAudioPatch_l(handle);
4156 }
4157 return status;
4158 }
4159
releaseAudioPatch_l(const audio_patch_handle_t handle)4160 status_t AudioFlinger::PlaybackThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
4161 {
4162 status_t status = NO_ERROR;
4163
4164 mPatch = audio_patch{};
4165 mOutDeviceTypeAddrs.clear();
4166
4167 if (mOutput->audioHwDev->supportsAudioPatches()) {
4168 sp<DeviceHalInterface> hwDevice = mOutput->audioHwDev->hwDevice();
4169 status = hwDevice->releaseAudioPatch(handle);
4170 } else {
4171 AudioParameter param;
4172 param.addInt(String8(AudioParameter::keyRouting), 0);
4173 status = mOutput->stream->setParameters(param.toString());
4174 }
4175 return status;
4176 }
4177
addPatchTrack(const sp<PatchTrack> & track)4178 void AudioFlinger::PlaybackThread::addPatchTrack(const sp<PatchTrack>& track)
4179 {
4180 Mutex::Autolock _l(mLock);
4181 mTracks.add(track);
4182 }
4183
deletePatchTrack(const sp<PatchTrack> & track)4184 void AudioFlinger::PlaybackThread::deletePatchTrack(const sp<PatchTrack>& track)
4185 {
4186 Mutex::Autolock _l(mLock);
4187 destroyTrack_l(track);
4188 }
4189
toAudioPortConfig(struct audio_port_config * config)4190 void AudioFlinger::PlaybackThread::toAudioPortConfig(struct audio_port_config *config)
4191 {
4192 ThreadBase::toAudioPortConfig(config);
4193 config->role = AUDIO_PORT_ROLE_SOURCE;
4194 config->ext.mix.hw_module = mOutput->audioHwDev->handle();
4195 config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
4196 if (mOutput && mOutput->flags != AUDIO_OUTPUT_FLAG_NONE) {
4197 config->config_mask |= AUDIO_PORT_CONFIG_FLAGS;
4198 config->flags.output = mOutput->flags;
4199 }
4200 }
4201
4202 // ----------------------------------------------------------------------------
4203
MixerThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,bool systemReady,type_t type)4204 AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output,
4205 audio_io_handle_t id, bool systemReady, type_t type)
4206 : PlaybackThread(audioFlinger, output, id, type, systemReady),
4207 // mAudioMixer below
4208 // mFastMixer below
4209 mFastMixerFutex(0),
4210 mMasterMono(false)
4211 // mOutputSink below
4212 // mPipeSink below
4213 // mNormalSink below
4214 {
4215 setMasterBalance(audioFlinger->getMasterBalance_l());
4216 ALOGV("MixerThread() id=%d type=%d", id, type);
4217 ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%#x, mFrameSize=%zu, "
4218 "mFrameCount=%zu, mNormalFrameCount=%zu",
4219 mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount,
4220 mNormalFrameCount);
4221 mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
4222
4223 if (type == DUPLICATING) {
4224 // The Duplicating thread uses the AudioMixer and delivers data to OutputTracks
4225 // (downstream MixerThreads) in DuplicatingThread::threadLoop_write().
4226 // Do not create or use mFastMixer, mOutputSink, mPipeSink, or mNormalSink.
4227 return;
4228 }
4229 // create an NBAIO sink for the HAL output stream, and negotiate
4230 mOutputSink = new AudioStreamOutSink(output->stream);
4231 size_t numCounterOffers = 0;
4232 const NBAIO_Format offers[1] = {Format_from_SR_C(
4233 mSampleRate, mChannelCount + mHapticChannelCount, mFormat)};
4234 #if !LOG_NDEBUG
4235 ssize_t index =
4236 #else
4237 (void)
4238 #endif
4239 mOutputSink->negotiate(offers, 1, NULL, numCounterOffers);
4240 ALOG_ASSERT(index == 0);
4241
4242 // initialize fast mixer depending on configuration
4243 bool initFastMixer;
4244 switch (kUseFastMixer) {
4245 case FastMixer_Never:
4246 initFastMixer = false;
4247 break;
4248 case FastMixer_Always:
4249 initFastMixer = true;
4250 break;
4251 case FastMixer_Static:
4252 case FastMixer_Dynamic:
4253 // FastMixer was designed to operate with a HAL that pulls at a regular rate,
4254 // where the period is less than an experimentally determined threshold that can be
4255 // scheduled reliably with CFS. However, the BT A2DP HAL is
4256 // bursty (does not pull at a regular rate) and so cannot operate with FastMixer.
4257 initFastMixer = mFrameCount < mNormalFrameCount
4258 && Intersection(outDeviceTypes(), getAudioDeviceOutAllA2dpSet()).empty();
4259 break;
4260 }
4261 ALOGW_IF(initFastMixer == false && mFrameCount < mNormalFrameCount,
4262 "FastMixer is preferred for this sink as frameCount %zu is less than threshold %zu",
4263 mFrameCount, mNormalFrameCount);
4264 if (initFastMixer) {
4265 audio_format_t fastMixerFormat;
4266 if (mMixerBufferEnabled && mEffectBufferEnabled) {
4267 fastMixerFormat = AUDIO_FORMAT_PCM_FLOAT;
4268 } else {
4269 fastMixerFormat = AUDIO_FORMAT_PCM_16_BIT;
4270 }
4271 if (mFormat != fastMixerFormat) {
4272 // change our Sink format to accept our intermediate precision
4273 mFormat = fastMixerFormat;
4274 free(mSinkBuffer);
4275 mFrameSize = audio_bytes_per_frame(mChannelCount + mHapticChannelCount, mFormat);
4276 const size_t sinkBufferSize = mNormalFrameCount * mFrameSize;
4277 (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize);
4278 }
4279
4280 // create a MonoPipe to connect our submix to FastMixer
4281 NBAIO_Format format = mOutputSink->format();
4282
4283 // adjust format to match that of the Fast Mixer
4284 ALOGV("format changed from %#x to %#x", format.mFormat, fastMixerFormat);
4285 format.mFormat = fastMixerFormat;
4286 format.mFrameSize = audio_bytes_per_sample(format.mFormat) * format.mChannelCount;
4287
4288 // This pipe depth compensates for scheduling latency of the normal mixer thread.
4289 // When it wakes up after a maximum latency, it runs a few cycles quickly before
4290 // finally blocking. Note the pipe implementation rounds up the request to a power of 2.
4291 MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/);
4292 const NBAIO_Format offers[1] = {format};
4293 size_t numCounterOffers = 0;
4294 #if !LOG_NDEBUG
4295 ssize_t index =
4296 #else
4297 (void)
4298 #endif
4299 monoPipe->negotiate(offers, 1, NULL, numCounterOffers);
4300 ALOG_ASSERT(index == 0);
4301 monoPipe->setAvgFrames((mScreenState & 1) ?
4302 (monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
4303 mPipeSink = monoPipe;
4304
4305 // create fast mixer and configure it initially with just one fast track for our submix
4306 mFastMixer = new FastMixer(mId);
4307 FastMixerStateQueue *sq = mFastMixer->sq();
4308 #ifdef STATE_QUEUE_DUMP
4309 sq->setObserverDump(&mStateQueueObserverDump);
4310 sq->setMutatorDump(&mStateQueueMutatorDump);
4311 #endif
4312 FastMixerState *state = sq->begin();
4313 FastTrack *fastTrack = &state->mFastTracks[0];
4314 // wrap the source side of the MonoPipe to make it an AudioBufferProvider
4315 fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe));
4316 fastTrack->mVolumeProvider = NULL;
4317 fastTrack->mChannelMask = mChannelMask | mHapticChannelMask; // mPipeSink channel mask for
4318 // audio to FastMixer
4319 fastTrack->mFormat = mFormat; // mPipeSink format for audio to FastMixer
4320 fastTrack->mHapticPlaybackEnabled = mHapticChannelMask != AUDIO_CHANNEL_NONE;
4321 fastTrack->mHapticIntensity = AudioMixer::HAPTIC_SCALE_NONE;
4322 fastTrack->mGeneration++;
4323 state->mFastTracksGen++;
4324 state->mTrackMask = 1;
4325 // fast mixer will use the HAL output sink
4326 state->mOutputSink = mOutputSink.get();
4327 state->mOutputSinkGen++;
4328 state->mFrameCount = mFrameCount;
4329 // specify sink channel mask when haptic channel mask present as it can not
4330 // be calculated directly from channel count
4331 state->mSinkChannelMask = mHapticChannelMask == AUDIO_CHANNEL_NONE
4332 ? AUDIO_CHANNEL_NONE : mChannelMask | mHapticChannelMask;
4333 state->mCommand = FastMixerState::COLD_IDLE;
4334 // already done in constructor initialization list
4335 //mFastMixerFutex = 0;
4336 state->mColdFutexAddr = &mFastMixerFutex;
4337 state->mColdGen++;
4338 state->mDumpState = &mFastMixerDumpState;
4339 mFastMixerNBLogWriter = audioFlinger->newWriter_l(kFastMixerLogSize, "FastMixer");
4340 state->mNBLogWriter = mFastMixerNBLogWriter.get();
4341 sq->end();
4342 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
4343
4344 NBLog::thread_info_t info;
4345 info.id = mId;
4346 info.type = NBLog::FASTMIXER;
4347 mFastMixerNBLogWriter->log<NBLog::EVENT_THREAD_INFO>(info);
4348
4349 // start the fast mixer
4350 mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO);
4351 pid_t tid = mFastMixer->getTid();
4352 sendPrioConfigEvent(getpid(), tid, kPriorityFastMixer, false /*forApp*/);
4353 stream()->setHalThreadPriority(kPriorityFastMixer);
4354
4355 #ifdef AUDIO_WATCHDOG
4356 // create and start the watchdog
4357 mAudioWatchdog = new AudioWatchdog();
4358 mAudioWatchdog->setDump(&mAudioWatchdogDump);
4359 mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO);
4360 tid = mAudioWatchdog->getTid();
4361 sendPrioConfigEvent(getpid(), tid, kPriorityFastMixer, false /*forApp*/);
4362 #endif
4363 } else {
4364 #ifdef TEE_SINK
4365 // Only use the MixerThread tee if there is no FastMixer.
4366 mTee.set(mOutputSink->format(), NBAIO_Tee::TEE_FLAG_OUTPUT_THREAD);
4367 mTee.setId(std::string("_") + std::to_string(mId) + "_M");
4368 #endif
4369 }
4370
4371 switch (kUseFastMixer) {
4372 case FastMixer_Never:
4373 case FastMixer_Dynamic:
4374 mNormalSink = mOutputSink;
4375 break;
4376 case FastMixer_Always:
4377 mNormalSink = mPipeSink;
4378 break;
4379 case FastMixer_Static:
4380 mNormalSink = initFastMixer ? mPipeSink : mOutputSink;
4381 break;
4382 }
4383 }
4384
~MixerThread()4385 AudioFlinger::MixerThread::~MixerThread()
4386 {
4387 if (mFastMixer != 0) {
4388 FastMixerStateQueue *sq = mFastMixer->sq();
4389 FastMixerState *state = sq->begin();
4390 if (state->mCommand == FastMixerState::COLD_IDLE) {
4391 int32_t old = android_atomic_inc(&mFastMixerFutex);
4392 if (old == -1) {
4393 (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
4394 }
4395 }
4396 state->mCommand = FastMixerState::EXIT;
4397 sq->end();
4398 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
4399 mFastMixer->join();
4400 // Though the fast mixer thread has exited, it's state queue is still valid.
4401 // We'll use that extract the final state which contains one remaining fast track
4402 // corresponding to our sub-mix.
4403 state = sq->begin();
4404 ALOG_ASSERT(state->mTrackMask == 1);
4405 FastTrack *fastTrack = &state->mFastTracks[0];
4406 ALOG_ASSERT(fastTrack->mBufferProvider != NULL);
4407 delete fastTrack->mBufferProvider;
4408 sq->end(false /*didModify*/);
4409 mFastMixer.clear();
4410 #ifdef AUDIO_WATCHDOG
4411 if (mAudioWatchdog != 0) {
4412 mAudioWatchdog->requestExit();
4413 mAudioWatchdog->requestExitAndWait();
4414 mAudioWatchdog.clear();
4415 }
4416 #endif
4417 }
4418 mAudioFlinger->unregisterWriter(mFastMixerNBLogWriter);
4419 delete mAudioMixer;
4420 }
4421
4422
correctLatency_l(uint32_t latency) const4423 uint32_t AudioFlinger::MixerThread::correctLatency_l(uint32_t latency) const
4424 {
4425 if (mFastMixer != 0) {
4426 MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
4427 latency += (pipe->getAvgFrames() * 1000) / mSampleRate;
4428 }
4429 return latency;
4430 }
4431
threadLoop_write()4432 ssize_t AudioFlinger::MixerThread::threadLoop_write()
4433 {
4434 // FIXME we should only do one push per cycle; confirm this is true
4435 // Start the fast mixer if it's not already running
4436 if (mFastMixer != 0) {
4437 FastMixerStateQueue *sq = mFastMixer->sq();
4438 FastMixerState *state = sq->begin();
4439 if (state->mCommand != FastMixerState::MIX_WRITE &&
4440 (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) {
4441 if (state->mCommand == FastMixerState::COLD_IDLE) {
4442
4443 // FIXME workaround for first HAL write being CPU bound on some devices
4444 ATRACE_BEGIN("write");
4445 mOutput->write((char *)mSinkBuffer, 0);
4446 ATRACE_END();
4447
4448 int32_t old = android_atomic_inc(&mFastMixerFutex);
4449 if (old == -1) {
4450 (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
4451 }
4452 #ifdef AUDIO_WATCHDOG
4453 if (mAudioWatchdog != 0) {
4454 mAudioWatchdog->resume();
4455 }
4456 #endif
4457 }
4458 state->mCommand = FastMixerState::MIX_WRITE;
4459 #ifdef FAST_THREAD_STATISTICS
4460 mFastMixerDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
4461 FastThreadDumpState::kSamplingNforLowRamDevice : FastThreadDumpState::kSamplingN);
4462 #endif
4463 sq->end();
4464 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
4465 if (kUseFastMixer == FastMixer_Dynamic) {
4466 mNormalSink = mPipeSink;
4467 }
4468 } else {
4469 sq->end(false /*didModify*/);
4470 }
4471 }
4472 return PlaybackThread::threadLoop_write();
4473 }
4474
threadLoop_standby()4475 void AudioFlinger::MixerThread::threadLoop_standby()
4476 {
4477 // Idle the fast mixer if it's currently running
4478 if (mFastMixer != 0) {
4479 FastMixerStateQueue *sq = mFastMixer->sq();
4480 FastMixerState *state = sq->begin();
4481 if (!(state->mCommand & FastMixerState::IDLE)) {
4482 // Report any frames trapped in the Monopipe
4483 MonoPipe *monoPipe = (MonoPipe *)mPipeSink.get();
4484 const long long pipeFrames = monoPipe->maxFrames() - monoPipe->availableToWrite();
4485 mLocalLog.log("threadLoop_standby: framesWritten:%lld suspendedFrames:%lld "
4486 "monoPipeWritten:%lld monoPipeLeft:%lld",
4487 (long long)mFramesWritten, (long long)mSuspendedFrames,
4488 (long long)mPipeSink->framesWritten(), pipeFrames);
4489 mLocalLog.log("threadLoop_standby: %s", mTimestamp.toString().c_str());
4490
4491 state->mCommand = FastMixerState::COLD_IDLE;
4492 state->mColdFutexAddr = &mFastMixerFutex;
4493 state->mColdGen++;
4494 mFastMixerFutex = 0;
4495 sq->end();
4496 // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
4497 sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
4498 if (kUseFastMixer == FastMixer_Dynamic) {
4499 mNormalSink = mOutputSink;
4500 }
4501 #ifdef AUDIO_WATCHDOG
4502 if (mAudioWatchdog != 0) {
4503 mAudioWatchdog->pause();
4504 }
4505 #endif
4506 } else {
4507 sq->end(false /*didModify*/);
4508 }
4509 }
4510 PlaybackThread::threadLoop_standby();
4511 }
4512
waitingAsyncCallback_l()4513 bool AudioFlinger::PlaybackThread::waitingAsyncCallback_l()
4514 {
4515 return false;
4516 }
4517
shouldStandby_l()4518 bool AudioFlinger::PlaybackThread::shouldStandby_l()
4519 {
4520 return !mStandby;
4521 }
4522
waitingAsyncCallback()4523 bool AudioFlinger::PlaybackThread::waitingAsyncCallback()
4524 {
4525 Mutex::Autolock _l(mLock);
4526 return waitingAsyncCallback_l();
4527 }
4528
4529 // shared by MIXER and DIRECT, overridden by DUPLICATING
threadLoop_standby()4530 void AudioFlinger::PlaybackThread::threadLoop_standby()
4531 {
4532 ALOGV("Audio hardware entering standby, mixer %p, suspend count %d", this, mSuspended);
4533 mOutput->standby();
4534 if (mUseAsyncWrite != 0) {
4535 // discard any pending drain or write ack by incrementing sequence
4536 mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
4537 mDrainSequence = (mDrainSequence + 2) & ~1;
4538 ALOG_ASSERT(mCallbackThread != 0);
4539 mCallbackThread->setWriteBlocked(mWriteAckSequence);
4540 mCallbackThread->setDraining(mDrainSequence);
4541 }
4542 mHwPaused = false;
4543 }
4544
onAddNewTrack_l()4545 void AudioFlinger::PlaybackThread::onAddNewTrack_l()
4546 {
4547 ALOGV("signal playback thread");
4548 broadcast_l();
4549 }
4550
onAsyncError()4551 void AudioFlinger::PlaybackThread::onAsyncError()
4552 {
4553 for (int i = AUDIO_STREAM_SYSTEM; i < (int)AUDIO_STREAM_CNT; i++) {
4554 invalidateTracks((audio_stream_type_t)i);
4555 }
4556 }
4557
threadLoop_mix()4558 void AudioFlinger::MixerThread::threadLoop_mix()
4559 {
4560 // mix buffers...
4561 mAudioMixer->process();
4562 mCurrentWriteLength = mSinkBufferSize;
4563 // increase sleep time progressively when application underrun condition clears.
4564 // Only increase sleep time if the mixer is ready for two consecutive times to avoid
4565 // that a steady state of alternating ready/not ready conditions keeps the sleep time
4566 // such that we would underrun the audio HAL.
4567 if ((mSleepTimeUs == 0) && (sleepTimeShift > 0)) {
4568 sleepTimeShift--;
4569 }
4570 mSleepTimeUs = 0;
4571 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
4572 //TODO: delay standby when effects have a tail
4573
4574 }
4575
threadLoop_sleepTime()4576 void AudioFlinger::MixerThread::threadLoop_sleepTime()
4577 {
4578 // If no tracks are ready, sleep once for the duration of an output
4579 // buffer size, then write 0s to the output
4580 if (mSleepTimeUs == 0) {
4581 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
4582 if (mPipeSink.get() != nullptr && mPipeSink == mNormalSink) {
4583 // Using the Monopipe availableToWrite, we estimate the
4584 // sleep time to retry for more data (before we underrun).
4585 MonoPipe *monoPipe = static_cast<MonoPipe *>(mPipeSink.get());
4586 const ssize_t availableToWrite = mPipeSink->availableToWrite();
4587 const size_t pipeFrames = monoPipe->maxFrames();
4588 const size_t framesLeft = pipeFrames - max(availableToWrite, 0);
4589 // HAL_framecount <= framesDelay ~ framesLeft / 2 <= Normal_Mixer_framecount
4590 const size_t framesDelay = std::min(
4591 mNormalFrameCount, max(framesLeft / 2, mFrameCount));
4592 ALOGV("pipeFrames:%zu framesLeft:%zu framesDelay:%zu",
4593 pipeFrames, framesLeft, framesDelay);
4594 mSleepTimeUs = framesDelay * MICROS_PER_SECOND / mSampleRate;
4595 } else {
4596 mSleepTimeUs = mActiveSleepTimeUs >> sleepTimeShift;
4597 if (mSleepTimeUs < kMinThreadSleepTimeUs) {
4598 mSleepTimeUs = kMinThreadSleepTimeUs;
4599 }
4600 // reduce sleep time in case of consecutive application underruns to avoid
4601 // starving the audio HAL. As activeSleepTimeUs() is larger than a buffer
4602 // duration we would end up writing less data than needed by the audio HAL if
4603 // the condition persists.
4604 if (sleepTimeShift < kMaxThreadSleepTimeShift) {
4605 sleepTimeShift++;
4606 }
4607 }
4608 } else {
4609 mSleepTimeUs = mIdleSleepTimeUs;
4610 }
4611 } else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) {
4612 // clear out mMixerBuffer or mSinkBuffer, to ensure buffers are cleared
4613 // before effects processing or output.
4614 if (mMixerBufferValid) {
4615 memset(mMixerBuffer, 0, mMixerBufferSize);
4616 } else {
4617 memset(mSinkBuffer, 0, mSinkBufferSize);
4618 }
4619 mSleepTimeUs = 0;
4620 ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED),
4621 "anticipated start");
4622 }
4623 // TODO add standby time extension fct of effect tail
4624 }
4625
4626 // prepareTracks_l() must be called with ThreadBase::mLock held
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)4627 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l(
4628 Vector< sp<Track> > *tracksToRemove)
4629 {
4630 // clean up deleted track ids in AudioMixer before allocating new tracks
4631 (void)mTracks.processDeletedTrackIds([this](int trackId) {
4632 // for each trackId, destroy it in the AudioMixer
4633 if (mAudioMixer->exists(trackId)) {
4634 mAudioMixer->destroy(trackId);
4635 }
4636 });
4637 mTracks.clearDeletedTrackIds();
4638
4639 mixer_state mixerStatus = MIXER_IDLE;
4640 // find out which tracks need to be processed
4641 size_t count = mActiveTracks.size();
4642 size_t mixedTracks = 0;
4643 size_t tracksWithEffect = 0;
4644 // counts only _active_ fast tracks
4645 size_t fastTracks = 0;
4646 uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset
4647
4648 float masterVolume = mMasterVolume;
4649 bool masterMute = mMasterMute;
4650
4651 if (masterMute) {
4652 masterVolume = 0;
4653 }
4654 // Delegate master volume control to effect in output mix effect chain if needed
4655 sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
4656 if (chain != 0) {
4657 uint32_t v = (uint32_t)(masterVolume * (1 << 24));
4658 chain->setVolume_l(&v, &v);
4659 masterVolume = (float)((v + (1 << 23)) >> 24);
4660 chain.clear();
4661 }
4662
4663 // prepare a new state to push
4664 FastMixerStateQueue *sq = NULL;
4665 FastMixerState *state = NULL;
4666 bool didModify = false;
4667 FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED;
4668 bool coldIdle = false;
4669 if (mFastMixer != 0) {
4670 sq = mFastMixer->sq();
4671 state = sq->begin();
4672 coldIdle = state->mCommand == FastMixerState::COLD_IDLE;
4673 }
4674
4675 mMixerBufferValid = false; // mMixerBuffer has no valid data until appropriate tracks found.
4676 mEffectBufferValid = false; // mEffectBuffer has no valid data until tracks found.
4677
4678 // DeferredOperations handles statistics after setting mixerStatus.
4679 class DeferredOperations {
4680 public:
4681 DeferredOperations(mixer_state *mixerStatus)
4682 : mMixerStatus(mixerStatus) { }
4683
4684 // when leaving scope, tally frames properly.
4685 ~DeferredOperations() {
4686 // Tally underrun frames only if we are actually mixing (MIXER_TRACKS_READY)
4687 // because that is when the underrun occurs.
4688 // We do not distinguish between FastTracks and NormalTracks here.
4689 if (*mMixerStatus == MIXER_TRACKS_READY) {
4690 for (const auto &underrun : mUnderrunFrames) {
4691 underrun.first->mAudioTrackServerProxy->tallyUnderrunFrames(
4692 underrun.second);
4693 }
4694 }
4695 }
4696
4697 // tallyUnderrunFrames() is called to update the track counters
4698 // with the number of underrun frames for a particular mixer period.
4699 // We defer tallying until we know the final mixer status.
4700 void tallyUnderrunFrames(sp<Track> track, size_t underrunFrames) {
4701 mUnderrunFrames.emplace_back(track, underrunFrames);
4702 }
4703
4704 private:
4705 const mixer_state * const mMixerStatus;
4706 std::vector<std::pair<sp<Track>, size_t>> mUnderrunFrames;
4707 } deferredOperations(&mixerStatus); // implicit nested scope for variable capture
4708
4709 bool noFastHapticTrack = true;
4710 for (size_t i=0 ; i<count ; i++) {
4711 const sp<Track> t = mActiveTracks[i];
4712
4713 // this const just means the local variable doesn't change
4714 Track* const track = t.get();
4715
4716 // process fast tracks
4717 if (track->isFastTrack()) {
4718 LOG_ALWAYS_FATAL_IF(mFastMixer.get() == nullptr,
4719 "%s(%d): FastTrack(%d) present without FastMixer",
4720 __func__, id(), track->id());
4721
4722 if (track->getHapticPlaybackEnabled()) {
4723 noFastHapticTrack = false;
4724 }
4725
4726 // It's theoretically possible (though unlikely) for a fast track to be created
4727 // and then removed within the same normal mix cycle. This is not a problem, as
4728 // the track never becomes active so it's fast mixer slot is never touched.
4729 // The converse, of removing an (active) track and then creating a new track
4730 // at the identical fast mixer slot within the same normal mix cycle,
4731 // is impossible because the slot isn't marked available until the end of each cycle.
4732 int j = track->mFastIndex;
4733 ALOG_ASSERT(0 < j && j < (int)FastMixerState::sMaxFastTracks);
4734 ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j)));
4735 FastTrack *fastTrack = &state->mFastTracks[j];
4736
4737 // Determine whether the track is currently in underrun condition,
4738 // and whether it had a recent underrun.
4739 FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j];
4740 FastTrackUnderruns underruns = ftDump->mUnderruns;
4741 uint32_t recentFull = (underruns.mBitFields.mFull -
4742 track->mObservedUnderruns.mBitFields.mFull) & UNDERRUN_MASK;
4743 uint32_t recentPartial = (underruns.mBitFields.mPartial -
4744 track->mObservedUnderruns.mBitFields.mPartial) & UNDERRUN_MASK;
4745 uint32_t recentEmpty = (underruns.mBitFields.mEmpty -
4746 track->mObservedUnderruns.mBitFields.mEmpty) & UNDERRUN_MASK;
4747 uint32_t recentUnderruns = recentPartial + recentEmpty;
4748 track->mObservedUnderruns = underruns;
4749 // don't count underruns that occur while stopping or pausing
4750 // or stopped which can occur when flush() is called while active
4751 size_t underrunFrames = 0;
4752 if (!(track->isStopping() || track->isPausing() || track->isStopped()) &&
4753 recentUnderruns > 0) {
4754 // FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun
4755 underrunFrames = recentUnderruns * mFrameCount;
4756 }
4757 // Immediately account for FastTrack underruns.
4758 track->mAudioTrackServerProxy->tallyUnderrunFrames(underrunFrames);
4759
4760 // This is similar to the state machine for normal tracks,
4761 // with a few modifications for fast tracks.
4762 bool isActive = true;
4763 switch (track->mState) {
4764 case TrackBase::STOPPING_1:
4765 // track stays active in STOPPING_1 state until first underrun
4766 if (recentUnderruns > 0 || track->isTerminated()) {
4767 track->mState = TrackBase::STOPPING_2;
4768 }
4769 break;
4770 case TrackBase::PAUSING:
4771 // ramp down is not yet implemented
4772 track->setPaused();
4773 break;
4774 case TrackBase::RESUMING:
4775 // ramp up is not yet implemented
4776 track->mState = TrackBase::ACTIVE;
4777 break;
4778 case TrackBase::ACTIVE:
4779 if (recentFull > 0 || recentPartial > 0) {
4780 // track has provided at least some frames recently: reset retry count
4781 track->mRetryCount = kMaxTrackRetries;
4782 }
4783 if (recentUnderruns == 0) {
4784 // no recent underruns: stay active
4785 break;
4786 }
4787 // there has recently been an underrun of some kind
4788 if (track->sharedBuffer() == 0) {
4789 // were any of the recent underruns "empty" (no frames available)?
4790 if (recentEmpty == 0) {
4791 // no, then ignore the partial underruns as they are allowed indefinitely
4792 break;
4793 }
4794 // there has recently been an "empty" underrun: decrement the retry counter
4795 if (--(track->mRetryCount) > 0) {
4796 break;
4797 }
4798 // indicate to client process that the track was disabled because of underrun;
4799 // it will then automatically call start() when data is available
4800 track->disable();
4801 // remove from active list, but state remains ACTIVE [confusing but true]
4802 isActive = false;
4803 break;
4804 }
4805 FALLTHROUGH_INTENDED;
4806 case TrackBase::STOPPING_2:
4807 case TrackBase::PAUSED:
4808 case TrackBase::STOPPED:
4809 case TrackBase::FLUSHED: // flush() while active
4810 // Check for presentation complete if track is inactive
4811 // We have consumed all the buffers of this track.
4812 // This would be incomplete if we auto-paused on underrun
4813 {
4814 uint32_t latency = 0;
4815 status_t result = mOutput->stream->getLatency(&latency);
4816 ALOGE_IF(result != OK,
4817 "Error when retrieving output stream latency: %d", result);
4818 size_t audioHALFrames = (latency * mSampleRate) / 1000;
4819 int64_t framesWritten = mBytesWritten / mFrameSize;
4820 if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) {
4821 // track stays in active list until presentation is complete
4822 break;
4823 }
4824 }
4825 if (track->isStopping_2()) {
4826 track->mState = TrackBase::STOPPED;
4827 }
4828 if (track->isStopped()) {
4829 // Can't reset directly, as fast mixer is still polling this track
4830 // track->reset();
4831 // So instead mark this track as needing to be reset after push with ack
4832 resetMask |= 1 << i;
4833 }
4834 isActive = false;
4835 break;
4836 case TrackBase::IDLE:
4837 default:
4838 LOG_ALWAYS_FATAL("unexpected track state %d", track->mState);
4839 }
4840
4841 if (isActive) {
4842 // was it previously inactive?
4843 if (!(state->mTrackMask & (1 << j))) {
4844 ExtendedAudioBufferProvider *eabp = track;
4845 VolumeProvider *vp = track;
4846 fastTrack->mBufferProvider = eabp;
4847 fastTrack->mVolumeProvider = vp;
4848 fastTrack->mChannelMask = track->mChannelMask;
4849 fastTrack->mFormat = track->mFormat;
4850 fastTrack->mHapticPlaybackEnabled = track->getHapticPlaybackEnabled();
4851 fastTrack->mHapticIntensity = track->getHapticIntensity();
4852 fastTrack->mGeneration++;
4853 state->mTrackMask |= 1 << j;
4854 didModify = true;
4855 // no acknowledgement required for newly active tracks
4856 }
4857 sp<AudioTrackServerProxy> proxy = track->mAudioTrackServerProxy;
4858 float volume;
4859 if (track->isPlaybackRestricted() || mStreamTypes[track->streamType()].mute) {
4860 volume = 0.f;
4861 } else {
4862 volume = masterVolume * mStreamTypes[track->streamType()].volume;
4863 }
4864
4865 handleVoipVolume_l(&volume);
4866
4867 // cache the combined master volume and stream type volume for fast mixer; this
4868 // lacks any synchronization or barrier so VolumeProvider may read a stale value
4869 const float vh = track->getVolumeHandler()->getVolume(
4870 proxy->framesReleased()).first;
4871 volume *= vh;
4872 track->mCachedVolume = volume;
4873 gain_minifloat_packed_t vlr = proxy->getVolumeLR();
4874 float vlf = volume * float_from_gain(gain_minifloat_unpack_left(vlr));
4875 float vrf = volume * float_from_gain(gain_minifloat_unpack_right(vlr));
4876
4877 track->setFinalVolume((vlf + vrf) / 2.f);
4878 ++fastTracks;
4879 } else {
4880 // was it previously active?
4881 if (state->mTrackMask & (1 << j)) {
4882 fastTrack->mBufferProvider = NULL;
4883 fastTrack->mGeneration++;
4884 state->mTrackMask &= ~(1 << j);
4885 didModify = true;
4886 // If any fast tracks were removed, we must wait for acknowledgement
4887 // because we're about to decrement the last sp<> on those tracks.
4888 block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
4889 } else {
4890 // ALOGW rather than LOG_ALWAYS_FATAL because it seems there are cases where an
4891 // AudioTrack may start (which may not be with a start() but with a write()
4892 // after underrun) and immediately paused or released. In that case the
4893 // FastTrack state hasn't had time to update.
4894 // TODO Remove the ALOGW when this theory is confirmed.
4895 ALOGW("fast track %d should have been active; "
4896 "mState=%d, mTrackMask=%#x, recentUnderruns=%u, isShared=%d",
4897 j, track->mState, state->mTrackMask, recentUnderruns,
4898 track->sharedBuffer() != 0);
4899 // Since the FastMixer state already has the track inactive, do nothing here.
4900 }
4901 tracksToRemove->add(track);
4902 // Avoids a misleading display in dumpsys
4903 track->mObservedUnderruns.mBitFields.mMostRecent = UNDERRUN_FULL;
4904 }
4905 if (fastTrack->mHapticPlaybackEnabled != track->getHapticPlaybackEnabled()) {
4906 fastTrack->mHapticPlaybackEnabled = track->getHapticPlaybackEnabled();
4907 didModify = true;
4908 }
4909 continue;
4910 }
4911
4912 { // local variable scope to avoid goto warning
4913
4914 audio_track_cblk_t* cblk = track->cblk();
4915
4916 // The first time a track is added we wait
4917 // for all its buffers to be filled before processing it
4918 const int trackId = track->id();
4919
4920 // if an active track doesn't exist in the AudioMixer, create it.
4921 // use the trackId as the AudioMixer name.
4922 if (!mAudioMixer->exists(trackId)) {
4923 status_t status = mAudioMixer->create(
4924 trackId,
4925 track->mChannelMask,
4926 track->mFormat,
4927 track->mSessionId);
4928 if (status != OK) {
4929 ALOGW("%s(): AudioMixer cannot create track(%d)"
4930 " mask %#x, format %#x, sessionId %d",
4931 __func__, trackId,
4932 track->mChannelMask, track->mFormat, track->mSessionId);
4933 tracksToRemove->add(track);
4934 track->invalidate(); // consider it dead.
4935 continue;
4936 }
4937 }
4938
4939 // make sure that we have enough frames to mix one full buffer.
4940 // enforce this condition only once to enable draining the buffer in case the client
4941 // app does not call stop() and relies on underrun to stop:
4942 // hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed
4943 // during last round
4944 size_t desiredFrames;
4945 const uint32_t sampleRate = track->mAudioTrackServerProxy->getSampleRate();
4946 AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate();
4947
4948 desiredFrames = sourceFramesNeededWithTimestretch(
4949 sampleRate, mNormalFrameCount, mSampleRate, playbackRate.mSpeed);
4950 // TODO: ONLY USED FOR LEGACY RESAMPLERS, remove when they are removed.
4951 // add frames already consumed but not yet released by the resampler
4952 // because mAudioTrackServerProxy->framesReady() will include these frames
4953 desiredFrames += mAudioMixer->getUnreleasedFrames(trackId);
4954
4955 uint32_t minFrames = 1;
4956 if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() &&
4957 (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) {
4958 minFrames = desiredFrames;
4959 }
4960
4961 size_t framesReady = track->framesReady();
4962 if (ATRACE_ENABLED()) {
4963 // I wish we had formatted trace names
4964 std::string traceName("nRdy");
4965 traceName += std::to_string(trackId);
4966 ATRACE_INT(traceName.c_str(), framesReady);
4967 }
4968 if ((framesReady >= minFrames) && track->isReady() &&
4969 !track->isPaused() && !track->isTerminated())
4970 {
4971 ALOGVV("track(%d) s=%08x [OK] on thread %p", trackId, cblk->mServer, this);
4972
4973 mixedTracks++;
4974
4975 // track->mainBuffer() != mSinkBuffer or mMixerBuffer means
4976 // there is an effect chain connected to the track
4977 chain.clear();
4978 if (track->mainBuffer() != mSinkBuffer &&
4979 track->mainBuffer() != mMixerBuffer) {
4980 if (mEffectBufferEnabled) {
4981 mEffectBufferValid = true; // Later can set directly.
4982 }
4983 chain = getEffectChain_l(track->sessionId());
4984 // Delegate volume control to effect in track effect chain if needed
4985 if (chain != 0) {
4986 tracksWithEffect++;
4987 } else {
4988 ALOGW("prepareTracks_l(): track(%d) attached to effect but no chain found on "
4989 "session %d",
4990 trackId, track->sessionId());
4991 }
4992 }
4993
4994
4995 int param = AudioMixer::VOLUME;
4996 if (track->mFillingUpStatus == Track::FS_FILLED) {
4997 // no ramp for the first volume setting
4998 track->mFillingUpStatus = Track::FS_ACTIVE;
4999 if (track->mState == TrackBase::RESUMING) {
5000 track->mState = TrackBase::ACTIVE;
5001 // If a new track is paused immediately after start, do not ramp on resume.
5002 if (cblk->mServer != 0) {
5003 param = AudioMixer::RAMP_VOLUME;
5004 }
5005 }
5006 mAudioMixer->setParameter(trackId, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL);
5007 mLeftVolFloat = -1.0;
5008 // FIXME should not make a decision based on mServer
5009 } else if (cblk->mServer != 0) {
5010 // If the track is stopped before the first frame was mixed,
5011 // do not apply ramp
5012 param = AudioMixer::RAMP_VOLUME;
5013 }
5014
5015 // compute volume for this track
5016 uint32_t vl, vr; // in U8.24 integer format
5017 float vlf, vrf, vaf; // in [0.0, 1.0] float format
5018 // read original volumes with volume control
5019 float v = masterVolume * mStreamTypes[track->streamType()].volume;
5020 // Always fetch volumeshaper volume to ensure state is updated.
5021 const sp<AudioTrackServerProxy> proxy = track->mAudioTrackServerProxy;
5022 const float vh = track->getVolumeHandler()->getVolume(
5023 track->mAudioTrackServerProxy->framesReleased()).first;
5024
5025 if (mStreamTypes[track->streamType()].mute || track->isPlaybackRestricted()) {
5026 v = 0;
5027 }
5028
5029 handleVoipVolume_l(&v);
5030
5031 if (track->isPausing()) {
5032 vl = vr = 0;
5033 vlf = vrf = vaf = 0.;
5034 track->setPaused();
5035 } else {
5036 gain_minifloat_packed_t vlr = proxy->getVolumeLR();
5037 vlf = float_from_gain(gain_minifloat_unpack_left(vlr));
5038 vrf = float_from_gain(gain_minifloat_unpack_right(vlr));
5039 // track volumes come from shared memory, so can't be trusted and must be clamped
5040 if (vlf > GAIN_FLOAT_UNITY) {
5041 ALOGV("Track left volume out of range: %.3g", vlf);
5042 vlf = GAIN_FLOAT_UNITY;
5043 }
5044 if (vrf > GAIN_FLOAT_UNITY) {
5045 ALOGV("Track right volume out of range: %.3g", vrf);
5046 vrf = GAIN_FLOAT_UNITY;
5047 }
5048 // now apply the master volume and stream type volume and shaper volume
5049 vlf *= v * vh;
5050 vrf *= v * vh;
5051 // assuming master volume and stream type volume each go up to 1.0,
5052 // then derive vl and vr as U8.24 versions for the effect chain
5053 const float scaleto8_24 = MAX_GAIN_INT * MAX_GAIN_INT;
5054 vl = (uint32_t) (scaleto8_24 * vlf);
5055 vr = (uint32_t) (scaleto8_24 * vrf);
5056 // vl and vr are now in U8.24 format
5057 uint16_t sendLevel = proxy->getSendLevel_U4_12();
5058 // send level comes from shared memory and so may be corrupt
5059 if (sendLevel > MAX_GAIN_INT) {
5060 ALOGV("Track send level out of range: %04X", sendLevel);
5061 sendLevel = MAX_GAIN_INT;
5062 }
5063 // vaf is represented as [0.0, 1.0] float by rescaling sendLevel
5064 vaf = v * sendLevel * (1. / MAX_GAIN_INT);
5065 }
5066
5067 track->setFinalVolume((vrf + vlf) / 2.f);
5068
5069 // Delegate volume control to effect in track effect chain if needed
5070 if (chain != 0 && chain->setVolume_l(&vl, &vr)) {
5071 // Do not ramp volume if volume is controlled by effect
5072 param = AudioMixer::VOLUME;
5073 // Update remaining floating point volume levels
5074 vlf = (float)vl / (1 << 24);
5075 vrf = (float)vr / (1 << 24);
5076 track->mHasVolumeController = true;
5077 } else {
5078 // force no volume ramp when volume controller was just disabled or removed
5079 // from effect chain to avoid volume spike
5080 if (track->mHasVolumeController) {
5081 param = AudioMixer::VOLUME;
5082 }
5083 track->mHasVolumeController = false;
5084 }
5085
5086 // XXX: these things DON'T need to be done each time
5087 mAudioMixer->setBufferProvider(trackId, track);
5088 mAudioMixer->enable(trackId);
5089
5090 mAudioMixer->setParameter(trackId, param, AudioMixer::VOLUME0, &vlf);
5091 mAudioMixer->setParameter(trackId, param, AudioMixer::VOLUME1, &vrf);
5092 mAudioMixer->setParameter(trackId, param, AudioMixer::AUXLEVEL, &vaf);
5093 mAudioMixer->setParameter(
5094 trackId,
5095 AudioMixer::TRACK,
5096 AudioMixer::FORMAT, (void *)track->format());
5097 mAudioMixer->setParameter(
5098 trackId,
5099 AudioMixer::TRACK,
5100 AudioMixer::CHANNEL_MASK, (void *)(uintptr_t)track->channelMask());
5101 mAudioMixer->setParameter(
5102 trackId,
5103 AudioMixer::TRACK,
5104 AudioMixer::MIXER_CHANNEL_MASK,
5105 (void *)(uintptr_t)(mChannelMask | mHapticChannelMask));
5106 // limit track sample rate to 2 x output sample rate, which changes at re-configuration
5107 uint32_t maxSampleRate = mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX;
5108 uint32_t reqSampleRate = proxy->getSampleRate();
5109 if (reqSampleRate == 0) {
5110 reqSampleRate = mSampleRate;
5111 } else if (reqSampleRate > maxSampleRate) {
5112 reqSampleRate = maxSampleRate;
5113 }
5114 mAudioMixer->setParameter(
5115 trackId,
5116 AudioMixer::RESAMPLE,
5117 AudioMixer::SAMPLE_RATE,
5118 (void *)(uintptr_t)reqSampleRate);
5119
5120 AudioPlaybackRate playbackRate = proxy->getPlaybackRate();
5121 mAudioMixer->setParameter(
5122 trackId,
5123 AudioMixer::TIMESTRETCH,
5124 AudioMixer::PLAYBACK_RATE,
5125 &playbackRate);
5126
5127 /*
5128 * Select the appropriate output buffer for the track.
5129 *
5130 * Tracks with effects go into their own effects chain buffer
5131 * and from there into either mEffectBuffer or mSinkBuffer.
5132 *
5133 * Other tracks can use mMixerBuffer for higher precision
5134 * channel accumulation. If this buffer is enabled
5135 * (mMixerBufferEnabled true), then selected tracks will accumulate
5136 * into it.
5137 *
5138 */
5139 if (mMixerBufferEnabled
5140 && (track->mainBuffer() == mSinkBuffer
5141 || track->mainBuffer() == mMixerBuffer)) {
5142 mAudioMixer->setParameter(
5143 trackId,
5144 AudioMixer::TRACK,
5145 AudioMixer::MIXER_FORMAT, (void *)mMixerBufferFormat);
5146 mAudioMixer->setParameter(
5147 trackId,
5148 AudioMixer::TRACK,
5149 AudioMixer::MAIN_BUFFER, (void *)mMixerBuffer);
5150 // TODO: override track->mainBuffer()?
5151 mMixerBufferValid = true;
5152 } else {
5153 mAudioMixer->setParameter(
5154 trackId,
5155 AudioMixer::TRACK,
5156 AudioMixer::MIXER_FORMAT, (void *)EFFECT_BUFFER_FORMAT);
5157 mAudioMixer->setParameter(
5158 trackId,
5159 AudioMixer::TRACK,
5160 AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer());
5161 }
5162 mAudioMixer->setParameter(
5163 trackId,
5164 AudioMixer::TRACK,
5165 AudioMixer::AUX_BUFFER, (void *)track->auxBuffer());
5166 mAudioMixer->setParameter(
5167 trackId,
5168 AudioMixer::TRACK,
5169 AudioMixer::HAPTIC_ENABLED, (void *)(uintptr_t)track->getHapticPlaybackEnabled());
5170 mAudioMixer->setParameter(
5171 trackId,
5172 AudioMixer::TRACK,
5173 AudioMixer::HAPTIC_INTENSITY, (void *)(uintptr_t)track->getHapticIntensity());
5174
5175 // reset retry count
5176 track->mRetryCount = kMaxTrackRetries;
5177
5178 // If one track is ready, set the mixer ready if:
5179 // - the mixer was not ready during previous round OR
5180 // - no other track is not ready
5181 if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY ||
5182 mixerStatus != MIXER_TRACKS_ENABLED) {
5183 mixerStatus = MIXER_TRACKS_READY;
5184 }
5185 } else {
5186 size_t underrunFrames = 0;
5187 if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) {
5188 ALOGV("track(%d) underrun, framesReady(%zu) < framesDesired(%zd)",
5189 trackId, framesReady, desiredFrames);
5190 underrunFrames = desiredFrames;
5191 }
5192 deferredOperations.tallyUnderrunFrames(track, underrunFrames);
5193
5194 // clear effect chain input buffer if an active track underruns to avoid sending
5195 // previous audio buffer again to effects
5196 chain = getEffectChain_l(track->sessionId());
5197 if (chain != 0) {
5198 chain->clearInputBuffer();
5199 }
5200
5201 ALOGVV("track(%d) s=%08x [NOT READY] on thread %p", trackId, cblk->mServer, this);
5202 if ((track->sharedBuffer() != 0) || track->isTerminated() ||
5203 track->isStopped() || track->isPaused()) {
5204 // We have consumed all the buffers of this track.
5205 // Remove it from the list of active tracks.
5206 // TODO: use actual buffer filling status instead of latency when available from
5207 // audio HAL
5208 size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
5209 int64_t framesWritten = mBytesWritten / mFrameSize;
5210 if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) {
5211 if (track->isStopped()) {
5212 track->reset();
5213 }
5214 tracksToRemove->add(track);
5215 }
5216 } else {
5217 // No buffers for this track. Give it a few chances to
5218 // fill a buffer, then remove it from active list.
5219 if (--(track->mRetryCount) <= 0) {
5220 ALOGI("BUFFER TIMEOUT: remove(%d) from active list on thread %p",
5221 trackId, this);
5222 tracksToRemove->add(track);
5223 // indicate to client process that the track was disabled because of underrun;
5224 // it will then automatically call start() when data is available
5225 track->disable();
5226 // If one track is not ready, mark the mixer also not ready if:
5227 // - the mixer was ready during previous round OR
5228 // - no other track is ready
5229 } else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY ||
5230 mixerStatus != MIXER_TRACKS_READY) {
5231 mixerStatus = MIXER_TRACKS_ENABLED;
5232 }
5233 }
5234 mAudioMixer->disable(trackId);
5235 }
5236
5237 } // local variable scope to avoid goto warning
5238
5239 }
5240
5241 if (mHapticChannelMask != AUDIO_CHANNEL_NONE && sq != NULL) {
5242 // When there is no fast track playing haptic and FastMixer exists,
5243 // enabling the first FastTrack, which provides mixed data from normal
5244 // tracks, to play haptic data.
5245 FastTrack *fastTrack = &state->mFastTracks[0];
5246 if (fastTrack->mHapticPlaybackEnabled != noFastHapticTrack) {
5247 fastTrack->mHapticPlaybackEnabled = noFastHapticTrack;
5248 didModify = true;
5249 }
5250 }
5251
5252 // Push the new FastMixer state if necessary
5253 bool pauseAudioWatchdog = false;
5254 if (didModify) {
5255 state->mFastTracksGen++;
5256 // if the fast mixer was active, but now there are no fast tracks, then put it in cold idle
5257 if (kUseFastMixer == FastMixer_Dynamic &&
5258 state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) {
5259 state->mCommand = FastMixerState::COLD_IDLE;
5260 state->mColdFutexAddr = &mFastMixerFutex;
5261 state->mColdGen++;
5262 mFastMixerFutex = 0;
5263 if (kUseFastMixer == FastMixer_Dynamic) {
5264 mNormalSink = mOutputSink;
5265 }
5266 // If we go into cold idle, need to wait for acknowledgement
5267 // so that fast mixer stops doing I/O.
5268 block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
5269 pauseAudioWatchdog = true;
5270 }
5271 }
5272 if (sq != NULL) {
5273 sq->end(didModify);
5274 // No need to block if the FastMixer is in COLD_IDLE as the FastThread
5275 // is not active. (We BLOCK_UNTIL_ACKED when entering COLD_IDLE
5276 // when bringing the output sink into standby.)
5277 //
5278 // We will get the latest FastMixer state when we come out of COLD_IDLE.
5279 //
5280 // This occurs with BT suspend when we idle the FastMixer with
5281 // active tracks, which may be added or removed.
5282 sq->push(coldIdle ? FastMixerStateQueue::BLOCK_NEVER : block);
5283 }
5284 #ifdef AUDIO_WATCHDOG
5285 if (pauseAudioWatchdog && mAudioWatchdog != 0) {
5286 mAudioWatchdog->pause();
5287 }
5288 #endif
5289
5290 // Now perform the deferred reset on fast tracks that have stopped
5291 while (resetMask != 0) {
5292 size_t i = __builtin_ctz(resetMask);
5293 ALOG_ASSERT(i < count);
5294 resetMask &= ~(1 << i);
5295 sp<Track> track = mActiveTracks[i];
5296 ALOG_ASSERT(track->isFastTrack() && track->isStopped());
5297 track->reset();
5298 }
5299
5300 // Track destruction may occur outside of threadLoop once it is removed from active tracks.
5301 // Ensure the AudioMixer doesn't have a raw "buffer provider" pointer to the track if
5302 // it ceases to be active, to allow safe removal from the AudioMixer at the start
5303 // of prepareTracks_l(); this releases any outstanding buffer back to the track.
5304 // See also the implementation of destroyTrack_l().
5305 for (const auto &track : *tracksToRemove) {
5306 const int trackId = track->id();
5307 if (mAudioMixer->exists(trackId)) { // Normal tracks here, fast tracks in FastMixer.
5308 mAudioMixer->setBufferProvider(trackId, nullptr /* bufferProvider */);
5309 }
5310 }
5311
5312 // remove all the tracks that need to be...
5313 removeTracks_l(*tracksToRemove);
5314
5315 if (getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX) != 0) {
5316 mEffectBufferValid = true;
5317 }
5318
5319 if (mEffectBufferValid) {
5320 // as long as there are effects we should clear the effects buffer, to avoid
5321 // passing a non-clean buffer to the effect chain
5322 memset(mEffectBuffer, 0, mEffectBufferSize);
5323 }
5324 // sink or mix buffer must be cleared if all tracks are connected to an
5325 // effect chain as in this case the mixer will not write to the sink or mix buffer
5326 // and track effects will accumulate into it
5327 if ((mBytesRemaining == 0) && ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
5328 (mixedTracks == 0 && fastTracks > 0))) {
5329 // FIXME as a performance optimization, should remember previous zero status
5330 if (mMixerBufferValid) {
5331 memset(mMixerBuffer, 0, mMixerBufferSize);
5332 // TODO: In testing, mSinkBuffer below need not be cleared because
5333 // the PlaybackThread::threadLoop() copies mMixerBuffer into mSinkBuffer
5334 // after mixing.
5335 //
5336 // To enforce this guarantee:
5337 // ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
5338 // (mixedTracks == 0 && fastTracks > 0))
5339 // must imply MIXER_TRACKS_READY.
5340 // Later, we may clear buffers regardless, and skip much of this logic.
5341 }
5342 // FIXME as a performance optimization, should remember previous zero status
5343 memset(mSinkBuffer, 0, mNormalFrameCount * mFrameSize);
5344 }
5345
5346 // if any fast tracks, then status is ready
5347 mMixerStatusIgnoringFastTracks = mixerStatus;
5348 if (fastTracks > 0) {
5349 mixerStatus = MIXER_TRACKS_READY;
5350 }
5351 return mixerStatus;
5352 }
5353
5354 // trackCountForUid_l() must be called with ThreadBase::mLock held
trackCountForUid_l(uid_t uid) const5355 uint32_t AudioFlinger::PlaybackThread::trackCountForUid_l(uid_t uid) const
5356 {
5357 uint32_t trackCount = 0;
5358 for (size_t i = 0; i < mTracks.size() ; i++) {
5359 if (mTracks[i]->uid() == uid) {
5360 trackCount++;
5361 }
5362 }
5363 return trackCount;
5364 }
5365
5366 // isTrackAllowed_l() must be called with ThreadBase::mLock held
isTrackAllowed_l(audio_channel_mask_t channelMask,audio_format_t format,audio_session_t sessionId,uid_t uid) const5367 bool AudioFlinger::MixerThread::isTrackAllowed_l(
5368 audio_channel_mask_t channelMask, audio_format_t format,
5369 audio_session_t sessionId, uid_t uid) const
5370 {
5371 if (!PlaybackThread::isTrackAllowed_l(channelMask, format, sessionId, uid)) {
5372 return false;
5373 }
5374 // Check validity as we don't call AudioMixer::create() here.
5375 if (!mAudioMixer->isValidFormat(format)) {
5376 ALOGW("%s: invalid format: %#x", __func__, format);
5377 return false;
5378 }
5379 if (!mAudioMixer->isValidChannelMask(channelMask)) {
5380 ALOGW("%s: invalid channelMask: %#x", __func__, channelMask);
5381 return false;
5382 }
5383 return true;
5384 }
5385
5386 // checkForNewParameter_l() must be called with ThreadBase::mLock held
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)5387 bool AudioFlinger::MixerThread::checkForNewParameter_l(const String8& keyValuePair,
5388 status_t& status)
5389 {
5390 bool reconfig = false;
5391 bool a2dpDeviceChanged = false;
5392
5393 status = NO_ERROR;
5394
5395 AutoPark<FastMixer> park(mFastMixer);
5396
5397 AudioParameter param = AudioParameter(keyValuePair);
5398 int value;
5399 if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
5400 reconfig = true;
5401 }
5402 if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
5403 if (!isValidPcmSinkFormat((audio_format_t) value)) {
5404 status = BAD_VALUE;
5405 } else {
5406 // no need to save value, since it's constant
5407 reconfig = true;
5408 }
5409 }
5410 if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
5411 if (!isValidPcmSinkChannelMask((audio_channel_mask_t) value)) {
5412 status = BAD_VALUE;
5413 } else {
5414 // no need to save value, since it's constant
5415 reconfig = true;
5416 }
5417 }
5418 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
5419 // do not accept frame count changes if tracks are open as the track buffer
5420 // size depends on frame count and correct behavior would not be guaranteed
5421 // if frame count is changed after track creation
5422 if (!mTracks.isEmpty()) {
5423 status = INVALID_OPERATION;
5424 } else {
5425 reconfig = true;
5426 }
5427 }
5428 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
5429 LOG_FATAL("Should not set routing device in MixerThread");
5430 }
5431
5432 if (status == NO_ERROR) {
5433 status = mOutput->stream->setParameters(keyValuePair);
5434 if (!mStandby && status == INVALID_OPERATION) {
5435 mOutput->standby();
5436 mStandby = true;
5437 mBytesWritten = 0;
5438 status = mOutput->stream->setParameters(keyValuePair);
5439 }
5440 if (status == NO_ERROR && reconfig) {
5441 readOutputParameters_l();
5442 delete mAudioMixer;
5443 mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
5444 for (const auto &track : mTracks) {
5445 const int trackId = track->id();
5446 status_t status = mAudioMixer->create(
5447 trackId,
5448 track->mChannelMask,
5449 track->mFormat,
5450 track->mSessionId);
5451 ALOGW_IF(status != NO_ERROR,
5452 "%s(): AudioMixer cannot create track(%d)"
5453 " mask %#x, format %#x, sessionId %d",
5454 __func__,
5455 trackId, track->mChannelMask, track->mFormat, track->mSessionId);
5456 }
5457 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
5458 }
5459 }
5460
5461 return reconfig || a2dpDeviceChanged;
5462 }
5463
5464
dumpInternals_l(int fd,const Vector<String16> & args)5465 void AudioFlinger::MixerThread::dumpInternals_l(int fd, const Vector<String16>& args)
5466 {
5467 PlaybackThread::dumpInternals_l(fd, args);
5468 dprintf(fd, " Thread throttle time (msecs): %u\n", mThreadThrottleTimeMs);
5469 dprintf(fd, " AudioMixer tracks: %s\n", mAudioMixer->trackNames().c_str());
5470 dprintf(fd, " Master mono: %s\n", mMasterMono ? "on" : "off");
5471 dprintf(fd, " Master balance: %f (%s)\n", mMasterBalance.load(),
5472 (hasFastMixer() ? std::to_string(mFastMixer->getMasterBalance())
5473 : mBalance.toString()).c_str());
5474 if (hasFastMixer()) {
5475 dprintf(fd, " FastMixer thread %p tid=%d", mFastMixer.get(), mFastMixer->getTid());
5476
5477 // Make a non-atomic copy of fast mixer dump state so it won't change underneath us
5478 // while we are dumping it. It may be inconsistent, but it won't mutate!
5479 // This is a large object so we place it on the heap.
5480 // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
5481 const std::unique_ptr<FastMixerDumpState> copy =
5482 std::make_unique<FastMixerDumpState>(mFastMixerDumpState);
5483 copy->dump(fd);
5484
5485 #ifdef STATE_QUEUE_DUMP
5486 // Similar for state queue
5487 StateQueueObserverDump observerCopy = mStateQueueObserverDump;
5488 observerCopy.dump(fd);
5489 StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump;
5490 mutatorCopy.dump(fd);
5491 #endif
5492
5493 #ifdef AUDIO_WATCHDOG
5494 if (mAudioWatchdog != 0) {
5495 // Make a non-atomic copy of audio watchdog dump so it won't change underneath us
5496 AudioWatchdogDump wdCopy = mAudioWatchdogDump;
5497 wdCopy.dump(fd);
5498 }
5499 #endif
5500
5501 } else {
5502 dprintf(fd, " No FastMixer\n");
5503 }
5504 }
5505
idleSleepTimeUs() const5506 uint32_t AudioFlinger::MixerThread::idleSleepTimeUs() const
5507 {
5508 return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2;
5509 }
5510
suspendSleepTimeUs() const5511 uint32_t AudioFlinger::MixerThread::suspendSleepTimeUs() const
5512 {
5513 return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000);
5514 }
5515
cacheParameters_l()5516 void AudioFlinger::MixerThread::cacheParameters_l()
5517 {
5518 PlaybackThread::cacheParameters_l();
5519
5520 // FIXME: Relaxed timing because of a certain device that can't meet latency
5521 // Should be reduced to 2x after the vendor fixes the driver issue
5522 // increase threshold again due to low power audio mode. The way this warning
5523 // threshold is calculated and its usefulness should be reconsidered anyway.
5524 maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15;
5525 }
5526
5527 // ----------------------------------------------------------------------------
5528
DirectOutputThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,ThreadBase::type_t type,bool systemReady)5529 AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
5530 AudioStreamOut* output, audio_io_handle_t id, ThreadBase::type_t type, bool systemReady)
5531 : PlaybackThread(audioFlinger, output, id, type, systemReady)
5532 {
5533 setMasterBalance(audioFlinger->getMasterBalance_l());
5534 }
5535
~DirectOutputThread()5536 AudioFlinger::DirectOutputThread::~DirectOutputThread()
5537 {
5538 }
5539
dumpInternals_l(int fd,const Vector<String16> & args)5540 void AudioFlinger::DirectOutputThread::dumpInternals_l(int fd, const Vector<String16>& args)
5541 {
5542 PlaybackThread::dumpInternals_l(fd, args);
5543 dprintf(fd, " Master balance: %f Left: %f Right: %f\n",
5544 mMasterBalance.load(), mMasterBalanceLeft, mMasterBalanceRight);
5545 }
5546
setMasterBalance(float balance)5547 void AudioFlinger::DirectOutputThread::setMasterBalance(float balance)
5548 {
5549 Mutex::Autolock _l(mLock);
5550 if (mMasterBalance != balance) {
5551 mMasterBalance.store(balance);
5552 mBalance.computeStereoBalance(balance, &mMasterBalanceLeft, &mMasterBalanceRight);
5553 broadcast_l();
5554 }
5555 }
5556
processVolume_l(Track * track,bool lastTrack)5557 void AudioFlinger::DirectOutputThread::processVolume_l(Track *track, bool lastTrack)
5558 {
5559 float left, right;
5560
5561 // Ensure volumeshaper state always advances even when muted.
5562 const sp<AudioTrackServerProxy> proxy = track->mAudioTrackServerProxy;
5563 const auto [shaperVolume, shaperActive] = track->getVolumeHandler()->getVolume(
5564 proxy->framesReleased());
5565 mVolumeShaperActive = shaperActive;
5566
5567 if (mMasterMute || mStreamTypes[track->streamType()].mute || track->isPlaybackRestricted()) {
5568 left = right = 0;
5569 } else {
5570 float typeVolume = mStreamTypes[track->streamType()].volume;
5571 const float v = mMasterVolume * typeVolume * shaperVolume;
5572
5573 gain_minifloat_packed_t vlr = proxy->getVolumeLR();
5574 left = float_from_gain(gain_minifloat_unpack_left(vlr));
5575 if (left > GAIN_FLOAT_UNITY) {
5576 left = GAIN_FLOAT_UNITY;
5577 }
5578 left *= v * mMasterBalanceLeft; // DirectOutputThread balance applied as track volume
5579 right = float_from_gain(gain_minifloat_unpack_right(vlr));
5580 if (right > GAIN_FLOAT_UNITY) {
5581 right = GAIN_FLOAT_UNITY;
5582 }
5583 right *= v * mMasterBalanceRight;
5584 }
5585
5586 if (lastTrack) {
5587 track->setFinalVolume((left + right) / 2.f);
5588 if (left != mLeftVolFloat || right != mRightVolFloat) {
5589 mLeftVolFloat = left;
5590 mRightVolFloat = right;
5591
5592 // Delegate volume control to effect in track effect chain if needed
5593 // only one effect chain can be present on DirectOutputThread, so if
5594 // there is one, the track is connected to it
5595 if (!mEffectChains.isEmpty()) {
5596 // if effect chain exists, volume is handled by it.
5597 // Convert volumes from float to 8.24
5598 uint32_t vl = (uint32_t)(left * (1 << 24));
5599 uint32_t vr = (uint32_t)(right * (1 << 24));
5600 // Direct/Offload effect chains set output volume in setVolume_l().
5601 (void)mEffectChains[0]->setVolume_l(&vl, &vr);
5602 } else {
5603 // otherwise we directly set the volume.
5604 setVolumeForOutput_l(left, right);
5605 }
5606 }
5607 }
5608 }
5609
onAddNewTrack_l()5610 void AudioFlinger::DirectOutputThread::onAddNewTrack_l()
5611 {
5612 sp<Track> previousTrack = mPreviousTrack.promote();
5613 sp<Track> latestTrack = mActiveTracks.getLatest();
5614
5615 if (previousTrack != 0 && latestTrack != 0) {
5616 if (mType == DIRECT) {
5617 if (previousTrack.get() != latestTrack.get()) {
5618 mFlushPending = true;
5619 }
5620 } else /* mType == OFFLOAD */ {
5621 if (previousTrack->sessionId() != latestTrack->sessionId()) {
5622 mFlushPending = true;
5623 }
5624 }
5625 } else if (previousTrack == 0) {
5626 // there could be an old track added back during track transition for direct
5627 // output, so always issues flush to flush data of the previous track if it
5628 // was already destroyed with HAL paused, then flush can resume the playback
5629 mFlushPending = true;
5630 }
5631 PlaybackThread::onAddNewTrack_l();
5632 }
5633
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)5634 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::DirectOutputThread::prepareTracks_l(
5635 Vector< sp<Track> > *tracksToRemove
5636 )
5637 {
5638 size_t count = mActiveTracks.size();
5639 mixer_state mixerStatus = MIXER_IDLE;
5640 bool doHwPause = false;
5641 bool doHwResume = false;
5642
5643 // find out which tracks need to be processed
5644 for (const sp<Track> &t : mActiveTracks) {
5645 if (t->isInvalid()) {
5646 ALOGW("An invalidated track shouldn't be in active list");
5647 tracksToRemove->add(t);
5648 continue;
5649 }
5650
5651 Track* const track = t.get();
5652 #ifdef VERY_VERY_VERBOSE_LOGGING
5653 audio_track_cblk_t* cblk = track->cblk();
5654 #endif
5655 // Only consider last track started for volume and mixer state control.
5656 // In theory an older track could underrun and restart after the new one starts
5657 // but as we only care about the transition phase between two tracks on a
5658 // direct output, it is not a problem to ignore the underrun case.
5659 sp<Track> l = mActiveTracks.getLatest();
5660 bool last = l.get() == track;
5661
5662 if (track->isPausing()) {
5663 track->setPaused();
5664 if (mHwSupportsPause && last && !mHwPaused) {
5665 doHwPause = true;
5666 mHwPaused = true;
5667 }
5668 } else if (track->isFlushPending()) {
5669 track->flushAck();
5670 if (last) {
5671 mFlushPending = true;
5672 }
5673 } else if (track->isResumePending()) {
5674 track->resumeAck();
5675 if (last) {
5676 mLeftVolFloat = mRightVolFloat = -1.0;
5677 if (mHwPaused) {
5678 doHwResume = true;
5679 mHwPaused = false;
5680 }
5681 }
5682 }
5683
5684 // The first time a track is added we wait
5685 // for all its buffers to be filled before processing it.
5686 // Allow draining the buffer in case the client
5687 // app does not call stop() and relies on underrun to stop:
5688 // hence the test on (track->mRetryCount > 1).
5689 // If retryCount<=1 then track is about to underrun and be removed.
5690 // Do not use a high threshold for compressed audio.
5691 uint32_t minFrames;
5692 if ((track->sharedBuffer() == 0) && !track->isStopping_1() && !track->isPausing()
5693 && (track->mRetryCount > 1) && audio_has_proportional_frames(mFormat)) {
5694 minFrames = mNormalFrameCount;
5695 } else {
5696 minFrames = 1;
5697 }
5698
5699 const size_t framesReady = track->framesReady();
5700 const int trackId = track->id();
5701 if (ATRACE_ENABLED()) {
5702 std::string traceName("nRdy");
5703 traceName += std::to_string(trackId);
5704 ATRACE_INT(traceName.c_str(), framesReady);
5705 }
5706 if ((framesReady >= minFrames) && track->isReady() && !track->isPaused() &&
5707 !track->isStopping_2() && !track->isStopped())
5708 {
5709 ALOGVV("track(%d) s=%08x [OK]", trackId, cblk->mServer);
5710
5711 if (track->mFillingUpStatus == Track::FS_FILLED) {
5712 track->mFillingUpStatus = Track::FS_ACTIVE;
5713 if (last) {
5714 // make sure processVolume_l() will apply new volume even if 0
5715 mLeftVolFloat = mRightVolFloat = -1.0;
5716 }
5717 if (!mHwSupportsPause) {
5718 track->resumeAck();
5719 }
5720 }
5721
5722 // compute volume for this track
5723 processVolume_l(track, last);
5724 if (last) {
5725 sp<Track> previousTrack = mPreviousTrack.promote();
5726 if (previousTrack != 0) {
5727 if (track != previousTrack.get()) {
5728 // Flush any data still being written from last track
5729 mBytesRemaining = 0;
5730 // Invalidate previous track to force a seek when resuming.
5731 previousTrack->invalidate();
5732 }
5733 }
5734 mPreviousTrack = track;
5735
5736 // reset retry count
5737 track->mRetryCount = kMaxTrackRetriesDirect;
5738 mActiveTrack = t;
5739 mixerStatus = MIXER_TRACKS_READY;
5740 if (mHwPaused) {
5741 doHwResume = true;
5742 mHwPaused = false;
5743 }
5744 }
5745 } else {
5746 // clear effect chain input buffer if the last active track started underruns
5747 // to avoid sending previous audio buffer again to effects
5748 if (!mEffectChains.isEmpty() && last) {
5749 mEffectChains[0]->clearInputBuffer();
5750 }
5751 if (track->isStopping_1()) {
5752 track->mState = TrackBase::STOPPING_2;
5753 if (last && mHwPaused) {
5754 doHwResume = true;
5755 mHwPaused = false;
5756 }
5757 }
5758 if ((track->sharedBuffer() != 0) || track->isStopped() ||
5759 track->isStopping_2() || track->isPaused()) {
5760 // We have consumed all the buffers of this track.
5761 // Remove it from the list of active tracks.
5762 size_t audioHALFrames;
5763 if (audio_has_proportional_frames(mFormat)) {
5764 audioHALFrames = (latency_l() * mSampleRate) / 1000;
5765 } else {
5766 audioHALFrames = 0;
5767 }
5768
5769 int64_t framesWritten = mBytesWritten / mFrameSize;
5770 if (mStandby || !last ||
5771 track->presentationComplete(framesWritten, audioHALFrames) ||
5772 track->isPaused() || mHwPaused) {
5773 if (track->isStopping_2()) {
5774 track->mState = TrackBase::STOPPED;
5775 }
5776 if (track->isStopped()) {
5777 track->reset();
5778 }
5779 tracksToRemove->add(track);
5780 }
5781 } else {
5782 // No buffers for this track. Give it a few chances to
5783 // fill a buffer, then remove it from active list.
5784 // Only consider last track started for mixer state control
5785 if (--(track->mRetryCount) <= 0) {
5786 ALOGV("BUFFER TIMEOUT: remove track(%d) from active list", trackId);
5787 tracksToRemove->add(track);
5788 // indicate to client process that the track was disabled because of underrun;
5789 // it will then automatically call start() when data is available
5790 track->disable();
5791 } else if (last) {
5792 ALOGW("pause because of UNDERRUN, framesReady = %zu,"
5793 "minFrames = %u, mFormat = %#x",
5794 framesReady, minFrames, mFormat);
5795 mixerStatus = MIXER_TRACKS_ENABLED;
5796 if (mHwSupportsPause && !mHwPaused && !mStandby) {
5797 doHwPause = true;
5798 mHwPaused = true;
5799 }
5800 }
5801 }
5802 }
5803 }
5804
5805 // if an active track did not command a flush, check for pending flush on stopped tracks
5806 if (!mFlushPending) {
5807 for (size_t i = 0; i < mTracks.size(); i++) {
5808 if (mTracks[i]->isFlushPending()) {
5809 mTracks[i]->flushAck();
5810 mFlushPending = true;
5811 }
5812 }
5813 }
5814
5815 // make sure the pause/flush/resume sequence is executed in the right order.
5816 // If a flush is pending and a track is active but the HW is not paused, force a HW pause
5817 // before flush and then resume HW. This can happen in case of pause/flush/resume
5818 // if resume is received before pause is executed.
5819 if (mHwSupportsPause && !mStandby &&
5820 (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
5821 status_t result = mOutput->stream->pause();
5822 ALOGE_IF(result != OK, "Error when pausing output stream: %d", result);
5823 }
5824 if (mFlushPending) {
5825 flushHw_l();
5826 }
5827 if (mHwSupportsPause && !mStandby && doHwResume) {
5828 status_t result = mOutput->stream->resume();
5829 ALOGE_IF(result != OK, "Error when resuming output stream: %d", result);
5830 }
5831 // remove all the tracks that need to be...
5832 removeTracks_l(*tracksToRemove);
5833
5834 return mixerStatus;
5835 }
5836
threadLoop_mix()5837 void AudioFlinger::DirectOutputThread::threadLoop_mix()
5838 {
5839 size_t frameCount = mFrameCount;
5840 int8_t *curBuf = (int8_t *)mSinkBuffer;
5841 // output audio to hardware
5842 while (frameCount) {
5843 AudioBufferProvider::Buffer buffer;
5844 buffer.frameCount = frameCount;
5845 status_t status = mActiveTrack->getNextBuffer(&buffer);
5846 if (status != NO_ERROR || buffer.raw == NULL) {
5847 // no need to pad with 0 for compressed audio
5848 if (audio_has_proportional_frames(mFormat)) {
5849 memset(curBuf, 0, frameCount * mFrameSize);
5850 }
5851 break;
5852 }
5853 memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize);
5854 frameCount -= buffer.frameCount;
5855 curBuf += buffer.frameCount * mFrameSize;
5856 mActiveTrack->releaseBuffer(&buffer);
5857 }
5858 mCurrentWriteLength = curBuf - (int8_t *)mSinkBuffer;
5859 mSleepTimeUs = 0;
5860 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
5861 mActiveTrack.clear();
5862 }
5863
threadLoop_sleepTime()5864 void AudioFlinger::DirectOutputThread::threadLoop_sleepTime()
5865 {
5866 // do not write to HAL when paused
5867 if (mHwPaused || (usesHwAvSync() && mStandby)) {
5868 mSleepTimeUs = mIdleSleepTimeUs;
5869 return;
5870 }
5871 if (mSleepTimeUs == 0) {
5872 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
5873 mSleepTimeUs = mActiveSleepTimeUs;
5874 } else {
5875 mSleepTimeUs = mIdleSleepTimeUs;
5876 }
5877 } else if (mBytesWritten != 0 && audio_has_proportional_frames(mFormat)) {
5878 memset(mSinkBuffer, 0, mFrameCount * mFrameSize);
5879 mSleepTimeUs = 0;
5880 }
5881 }
5882
threadLoop_exit()5883 void AudioFlinger::DirectOutputThread::threadLoop_exit()
5884 {
5885 {
5886 Mutex::Autolock _l(mLock);
5887 for (size_t i = 0; i < mTracks.size(); i++) {
5888 if (mTracks[i]->isFlushPending()) {
5889 mTracks[i]->flushAck();
5890 mFlushPending = true;
5891 }
5892 }
5893 if (mFlushPending) {
5894 flushHw_l();
5895 }
5896 }
5897 PlaybackThread::threadLoop_exit();
5898 }
5899
5900 // must be called with thread mutex locked
shouldStandby_l()5901 bool AudioFlinger::DirectOutputThread::shouldStandby_l()
5902 {
5903 bool trackPaused = false;
5904 bool trackStopped = false;
5905
5906 if ((mType == DIRECT) && audio_is_linear_pcm(mFormat) && !usesHwAvSync()) {
5907 return !mStandby;
5908 }
5909
5910 // do not put the HAL in standby when paused. AwesomePlayer clear the offloaded AudioTrack
5911 // after a timeout and we will enter standby then.
5912 if (mTracks.size() > 0) {
5913 trackPaused = mTracks[mTracks.size() - 1]->isPaused();
5914 trackStopped = mTracks[mTracks.size() - 1]->isStopped() ||
5915 mTracks[mTracks.size() - 1]->mState == TrackBase::IDLE;
5916 }
5917
5918 return !mStandby && !(trackPaused || (mHwPaused && !trackStopped));
5919 }
5920
5921 // checkForNewParameter_l() must be called with ThreadBase::mLock held
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)5922 bool AudioFlinger::DirectOutputThread::checkForNewParameter_l(const String8& keyValuePair,
5923 status_t& status)
5924 {
5925 bool reconfig = false;
5926 bool a2dpDeviceChanged = false;
5927
5928 status = NO_ERROR;
5929
5930 AudioParameter param = AudioParameter(keyValuePair);
5931 int value;
5932 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
5933 LOG_FATAL("Should not set routing device in DirectOutputThread");
5934 }
5935 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
5936 // do not accept frame count changes if tracks are open as the track buffer
5937 // size depends on frame count and correct behavior would not be garantied
5938 // if frame count is changed after track creation
5939 if (!mTracks.isEmpty()) {
5940 status = INVALID_OPERATION;
5941 } else {
5942 reconfig = true;
5943 }
5944 }
5945 if (status == NO_ERROR) {
5946 status = mOutput->stream->setParameters(keyValuePair);
5947 if (!mStandby && status == INVALID_OPERATION) {
5948 mOutput->standby();
5949 mStandby = true;
5950 mBytesWritten = 0;
5951 status = mOutput->stream->setParameters(keyValuePair);
5952 }
5953 if (status == NO_ERROR && reconfig) {
5954 readOutputParameters_l();
5955 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
5956 }
5957 }
5958
5959 return reconfig || a2dpDeviceChanged;
5960 }
5961
activeSleepTimeUs() const5962 uint32_t AudioFlinger::DirectOutputThread::activeSleepTimeUs() const
5963 {
5964 uint32_t time;
5965 if (audio_has_proportional_frames(mFormat)) {
5966 time = PlaybackThread::activeSleepTimeUs();
5967 } else {
5968 time = kDirectMinSleepTimeUs;
5969 }
5970 return time;
5971 }
5972
idleSleepTimeUs() const5973 uint32_t AudioFlinger::DirectOutputThread::idleSleepTimeUs() const
5974 {
5975 uint32_t time;
5976 if (audio_has_proportional_frames(mFormat)) {
5977 time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2;
5978 } else {
5979 time = kDirectMinSleepTimeUs;
5980 }
5981 return time;
5982 }
5983
suspendSleepTimeUs() const5984 uint32_t AudioFlinger::DirectOutputThread::suspendSleepTimeUs() const
5985 {
5986 uint32_t time;
5987 if (audio_has_proportional_frames(mFormat)) {
5988 time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000);
5989 } else {
5990 time = kDirectMinSleepTimeUs;
5991 }
5992 return time;
5993 }
5994
cacheParameters_l()5995 void AudioFlinger::DirectOutputThread::cacheParameters_l()
5996 {
5997 PlaybackThread::cacheParameters_l();
5998
5999 // use shorter standby delay as on normal output to release
6000 // hardware resources as soon as possible
6001 // no delay on outputs with HW A/V sync
6002 if (usesHwAvSync()) {
6003 mStandbyDelayNs = 0;
6004 } else if ((mType == OFFLOAD) && !audio_has_proportional_frames(mFormat)) {
6005 mStandbyDelayNs = kOffloadStandbyDelayNs;
6006 } else {
6007 mStandbyDelayNs = microseconds(mActiveSleepTimeUs*2);
6008 }
6009 }
6010
flushHw_l()6011 void AudioFlinger::DirectOutputThread::flushHw_l()
6012 {
6013 mOutput->flush();
6014 mHwPaused = false;
6015 mFlushPending = false;
6016 mTimestampVerifier.discontinuity(); // DIRECT and OFFLOADED flush resets frame count.
6017 mTimestamp.clear();
6018 }
6019
computeWaitTimeNs_l() const6020 int64_t AudioFlinger::DirectOutputThread::computeWaitTimeNs_l() const {
6021 // If a VolumeShaper is active, we must wake up periodically to update volume.
6022 const int64_t NS_PER_MS = 1000000;
6023 return mVolumeShaperActive ?
6024 kMinNormalSinkBufferSizeMs * NS_PER_MS : PlaybackThread::computeWaitTimeNs_l();
6025 }
6026
6027 // ----------------------------------------------------------------------------
6028
AsyncCallbackThread(const wp<AudioFlinger::PlaybackThread> & playbackThread)6029 AudioFlinger::AsyncCallbackThread::AsyncCallbackThread(
6030 const wp<AudioFlinger::PlaybackThread>& playbackThread)
6031 : Thread(false /*canCallJava*/),
6032 mPlaybackThread(playbackThread),
6033 mWriteAckSequence(0),
6034 mDrainSequence(0),
6035 mAsyncError(false)
6036 {
6037 }
6038
~AsyncCallbackThread()6039 AudioFlinger::AsyncCallbackThread::~AsyncCallbackThread()
6040 {
6041 }
6042
onFirstRef()6043 void AudioFlinger::AsyncCallbackThread::onFirstRef()
6044 {
6045 run("Offload Cbk", ANDROID_PRIORITY_URGENT_AUDIO);
6046 }
6047
threadLoop()6048 bool AudioFlinger::AsyncCallbackThread::threadLoop()
6049 {
6050 while (!exitPending()) {
6051 uint32_t writeAckSequence;
6052 uint32_t drainSequence;
6053 bool asyncError;
6054
6055 {
6056 Mutex::Autolock _l(mLock);
6057 while (!((mWriteAckSequence & 1) ||
6058 (mDrainSequence & 1) ||
6059 mAsyncError ||
6060 exitPending())) {
6061 mWaitWorkCV.wait(mLock);
6062 }
6063
6064 if (exitPending()) {
6065 break;
6066 }
6067 ALOGV("AsyncCallbackThread mWriteAckSequence %d mDrainSequence %d",
6068 mWriteAckSequence, mDrainSequence);
6069 writeAckSequence = mWriteAckSequence;
6070 mWriteAckSequence &= ~1;
6071 drainSequence = mDrainSequence;
6072 mDrainSequence &= ~1;
6073 asyncError = mAsyncError;
6074 mAsyncError = false;
6075 }
6076 {
6077 sp<AudioFlinger::PlaybackThread> playbackThread = mPlaybackThread.promote();
6078 if (playbackThread != 0) {
6079 if (writeAckSequence & 1) {
6080 playbackThread->resetWriteBlocked(writeAckSequence >> 1);
6081 }
6082 if (drainSequence & 1) {
6083 playbackThread->resetDraining(drainSequence >> 1);
6084 }
6085 if (asyncError) {
6086 playbackThread->onAsyncError();
6087 }
6088 }
6089 }
6090 }
6091 return false;
6092 }
6093
exit()6094 void AudioFlinger::AsyncCallbackThread::exit()
6095 {
6096 ALOGV("AsyncCallbackThread::exit");
6097 Mutex::Autolock _l(mLock);
6098 requestExit();
6099 mWaitWorkCV.broadcast();
6100 }
6101
setWriteBlocked(uint32_t sequence)6102 void AudioFlinger::AsyncCallbackThread::setWriteBlocked(uint32_t sequence)
6103 {
6104 Mutex::Autolock _l(mLock);
6105 // bit 0 is cleared
6106 mWriteAckSequence = sequence << 1;
6107 }
6108
resetWriteBlocked()6109 void AudioFlinger::AsyncCallbackThread::resetWriteBlocked()
6110 {
6111 Mutex::Autolock _l(mLock);
6112 // ignore unexpected callbacks
6113 if (mWriteAckSequence & 2) {
6114 mWriteAckSequence |= 1;
6115 mWaitWorkCV.signal();
6116 }
6117 }
6118
setDraining(uint32_t sequence)6119 void AudioFlinger::AsyncCallbackThread::setDraining(uint32_t sequence)
6120 {
6121 Mutex::Autolock _l(mLock);
6122 // bit 0 is cleared
6123 mDrainSequence = sequence << 1;
6124 }
6125
resetDraining()6126 void AudioFlinger::AsyncCallbackThread::resetDraining()
6127 {
6128 Mutex::Autolock _l(mLock);
6129 // ignore unexpected callbacks
6130 if (mDrainSequence & 2) {
6131 mDrainSequence |= 1;
6132 mWaitWorkCV.signal();
6133 }
6134 }
6135
setAsyncError()6136 void AudioFlinger::AsyncCallbackThread::setAsyncError()
6137 {
6138 Mutex::Autolock _l(mLock);
6139 mAsyncError = true;
6140 mWaitWorkCV.signal();
6141 }
6142
6143
6144 // ----------------------------------------------------------------------------
OffloadThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,bool systemReady)6145 AudioFlinger::OffloadThread::OffloadThread(const sp<AudioFlinger>& audioFlinger,
6146 AudioStreamOut* output, audio_io_handle_t id, bool systemReady)
6147 : DirectOutputThread(audioFlinger, output, id, OFFLOAD, systemReady),
6148 mPausedWriteLength(0), mPausedBytesRemaining(0), mKeepWakeLock(true),
6149 mOffloadUnderrunPosition(~0LL)
6150 {
6151 //FIXME: mStandby should be set to true by ThreadBase constructo
6152 mStandby = true;
6153 mKeepWakeLock = property_get_bool("ro.audio.offload_wakelock", true /* default_value */);
6154 }
6155
threadLoop_exit()6156 void AudioFlinger::OffloadThread::threadLoop_exit()
6157 {
6158 if (mFlushPending || mHwPaused) {
6159 // If a flush is pending or track was paused, just discard buffered data
6160 flushHw_l();
6161 } else {
6162 mMixerStatus = MIXER_DRAIN_ALL;
6163 threadLoop_drain();
6164 }
6165 if (mUseAsyncWrite) {
6166 ALOG_ASSERT(mCallbackThread != 0);
6167 mCallbackThread->exit();
6168 }
6169 PlaybackThread::threadLoop_exit();
6170 }
6171
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)6172 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::OffloadThread::prepareTracks_l(
6173 Vector< sp<Track> > *tracksToRemove
6174 )
6175 {
6176 size_t count = mActiveTracks.size();
6177
6178 mixer_state mixerStatus = MIXER_IDLE;
6179 bool doHwPause = false;
6180 bool doHwResume = false;
6181
6182 ALOGV("OffloadThread::prepareTracks_l active tracks %zu", count);
6183
6184 // find out which tracks need to be processed
6185 for (const sp<Track> &t : mActiveTracks) {
6186 Track* const track = t.get();
6187 #ifdef VERY_VERY_VERBOSE_LOGGING
6188 audio_track_cblk_t* cblk = track->cblk();
6189 #endif
6190 // Only consider last track started for volume and mixer state control.
6191 // In theory an older track could underrun and restart after the new one starts
6192 // but as we only care about the transition phase between two tracks on a
6193 // direct output, it is not a problem to ignore the underrun case.
6194 sp<Track> l = mActiveTracks.getLatest();
6195 bool last = l.get() == track;
6196
6197 if (track->isInvalid()) {
6198 ALOGW("An invalidated track shouldn't be in active list");
6199 tracksToRemove->add(track);
6200 continue;
6201 }
6202
6203 if (track->mState == TrackBase::IDLE) {
6204 ALOGW("An idle track shouldn't be in active list");
6205 continue;
6206 }
6207
6208 if (track->isPausing()) {
6209 track->setPaused();
6210 if (last) {
6211 if (mHwSupportsPause && !mHwPaused) {
6212 doHwPause = true;
6213 mHwPaused = true;
6214 }
6215 // If we were part way through writing the mixbuffer to
6216 // the HAL we must save this until we resume
6217 // BUG - this will be wrong if a different track is made active,
6218 // in that case we want to discard the pending data in the
6219 // mixbuffer and tell the client to present it again when the
6220 // track is resumed
6221 mPausedWriteLength = mCurrentWriteLength;
6222 mPausedBytesRemaining = mBytesRemaining;
6223 mBytesRemaining = 0; // stop writing
6224 }
6225 tracksToRemove->add(track);
6226 } else if (track->isFlushPending()) {
6227 if (track->isStopping_1()) {
6228 track->mRetryCount = kMaxTrackStopRetriesOffload;
6229 } else {
6230 track->mRetryCount = kMaxTrackRetriesOffload;
6231 }
6232 track->flushAck();
6233 if (last) {
6234 mFlushPending = true;
6235 }
6236 } else if (track->isResumePending()){
6237 track->resumeAck();
6238 if (last) {
6239 if (mPausedBytesRemaining) {
6240 // Need to continue write that was interrupted
6241 mCurrentWriteLength = mPausedWriteLength;
6242 mBytesRemaining = mPausedBytesRemaining;
6243 mPausedBytesRemaining = 0;
6244 }
6245 if (mHwPaused) {
6246 doHwResume = true;
6247 mHwPaused = false;
6248 // threadLoop_mix() will handle the case that we need to
6249 // resume an interrupted write
6250 }
6251 // enable write to audio HAL
6252 mSleepTimeUs = 0;
6253
6254 mLeftVolFloat = mRightVolFloat = -1.0;
6255
6256 // Do not handle new data in this iteration even if track->framesReady()
6257 mixerStatus = MIXER_TRACKS_ENABLED;
6258 }
6259 } else if (track->framesReady() && track->isReady() &&
6260 !track->isPaused() && !track->isTerminated() && !track->isStopping_2()) {
6261 ALOGVV("OffloadThread: track(%d) s=%08x [OK]", track->id(), cblk->mServer);
6262 if (track->mFillingUpStatus == Track::FS_FILLED) {
6263 track->mFillingUpStatus = Track::FS_ACTIVE;
6264 if (last) {
6265 // make sure processVolume_l() will apply new volume even if 0
6266 mLeftVolFloat = mRightVolFloat = -1.0;
6267 }
6268 }
6269
6270 if (last) {
6271 sp<Track> previousTrack = mPreviousTrack.promote();
6272 if (previousTrack != 0) {
6273 if (track != previousTrack.get()) {
6274 // Flush any data still being written from last track
6275 mBytesRemaining = 0;
6276 if (mPausedBytesRemaining) {
6277 // Last track was paused so we also need to flush saved
6278 // mixbuffer state and invalidate track so that it will
6279 // re-submit that unwritten data when it is next resumed
6280 mPausedBytesRemaining = 0;
6281 // Invalidate is a bit drastic - would be more efficient
6282 // to have a flag to tell client that some of the
6283 // previously written data was lost
6284 previousTrack->invalidate();
6285 }
6286 // flush data already sent to the DSP if changing audio session as audio
6287 // comes from a different source. Also invalidate previous track to force a
6288 // seek when resuming.
6289 if (previousTrack->sessionId() != track->sessionId()) {
6290 previousTrack->invalidate();
6291 }
6292 }
6293 }
6294 mPreviousTrack = track;
6295 // reset retry count
6296 if (track->isStopping_1()) {
6297 track->mRetryCount = kMaxTrackStopRetriesOffload;
6298 } else {
6299 track->mRetryCount = kMaxTrackRetriesOffload;
6300 }
6301 mActiveTrack = t;
6302 mixerStatus = MIXER_TRACKS_READY;
6303 }
6304 } else {
6305 ALOGVV("OffloadThread: track(%d) s=%08x [NOT READY]", track->id(), cblk->mServer);
6306 if (track->isStopping_1()) {
6307 if (--(track->mRetryCount) <= 0) {
6308 // Hardware buffer can hold a large amount of audio so we must
6309 // wait for all current track's data to drain before we say
6310 // that the track is stopped.
6311 if (mBytesRemaining == 0) {
6312 // Only start draining when all data in mixbuffer
6313 // has been written
6314 ALOGV("OffloadThread: underrun and STOPPING_1 -> draining, STOPPING_2");
6315 track->mState = TrackBase::STOPPING_2; // so presentation completes after
6316 // drain do not drain if no data was ever sent to HAL (mStandby == true)
6317 if (last && !mStandby) {
6318 // do not modify drain sequence if we are already draining. This happens
6319 // when resuming from pause after drain.
6320 if ((mDrainSequence & 1) == 0) {
6321 mSleepTimeUs = 0;
6322 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
6323 mixerStatus = MIXER_DRAIN_TRACK;
6324 mDrainSequence += 2;
6325 }
6326 if (mHwPaused) {
6327 // It is possible to move from PAUSED to STOPPING_1 without
6328 // a resume so we must ensure hardware is running
6329 doHwResume = true;
6330 mHwPaused = false;
6331 }
6332 }
6333 }
6334 } else if (last) {
6335 ALOGV("stopping1 underrun retries left %d", track->mRetryCount);
6336 mixerStatus = MIXER_TRACKS_ENABLED;
6337 }
6338 } else if (track->isStopping_2()) {
6339 // Drain has completed or we are in standby, signal presentation complete
6340 if (!(mDrainSequence & 1) || !last || mStandby) {
6341 track->mState = TrackBase::STOPPED;
6342 uint32_t latency = 0;
6343 status_t result = mOutput->stream->getLatency(&latency);
6344 ALOGE_IF(result != OK,
6345 "Error when retrieving output stream latency: %d", result);
6346 size_t audioHALFrames = (latency * mSampleRate) / 1000;
6347 int64_t framesWritten =
6348 mBytesWritten / mOutput->getFrameSize();
6349 track->presentationComplete(framesWritten, audioHALFrames);
6350 track->reset();
6351 tracksToRemove->add(track);
6352 // DIRECT and OFFLOADED stop resets frame counts.
6353 if (!mUseAsyncWrite) {
6354 // If we don't get explicit drain notification we must
6355 // register discontinuity regardless of whether this is
6356 // the previous (!last) or the upcoming (last) track
6357 // to avoid skipping the discontinuity.
6358 mTimestampVerifier.discontinuity();
6359 }
6360 }
6361 } else {
6362 // No buffers for this track. Give it a few chances to
6363 // fill a buffer, then remove it from active list.
6364 if (--(track->mRetryCount) <= 0) {
6365 bool running = false;
6366 uint64_t position = 0;
6367 struct timespec unused;
6368 // The running check restarts the retry counter at least once.
6369 status_t ret = mOutput->stream->getPresentationPosition(&position, &unused);
6370 if (ret == NO_ERROR && position != mOffloadUnderrunPosition) {
6371 running = true;
6372 mOffloadUnderrunPosition = position;
6373 }
6374 if (ret == NO_ERROR) {
6375 ALOGVV("underrun counter, running(%d): %lld vs %lld", running,
6376 (long long)position, (long long)mOffloadUnderrunPosition);
6377 }
6378 if (running) { // still running, give us more time.
6379 track->mRetryCount = kMaxTrackRetriesOffload;
6380 } else {
6381 ALOGV("OffloadThread: BUFFER TIMEOUT: remove track(%d) from active list",
6382 track->id());
6383 tracksToRemove->add(track);
6384 // tell client process that the track was disabled because of underrun;
6385 // it will then automatically call start() when data is available
6386 track->disable();
6387 }
6388 } else if (last){
6389 mixerStatus = MIXER_TRACKS_ENABLED;
6390 }
6391 }
6392 }
6393 // compute volume for this track
6394 if (track->isReady()) { // check ready to prevent premature start.
6395 processVolume_l(track, last);
6396 }
6397 }
6398
6399 // make sure the pause/flush/resume sequence is executed in the right order.
6400 // If a flush is pending and a track is active but the HW is not paused, force a HW pause
6401 // before flush and then resume HW. This can happen in case of pause/flush/resume
6402 // if resume is received before pause is executed.
6403 if (!mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
6404 status_t result = mOutput->stream->pause();
6405 ALOGE_IF(result != OK, "Error when pausing output stream: %d", result);
6406 }
6407 if (mFlushPending) {
6408 flushHw_l();
6409 }
6410 if (!mStandby && doHwResume) {
6411 status_t result = mOutput->stream->resume();
6412 ALOGE_IF(result != OK, "Error when resuming output stream: %d", result);
6413 }
6414
6415 // remove all the tracks that need to be...
6416 removeTracks_l(*tracksToRemove);
6417
6418 return mixerStatus;
6419 }
6420
6421 // must be called with thread mutex locked
waitingAsyncCallback_l()6422 bool AudioFlinger::OffloadThread::waitingAsyncCallback_l()
6423 {
6424 ALOGVV("waitingAsyncCallback_l mWriteAckSequence %d mDrainSequence %d",
6425 mWriteAckSequence, mDrainSequence);
6426 if (mUseAsyncWrite && ((mWriteAckSequence & 1) || (mDrainSequence & 1))) {
6427 return true;
6428 }
6429 return false;
6430 }
6431
waitingAsyncCallback()6432 bool AudioFlinger::OffloadThread::waitingAsyncCallback()
6433 {
6434 Mutex::Autolock _l(mLock);
6435 return waitingAsyncCallback_l();
6436 }
6437
flushHw_l()6438 void AudioFlinger::OffloadThread::flushHw_l()
6439 {
6440 DirectOutputThread::flushHw_l();
6441 // Flush anything still waiting in the mixbuffer
6442 mCurrentWriteLength = 0;
6443 mBytesRemaining = 0;
6444 mPausedWriteLength = 0;
6445 mPausedBytesRemaining = 0;
6446 // reset bytes written count to reflect that DSP buffers are empty after flush.
6447 mBytesWritten = 0;
6448 mOffloadUnderrunPosition = ~0LL;
6449
6450 if (mUseAsyncWrite) {
6451 // discard any pending drain or write ack by incrementing sequence
6452 mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
6453 mDrainSequence = (mDrainSequence + 2) & ~1;
6454 ALOG_ASSERT(mCallbackThread != 0);
6455 mCallbackThread->setWriteBlocked(mWriteAckSequence);
6456 mCallbackThread->setDraining(mDrainSequence);
6457 }
6458 }
6459
invalidateTracks(audio_stream_type_t streamType)6460 void AudioFlinger::OffloadThread::invalidateTracks(audio_stream_type_t streamType)
6461 {
6462 Mutex::Autolock _l(mLock);
6463 if (PlaybackThread::invalidateTracks_l(streamType)) {
6464 mFlushPending = true;
6465 }
6466 }
6467
6468 // ----------------------------------------------------------------------------
6469
DuplicatingThread(const sp<AudioFlinger> & audioFlinger,AudioFlinger::MixerThread * mainThread,audio_io_handle_t id,bool systemReady)6470 AudioFlinger::DuplicatingThread::DuplicatingThread(const sp<AudioFlinger>& audioFlinger,
6471 AudioFlinger::MixerThread* mainThread, audio_io_handle_t id, bool systemReady)
6472 : MixerThread(audioFlinger, mainThread->getOutput(), id,
6473 systemReady, DUPLICATING),
6474 mWaitTimeMs(UINT_MAX)
6475 {
6476 addOutputTrack(mainThread);
6477 }
6478
~DuplicatingThread()6479 AudioFlinger::DuplicatingThread::~DuplicatingThread()
6480 {
6481 for (size_t i = 0; i < mOutputTracks.size(); i++) {
6482 mOutputTracks[i]->destroy();
6483 }
6484 }
6485
threadLoop_mix()6486 void AudioFlinger::DuplicatingThread::threadLoop_mix()
6487 {
6488 // mix buffers...
6489 if (outputsReady(outputTracks)) {
6490 mAudioMixer->process();
6491 } else {
6492 if (mMixerBufferValid) {
6493 memset(mMixerBuffer, 0, mMixerBufferSize);
6494 } else {
6495 memset(mSinkBuffer, 0, mSinkBufferSize);
6496 }
6497 }
6498 mSleepTimeUs = 0;
6499 writeFrames = mNormalFrameCount;
6500 mCurrentWriteLength = mSinkBufferSize;
6501 mStandbyTimeNs = systemTime() + mStandbyDelayNs;
6502 }
6503
threadLoop_sleepTime()6504 void AudioFlinger::DuplicatingThread::threadLoop_sleepTime()
6505 {
6506 if (mSleepTimeUs == 0) {
6507 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
6508 mSleepTimeUs = mActiveSleepTimeUs;
6509 } else {
6510 mSleepTimeUs = mIdleSleepTimeUs;
6511 }
6512 } else if (mBytesWritten != 0) {
6513 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
6514 writeFrames = mNormalFrameCount;
6515 memset(mSinkBuffer, 0, mSinkBufferSize);
6516 } else {
6517 // flush remaining overflow buffers in output tracks
6518 writeFrames = 0;
6519 }
6520 mSleepTimeUs = 0;
6521 }
6522 }
6523
threadLoop_write()6524 ssize_t AudioFlinger::DuplicatingThread::threadLoop_write()
6525 {
6526 for (size_t i = 0; i < outputTracks.size(); i++) {
6527 const ssize_t actualWritten = outputTracks[i]->write(mSinkBuffer, writeFrames);
6528
6529 // Consider the first OutputTrack for timestamp and frame counting.
6530
6531 // The threadLoop() generally assumes writing a full sink buffer size at a time.
6532 // Here, we correct for writeFrames of 0 (a stop) or underruns because
6533 // we always claim success.
6534 if (i == 0) {
6535 const ssize_t correction = mSinkBufferSize / mFrameSize - actualWritten;
6536 ALOGD_IF(correction != 0 && writeFrames != 0,
6537 "%s: writeFrames:%u actualWritten:%zd correction:%zd mFramesWritten:%lld",
6538 __func__, writeFrames, actualWritten, correction, (long long)mFramesWritten);
6539 mFramesWritten -= correction;
6540 }
6541
6542 // TODO: Report correction for the other output tracks and show in the dump.
6543 }
6544 mStandby = false;
6545 return (ssize_t)mSinkBufferSize;
6546 }
6547
threadLoop_standby()6548 void AudioFlinger::DuplicatingThread::threadLoop_standby()
6549 {
6550 // DuplicatingThread implements standby by stopping all tracks
6551 for (size_t i = 0; i < outputTracks.size(); i++) {
6552 outputTracks[i]->stop();
6553 }
6554 }
6555
dumpInternals_l(int fd,const Vector<String16> & args __unused)6556 void AudioFlinger::DuplicatingThread::dumpInternals_l(int fd, const Vector<String16>& args __unused)
6557 {
6558 MixerThread::dumpInternals_l(fd, args);
6559
6560 std::stringstream ss;
6561 const size_t numTracks = mOutputTracks.size();
6562 ss << " " << numTracks << " OutputTracks";
6563 if (numTracks > 0) {
6564 ss << ":";
6565 for (const auto &track : mOutputTracks) {
6566 const sp<ThreadBase> thread = track->thread().promote();
6567 ss << " (" << track->id() << " : ";
6568 if (thread.get() != nullptr) {
6569 ss << thread.get() << ", " << thread->id();
6570 } else {
6571 ss << "null";
6572 }
6573 ss << ")";
6574 }
6575 }
6576 ss << "\n";
6577 std::string result = ss.str();
6578 write(fd, result.c_str(), result.size());
6579 }
6580
saveOutputTracks()6581 void AudioFlinger::DuplicatingThread::saveOutputTracks()
6582 {
6583 outputTracks = mOutputTracks;
6584 }
6585
clearOutputTracks()6586 void AudioFlinger::DuplicatingThread::clearOutputTracks()
6587 {
6588 outputTracks.clear();
6589 }
6590
addOutputTrack(MixerThread * thread)6591 void AudioFlinger::DuplicatingThread::addOutputTrack(MixerThread *thread)
6592 {
6593 Mutex::Autolock _l(mLock);
6594 // The downstream MixerThread consumes thread->frameCount() amount of frames per mix pass.
6595 // Adjust for thread->sampleRate() to determine minimum buffer frame count.
6596 // Then triple buffer because Threads do not run synchronously and may not be clock locked.
6597 const size_t frameCount =
6598 3 * sourceFramesNeeded(mSampleRate, thread->frameCount(), thread->sampleRate());
6599 // TODO: Consider asynchronous sample rate conversion to handle clock disparity
6600 // from different OutputTracks and their associated MixerThreads (e.g. one may
6601 // nearly empty and the other may be dropping data).
6602
6603 sp<OutputTrack> outputTrack = new OutputTrack(thread,
6604 this,
6605 mSampleRate,
6606 mFormat,
6607 mChannelMask,
6608 frameCount,
6609 IPCThreadState::self()->getCallingUid());
6610 status_t status = outputTrack != 0 ? outputTrack->initCheck() : (status_t) NO_MEMORY;
6611 if (status != NO_ERROR) {
6612 ALOGE("addOutputTrack() initCheck failed %d", status);
6613 return;
6614 }
6615 thread->setStreamVolume(AUDIO_STREAM_PATCH, 1.0f);
6616 mOutputTracks.add(outputTrack);
6617 ALOGV("addOutputTrack() track %p, on thread %p", outputTrack.get(), thread);
6618 updateWaitTime_l();
6619 }
6620
removeOutputTrack(MixerThread * thread)6621 void AudioFlinger::DuplicatingThread::removeOutputTrack(MixerThread *thread)
6622 {
6623 Mutex::Autolock _l(mLock);
6624 for (size_t i = 0; i < mOutputTracks.size(); i++) {
6625 if (mOutputTracks[i]->thread() == thread) {
6626 mOutputTracks[i]->destroy();
6627 mOutputTracks.removeAt(i);
6628 updateWaitTime_l();
6629 if (thread->getOutput() == mOutput) {
6630 mOutput = NULL;
6631 }
6632 return;
6633 }
6634 }
6635 ALOGV("removeOutputTrack(): unknown thread: %p", thread);
6636 }
6637
6638 // caller must hold mLock
updateWaitTime_l()6639 void AudioFlinger::DuplicatingThread::updateWaitTime_l()
6640 {
6641 mWaitTimeMs = UINT_MAX;
6642 for (size_t i = 0; i < mOutputTracks.size(); i++) {
6643 sp<ThreadBase> strong = mOutputTracks[i]->thread().promote();
6644 if (strong != 0) {
6645 uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate();
6646 if (waitTimeMs < mWaitTimeMs) {
6647 mWaitTimeMs = waitTimeMs;
6648 }
6649 }
6650 }
6651 }
6652
6653
outputsReady(const SortedVector<sp<OutputTrack>> & outputTracks)6654 bool AudioFlinger::DuplicatingThread::outputsReady(
6655 const SortedVector< sp<OutputTrack> > &outputTracks)
6656 {
6657 for (size_t i = 0; i < outputTracks.size(); i++) {
6658 sp<ThreadBase> thread = outputTracks[i]->thread().promote();
6659 if (thread == 0) {
6660 ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p",
6661 outputTracks[i].get());
6662 return false;
6663 }
6664 PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
6665 // see note at standby() declaration
6666 if (playbackThread->standby() && !playbackThread->isSuspended()) {
6667 ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(),
6668 thread.get());
6669 return false;
6670 }
6671 }
6672 return true;
6673 }
6674
sendMetadataToBackend_l(const StreamOutHalInterface::SourceMetadata & metadata)6675 void AudioFlinger::DuplicatingThread::sendMetadataToBackend_l(
6676 const StreamOutHalInterface::SourceMetadata& metadata)
6677 {
6678 for (auto& outputTrack : outputTracks) { // not mOutputTracks
6679 outputTrack->setMetadatas(metadata.tracks);
6680 }
6681 }
6682
activeSleepTimeUs() const6683 uint32_t AudioFlinger::DuplicatingThread::activeSleepTimeUs() const
6684 {
6685 return (mWaitTimeMs * 1000) / 2;
6686 }
6687
cacheParameters_l()6688 void AudioFlinger::DuplicatingThread::cacheParameters_l()
6689 {
6690 // updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first
6691 updateWaitTime_l();
6692
6693 MixerThread::cacheParameters_l();
6694 }
6695
6696
6697 // ----------------------------------------------------------------------------
6698 // Record
6699 // ----------------------------------------------------------------------------
6700
RecordThread(const sp<AudioFlinger> & audioFlinger,AudioStreamIn * input,audio_io_handle_t id,bool systemReady)6701 AudioFlinger::RecordThread::RecordThread(const sp<AudioFlinger>& audioFlinger,
6702 AudioStreamIn *input,
6703 audio_io_handle_t id,
6704 bool systemReady
6705 ) :
6706 ThreadBase(audioFlinger, id, RECORD, systemReady),
6707 mInput(input),
6708 mSource(mInput),
6709 mActiveTracks(&this->mLocalLog),
6710 mRsmpInBuffer(NULL),
6711 // mRsmpInFrames, mRsmpInFramesP2, and mRsmpInFramesOA are set by readInputParameters_l()
6712 mRsmpInRear(0)
6713 , mReadOnlyHeap(new MemoryDealer(kRecordThreadReadOnlyHeapSize,
6714 "RecordThreadRO", MemoryHeapBase::READ_ONLY))
6715 // mFastCapture below
6716 , mFastCaptureFutex(0)
6717 // mInputSource
6718 // mPipeSink
6719 // mPipeSource
6720 , mPipeFramesP2(0)
6721 // mPipeMemory
6722 // mFastCaptureNBLogWriter
6723 , mFastTrackAvail(false)
6724 , mBtNrecSuspended(false)
6725 {
6726 snprintf(mThreadName, kThreadNameLength, "AudioIn_%X", id);
6727 mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName);
6728
6729 if (mInput->audioHwDev != nullptr) {
6730 mIsMsdDevice = strcmp(
6731 mInput->audioHwDev->moduleName(), AUDIO_HARDWARE_MODULE_ID_MSD) == 0;
6732 }
6733
6734 readInputParameters_l();
6735
6736 // TODO: We may also match on address as well as device type for
6737 // AUDIO_DEVICE_IN_BUS, AUDIO_DEVICE_IN_BLUETOOTH_A2DP, AUDIO_DEVICE_IN_REMOTE_SUBMIX
6738 // TODO: This property should be ensure that only contains one single device type.
6739 mTimestampCorrectedDevice = (audio_devices_t)property_get_int64(
6740 "audio.timestamp.corrected_input_device",
6741 (int64_t)(mIsMsdDevice ? AUDIO_DEVICE_IN_BUS // turn on by default for MSD
6742 : AUDIO_DEVICE_NONE));
6743
6744 // create an NBAIO source for the HAL input stream, and negotiate
6745 mInputSource = new AudioStreamInSource(input->stream);
6746 size_t numCounterOffers = 0;
6747 const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)};
6748 #if !LOG_NDEBUG
6749 ssize_t index =
6750 #else
6751 (void)
6752 #endif
6753 mInputSource->negotiate(offers, 1, NULL, numCounterOffers);
6754 ALOG_ASSERT(index == 0);
6755
6756 // initialize fast capture depending on configuration
6757 bool initFastCapture;
6758 switch (kUseFastCapture) {
6759 case FastCapture_Never:
6760 initFastCapture = false;
6761 ALOGV("%p kUseFastCapture = Never, initFastCapture = false", this);
6762 break;
6763 case FastCapture_Always:
6764 initFastCapture = true;
6765 ALOGV("%p kUseFastCapture = Always, initFastCapture = true", this);
6766 break;
6767 case FastCapture_Static:
6768 initFastCapture = (mFrameCount * 1000) / mSampleRate < kMinNormalCaptureBufferSizeMs;
6769 ALOGV("%p kUseFastCapture = Static, (%lld * 1000) / %u vs %u, initFastCapture = %d",
6770 this, (long long)mFrameCount, mSampleRate, kMinNormalCaptureBufferSizeMs,
6771 initFastCapture);
6772 break;
6773 // case FastCapture_Dynamic:
6774 }
6775
6776 if (initFastCapture) {
6777 // create a Pipe for FastCapture to write to, and for us and fast tracks to read from
6778 NBAIO_Format format = mInputSource->format();
6779 // quadruple-buffering of 20 ms each; this ensures we can sleep for 20ms in RecordThread
6780 size_t pipeFramesP2 = roundup(4 * FMS_20 * mSampleRate / 1000);
6781 size_t pipeSize = pipeFramesP2 * Format_frameSize(format);
6782 void *pipeBuffer = nullptr;
6783 const sp<MemoryDealer> roHeap(readOnlyHeap());
6784 sp<IMemory> pipeMemory;
6785 if ((roHeap == 0) ||
6786 (pipeMemory = roHeap->allocate(pipeSize)) == 0 ||
6787 (pipeBuffer = pipeMemory->pointer()) == nullptr) {
6788 ALOGE("not enough memory for pipe buffer size=%zu; "
6789 "roHeap=%p, pipeMemory=%p, pipeBuffer=%p; roHeapSize: %lld",
6790 pipeSize, roHeap.get(), pipeMemory.get(), pipeBuffer,
6791 (long long)kRecordThreadReadOnlyHeapSize);
6792 goto failed;
6793 }
6794 // pipe will be shared directly with fast clients, so clear to avoid leaking old information
6795 memset(pipeBuffer, 0, pipeSize);
6796 Pipe *pipe = new Pipe(pipeFramesP2, format, pipeBuffer);
6797 const NBAIO_Format offers[1] = {format};
6798 size_t numCounterOffers = 0;
6799 ssize_t index = pipe->negotiate(offers, 1, NULL, numCounterOffers);
6800 ALOG_ASSERT(index == 0);
6801 mPipeSink = pipe;
6802 PipeReader *pipeReader = new PipeReader(*pipe);
6803 numCounterOffers = 0;
6804 index = pipeReader->negotiate(offers, 1, NULL, numCounterOffers);
6805 ALOG_ASSERT(index == 0);
6806 mPipeSource = pipeReader;
6807 mPipeFramesP2 = pipeFramesP2;
6808 mPipeMemory = pipeMemory;
6809
6810 // create fast capture
6811 mFastCapture = new FastCapture();
6812 FastCaptureStateQueue *sq = mFastCapture->sq();
6813 #ifdef STATE_QUEUE_DUMP
6814 // FIXME
6815 #endif
6816 FastCaptureState *state = sq->begin();
6817 state->mCblk = NULL;
6818 state->mInputSource = mInputSource.get();
6819 state->mInputSourceGen++;
6820 state->mPipeSink = pipe;
6821 state->mPipeSinkGen++;
6822 state->mFrameCount = mFrameCount;
6823 state->mCommand = FastCaptureState::COLD_IDLE;
6824 // already done in constructor initialization list
6825 //mFastCaptureFutex = 0;
6826 state->mColdFutexAddr = &mFastCaptureFutex;
6827 state->mColdGen++;
6828 state->mDumpState = &mFastCaptureDumpState;
6829 #ifdef TEE_SINK
6830 // FIXME
6831 #endif
6832 mFastCaptureNBLogWriter = audioFlinger->newWriter_l(kFastCaptureLogSize, "FastCapture");
6833 state->mNBLogWriter = mFastCaptureNBLogWriter.get();
6834 sq->end();
6835 sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
6836
6837 // start the fast capture
6838 mFastCapture->run("FastCapture", ANDROID_PRIORITY_URGENT_AUDIO);
6839 pid_t tid = mFastCapture->getTid();
6840 sendPrioConfigEvent(getpid(), tid, kPriorityFastCapture, false /*forApp*/);
6841 stream()->setHalThreadPriority(kPriorityFastCapture);
6842 #ifdef AUDIO_WATCHDOG
6843 // FIXME
6844 #endif
6845
6846 mFastTrackAvail = true;
6847 }
6848 #ifdef TEE_SINK
6849 mTee.set(mInputSource->format(), NBAIO_Tee::TEE_FLAG_INPUT_THREAD);
6850 mTee.setId(std::string("_") + std::to_string(mId) + "_C");
6851 #endif
6852 failed: ;
6853
6854 // FIXME mNormalSource
6855 }
6856
~RecordThread()6857 AudioFlinger::RecordThread::~RecordThread()
6858 {
6859 if (mFastCapture != 0) {
6860 FastCaptureStateQueue *sq = mFastCapture->sq();
6861 FastCaptureState *state = sq->begin();
6862 if (state->mCommand == FastCaptureState::COLD_IDLE) {
6863 int32_t old = android_atomic_inc(&mFastCaptureFutex);
6864 if (old == -1) {
6865 (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
6866 }
6867 }
6868 state->mCommand = FastCaptureState::EXIT;
6869 sq->end();
6870 sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED);
6871 mFastCapture->join();
6872 mFastCapture.clear();
6873 }
6874 mAudioFlinger->unregisterWriter(mFastCaptureNBLogWriter);
6875 mAudioFlinger->unregisterWriter(mNBLogWriter);
6876 free(mRsmpInBuffer);
6877 }
6878
onFirstRef()6879 void AudioFlinger::RecordThread::onFirstRef()
6880 {
6881 run(mThreadName, PRIORITY_URGENT_AUDIO);
6882 }
6883
preExit()6884 void AudioFlinger::RecordThread::preExit()
6885 {
6886 ALOGV(" preExit()");
6887 Mutex::Autolock _l(mLock);
6888 for (size_t i = 0; i < mTracks.size(); i++) {
6889 sp<RecordTrack> track = mTracks[i];
6890 track->invalidate();
6891 }
6892 mActiveTracks.clear();
6893 mStartStopCond.broadcast();
6894 }
6895
threadLoop()6896 bool AudioFlinger::RecordThread::threadLoop()
6897 {
6898 nsecs_t lastWarning = 0;
6899
6900 inputStandBy();
6901
6902 reacquire_wakelock:
6903 sp<RecordTrack> activeTrack;
6904 {
6905 Mutex::Autolock _l(mLock);
6906 acquireWakeLock_l();
6907 }
6908
6909 // used to request a deferred sleep, to be executed later while mutex is unlocked
6910 uint32_t sleepUs = 0;
6911
6912 int64_t lastLoopCountRead = -2; // never matches "previous" loop, when loopCount = 0.
6913
6914 // loop while there is work to do
6915 for (int64_t loopCount = 0;; ++loopCount) { // loopCount used for statistics tracking
6916 Vector< sp<EffectChain> > effectChains;
6917
6918 // activeTracks accumulates a copy of a subset of mActiveTracks
6919 Vector< sp<RecordTrack> > activeTracks;
6920
6921 // reference to the (first and only) active fast track
6922 sp<RecordTrack> fastTrack;
6923
6924 // reference to a fast track which is about to be removed
6925 sp<RecordTrack> fastTrackToRemove;
6926
6927 { // scope for mLock
6928 Mutex::Autolock _l(mLock);
6929
6930 processConfigEvents_l();
6931
6932 // check exitPending here because checkForNewParameters_l() and
6933 // checkForNewParameters_l() can temporarily release mLock
6934 if (exitPending()) {
6935 break;
6936 }
6937
6938 // sleep with mutex unlocked
6939 if (sleepUs > 0) {
6940 ATRACE_BEGIN("sleepC");
6941 mWaitWorkCV.waitRelative(mLock, microseconds((nsecs_t)sleepUs));
6942 ATRACE_END();
6943 sleepUs = 0;
6944 continue;
6945 }
6946
6947 // if no active track(s), then standby and release wakelock
6948 size_t size = mActiveTracks.size();
6949 if (size == 0) {
6950 standbyIfNotAlreadyInStandby();
6951 // exitPending() can't become true here
6952 releaseWakeLock_l();
6953 ALOGV("RecordThread: loop stopping");
6954 // go to sleep
6955 mWaitWorkCV.wait(mLock);
6956 ALOGV("RecordThread: loop starting");
6957 goto reacquire_wakelock;
6958 }
6959
6960 bool doBroadcast = false;
6961 bool allStopped = true;
6962 for (size_t i = 0; i < size; ) {
6963
6964 activeTrack = mActiveTracks[i];
6965 if (activeTrack->isTerminated()) {
6966 if (activeTrack->isFastTrack()) {
6967 ALOG_ASSERT(fastTrackToRemove == 0);
6968 fastTrackToRemove = activeTrack;
6969 }
6970 removeTrack_l(activeTrack);
6971 mActiveTracks.remove(activeTrack);
6972 size--;
6973 continue;
6974 }
6975
6976 TrackBase::track_state activeTrackState = activeTrack->mState;
6977 switch (activeTrackState) {
6978
6979 case TrackBase::PAUSING:
6980 mActiveTracks.remove(activeTrack);
6981 activeTrack->mState = TrackBase::PAUSED;
6982 doBroadcast = true;
6983 size--;
6984 continue;
6985
6986 case TrackBase::STARTING_1:
6987 sleepUs = 10000;
6988 i++;
6989 allStopped = false;
6990 continue;
6991
6992 case TrackBase::STARTING_2:
6993 doBroadcast = true;
6994 mStandby = false;
6995 activeTrack->mState = TrackBase::ACTIVE;
6996 allStopped = false;
6997 break;
6998
6999 case TrackBase::ACTIVE:
7000 allStopped = false;
7001 break;
7002
7003 case TrackBase::IDLE: // cannot be on ActiveTracks if idle
7004 case TrackBase::PAUSED: // cannot be on ActiveTracks if paused
7005 case TrackBase::STOPPED: // cannot be on ActiveTracks if destroyed/terminated
7006 default:
7007 LOG_ALWAYS_FATAL("%s: Unexpected active track state:%d, id:%d, tracks:%zu",
7008 __func__, activeTrackState, activeTrack->id(), size);
7009 }
7010
7011 activeTracks.add(activeTrack);
7012 i++;
7013
7014 if (activeTrack->isFastTrack()) {
7015 ALOG_ASSERT(!mFastTrackAvail);
7016 ALOG_ASSERT(fastTrack == 0);
7017 fastTrack = activeTrack;
7018 }
7019 }
7020
7021 mActiveTracks.updatePowerState(this);
7022
7023 updateMetadata_l();
7024
7025 if (allStopped) {
7026 standbyIfNotAlreadyInStandby();
7027 }
7028 if (doBroadcast) {
7029 mStartStopCond.broadcast();
7030 }
7031
7032 // sleep if there are no active tracks to process
7033 if (activeTracks.isEmpty()) {
7034 if (sleepUs == 0) {
7035 sleepUs = kRecordThreadSleepUs;
7036 }
7037 continue;
7038 }
7039 sleepUs = 0;
7040
7041 lockEffectChains_l(effectChains);
7042 }
7043
7044 // thread mutex is now unlocked, mActiveTracks unknown, activeTracks.size() > 0
7045
7046 size_t size = effectChains.size();
7047 for (size_t i = 0; i < size; i++) {
7048 // thread mutex is not locked, but effect chain is locked
7049 effectChains[i]->process_l();
7050 }
7051
7052 // Push a new fast capture state if fast capture is not already running, or cblk change
7053 if (mFastCapture != 0) {
7054 FastCaptureStateQueue *sq = mFastCapture->sq();
7055 FastCaptureState *state = sq->begin();
7056 bool didModify = false;
7057 FastCaptureStateQueue::block_t block = FastCaptureStateQueue::BLOCK_UNTIL_PUSHED;
7058 if (state->mCommand != FastCaptureState::READ_WRITE /* FIXME &&
7059 (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)*/) {
7060 if (state->mCommand == FastCaptureState::COLD_IDLE) {
7061 int32_t old = android_atomic_inc(&mFastCaptureFutex);
7062 if (old == -1) {
7063 (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
7064 }
7065 }
7066 state->mCommand = FastCaptureState::READ_WRITE;
7067 #if 0 // FIXME
7068 mFastCaptureDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
7069 FastThreadDumpState::kSamplingNforLowRamDevice :
7070 FastThreadDumpState::kSamplingN);
7071 #endif
7072 didModify = true;
7073 }
7074 audio_track_cblk_t *cblkOld = state->mCblk;
7075 audio_track_cblk_t *cblkNew = fastTrack != 0 ? fastTrack->cblk() : NULL;
7076 if (cblkNew != cblkOld) {
7077 state->mCblk = cblkNew;
7078 // block until acked if removing a fast track
7079 if (cblkOld != NULL) {
7080 block = FastCaptureStateQueue::BLOCK_UNTIL_ACKED;
7081 }
7082 didModify = true;
7083 }
7084 AudioBufferProvider* abp = (fastTrack != 0 && fastTrack->isPatchTrack()) ?
7085 reinterpret_cast<AudioBufferProvider*>(fastTrack.get()) : nullptr;
7086 if (state->mFastPatchRecordBufferProvider != abp) {
7087 state->mFastPatchRecordBufferProvider = abp;
7088 state->mFastPatchRecordFormat = fastTrack == 0 ?
7089 AUDIO_FORMAT_INVALID : fastTrack->format();
7090 didModify = true;
7091 }
7092 sq->end(didModify);
7093 if (didModify) {
7094 sq->push(block);
7095 #if 0
7096 if (kUseFastCapture == FastCapture_Dynamic) {
7097 mNormalSource = mPipeSource;
7098 }
7099 #endif
7100 }
7101 }
7102
7103 // now run the fast track destructor with thread mutex unlocked
7104 fastTrackToRemove.clear();
7105
7106 // Read from HAL to keep up with fastest client if multiple active tracks, not slowest one.
7107 // Only the client(s) that are too slow will overrun. But if even the fastest client is too
7108 // slow, then this RecordThread will overrun by not calling HAL read often enough.
7109 // If destination is non-contiguous, first read past the nominal end of buffer, then
7110 // copy to the right place. Permitted because mRsmpInBuffer was over-allocated.
7111
7112 int32_t rear = mRsmpInRear & (mRsmpInFramesP2 - 1);
7113 ssize_t framesRead;
7114 const int64_t lastIoBeginNs = systemTime(); // start IO timing
7115
7116 // If an NBAIO source is present, use it to read the normal capture's data
7117 if (mPipeSource != 0) {
7118 size_t framesToRead = min(mRsmpInFramesOA - rear, mRsmpInFramesP2 / 2);
7119
7120 // The audio fifo read() returns OVERRUN on overflow, and advances the read pointer
7121 // to the full buffer point (clearing the overflow condition). Upon OVERRUN error,
7122 // we immediately retry the read() to get data and prevent another overflow.
7123 for (int retries = 0; retries <= 2; ++retries) {
7124 ALOGW_IF(retries > 0, "overrun on read from pipe, retry #%d", retries);
7125 framesRead = mPipeSource->read((uint8_t*)mRsmpInBuffer + rear * mFrameSize,
7126 framesToRead);
7127 if (framesRead != OVERRUN) break;
7128 }
7129
7130 const ssize_t availableToRead = mPipeSource->availableToRead();
7131 if (availableToRead >= 0) {
7132 // PipeSource is the master clock. It is up to the AudioRecord client to keep up.
7133 LOG_ALWAYS_FATAL_IF((size_t)availableToRead > mPipeFramesP2,
7134 "more frames to read than fifo size, %zd > %zu",
7135 availableToRead, mPipeFramesP2);
7136 const size_t pipeFramesFree = mPipeFramesP2 - availableToRead;
7137 const size_t sleepFrames = min(pipeFramesFree, mRsmpInFramesP2) / 2;
7138 ALOGVV("mPipeFramesP2:%zu mRsmpInFramesP2:%zu sleepFrames:%zu availableToRead:%zd",
7139 mPipeFramesP2, mRsmpInFramesP2, sleepFrames, availableToRead);
7140 sleepUs = (sleepFrames * 1000000LL) / mSampleRate;
7141 }
7142 if (framesRead < 0) {
7143 status_t status = (status_t) framesRead;
7144 switch (status) {
7145 case OVERRUN:
7146 ALOGW("overrun on read from pipe");
7147 framesRead = 0;
7148 break;
7149 case NEGOTIATE:
7150 ALOGE("re-negotiation is needed");
7151 framesRead = -1; // Will cause an attempt to recover.
7152 break;
7153 default:
7154 ALOGE("unknown error %d on read from pipe", status);
7155 break;
7156 }
7157 }
7158 // otherwise use the HAL / AudioStreamIn directly
7159 } else {
7160 ATRACE_BEGIN("read");
7161 size_t bytesRead;
7162 status_t result = mSource->read(
7163 (uint8_t*)mRsmpInBuffer + rear * mFrameSize, mBufferSize, &bytesRead);
7164 ATRACE_END();
7165 if (result < 0) {
7166 framesRead = result;
7167 } else {
7168 framesRead = bytesRead / mFrameSize;
7169 }
7170 }
7171
7172 const int64_t lastIoEndNs = systemTime(); // end IO timing
7173
7174 // Update server timestamp with server stats
7175 // systemTime() is optional if the hardware supports timestamps.
7176 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] += framesRead;
7177 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = lastIoEndNs;
7178
7179 // Update server timestamp with kernel stats
7180 if (mPipeSource.get() == nullptr /* don't obtain for FastCapture, could block */) {
7181 int64_t position, time;
7182 if (mStandby) {
7183 mTimestampVerifier.discontinuity();
7184 } else if (mSource->getCapturePosition(&position, &time) == NO_ERROR
7185 && time > mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL]) {
7186
7187 mTimestampVerifier.add(position, time, mSampleRate);
7188
7189 // Correct timestamps
7190 if (isTimestampCorrectionEnabled()) {
7191 ALOGVV("TS_BEFORE: %d %lld %lld",
7192 id(), (long long)time, (long long)position);
7193 auto correctedTimestamp = mTimestampVerifier.getLastCorrectedTimestamp();
7194 position = correctedTimestamp.mFrames;
7195 time = correctedTimestamp.mTimeNs;
7196 ALOGVV("TS_AFTER: %d %lld %lld",
7197 id(), (long long)time, (long long)position);
7198 }
7199
7200 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] = position;
7201 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] = time;
7202 // Note: In general record buffers should tend to be empty in
7203 // a properly running pipeline.
7204 //
7205 // Also, it is not advantageous to call get_presentation_position during the read
7206 // as the read obtains a lock, preventing the timestamp call from executing.
7207 } else {
7208 mTimestampVerifier.error();
7209 }
7210 }
7211
7212 // From the timestamp, input read latency is negative output write latency.
7213 const audio_input_flags_t flags = mInput != NULL ? mInput->flags : AUDIO_INPUT_FLAG_NONE;
7214 const double latencyMs = RecordTrack::checkServerLatencySupported(mFormat, flags)
7215 ? - mTimestamp.getOutputServerLatencyMs(mSampleRate) : 0.;
7216 if (latencyMs != 0.) { // note 0. means timestamp is empty.
7217 mLatencyMs.add(latencyMs);
7218 }
7219
7220 // Use this to track timestamp information
7221 // ALOGD("%s", mTimestamp.toString().c_str());
7222
7223 if (framesRead < 0 || (framesRead == 0 && mPipeSource == 0)) {
7224 ALOGE("read failed: framesRead=%zd", framesRead);
7225 // Force input into standby so that it tries to recover at next read attempt
7226 inputStandBy();
7227 sleepUs = kRecordThreadSleepUs;
7228 }
7229 if (framesRead <= 0) {
7230 goto unlock;
7231 }
7232 ALOG_ASSERT(framesRead > 0);
7233 mFramesRead += framesRead;
7234
7235 #ifdef TEE_SINK
7236 (void)mTee.write((uint8_t*)mRsmpInBuffer + rear * mFrameSize, framesRead);
7237 #endif
7238 // If destination is non-contiguous, we now correct for reading past end of buffer.
7239 {
7240 size_t part1 = mRsmpInFramesP2 - rear;
7241 if ((size_t) framesRead > part1) {
7242 memcpy(mRsmpInBuffer, (uint8_t*)mRsmpInBuffer + mRsmpInFramesP2 * mFrameSize,
7243 (framesRead - part1) * mFrameSize);
7244 }
7245 }
7246 rear = mRsmpInRear += framesRead;
7247
7248 size = activeTracks.size();
7249
7250 // loop over each active track
7251 for (size_t i = 0; i < size; i++) {
7252 activeTrack = activeTracks[i];
7253
7254 // skip fast tracks, as those are handled directly by FastCapture
7255 if (activeTrack->isFastTrack()) {
7256 continue;
7257 }
7258
7259 // TODO: This code probably should be moved to RecordTrack.
7260 // TODO: Update the activeTrack buffer converter in case of reconfigure.
7261
7262 enum {
7263 OVERRUN_UNKNOWN,
7264 OVERRUN_TRUE,
7265 OVERRUN_FALSE
7266 } overrun = OVERRUN_UNKNOWN;
7267
7268 // loop over getNextBuffer to handle circular sink
7269 for (;;) {
7270
7271 activeTrack->mSink.frameCount = ~0;
7272 status_t status = activeTrack->getNextBuffer(&activeTrack->mSink);
7273 size_t framesOut = activeTrack->mSink.frameCount;
7274 LOG_ALWAYS_FATAL_IF((status == OK) != (framesOut > 0));
7275
7276 // check available frames and handle overrun conditions
7277 // if the record track isn't draining fast enough.
7278 bool hasOverrun;
7279 size_t framesIn;
7280 activeTrack->mResamplerBufferProvider->sync(&framesIn, &hasOverrun);
7281 if (hasOverrun) {
7282 overrun = OVERRUN_TRUE;
7283 }
7284 if (framesOut == 0 || framesIn == 0) {
7285 break;
7286 }
7287
7288 // Don't allow framesOut to be larger than what is possible with resampling
7289 // from framesIn.
7290 // This isn't strictly necessary but helps limit buffer resizing in
7291 // RecordBufferConverter. TODO: remove when no longer needed.
7292 framesOut = min(framesOut,
7293 destinationFramesPossible(
7294 framesIn, mSampleRate, activeTrack->mSampleRate));
7295
7296 if (activeTrack->isDirect()) {
7297 // No RecordBufferConverter used for direct streams. Pass
7298 // straight from RecordThread buffer to RecordTrack buffer.
7299 AudioBufferProvider::Buffer buffer;
7300 buffer.frameCount = framesOut;
7301 status_t status = activeTrack->mResamplerBufferProvider->getNextBuffer(&buffer);
7302 if (status == OK && buffer.frameCount != 0) {
7303 ALOGV_IF(buffer.frameCount != framesOut,
7304 "%s() read less than expected (%zu vs %zu)",
7305 __func__, buffer.frameCount, framesOut);
7306 framesOut = buffer.frameCount;
7307 memcpy(activeTrack->mSink.raw, buffer.raw, buffer.frameCount * mFrameSize);
7308 activeTrack->mResamplerBufferProvider->releaseBuffer(&buffer);
7309 } else {
7310 framesOut = 0;
7311 ALOGE("%s() cannot fill request, status: %d, frameCount: %zu",
7312 __func__, status, buffer.frameCount);
7313 }
7314 } else {
7315 // process frames from the RecordThread buffer provider to the RecordTrack
7316 // buffer
7317 framesOut = activeTrack->mRecordBufferConverter->convert(
7318 activeTrack->mSink.raw,
7319 activeTrack->mResamplerBufferProvider,
7320 framesOut);
7321 }
7322
7323 if (framesOut > 0 && (overrun == OVERRUN_UNKNOWN)) {
7324 overrun = OVERRUN_FALSE;
7325 }
7326
7327 if (activeTrack->mFramesToDrop == 0) {
7328 if (framesOut > 0) {
7329 activeTrack->mSink.frameCount = framesOut;
7330 // Sanitize before releasing if the track has no access to the source data
7331 // An idle UID receives silence from non virtual devices until active
7332 if (activeTrack->isSilenced()) {
7333 memset(activeTrack->mSink.raw, 0, framesOut * activeTrack->frameSize());
7334 }
7335 activeTrack->releaseBuffer(&activeTrack->mSink);
7336 }
7337 } else {
7338 // FIXME could do a partial drop of framesOut
7339 if (activeTrack->mFramesToDrop > 0) {
7340 activeTrack->mFramesToDrop -= (ssize_t)framesOut;
7341 if (activeTrack->mFramesToDrop <= 0) {
7342 activeTrack->clearSyncStartEvent();
7343 }
7344 } else {
7345 activeTrack->mFramesToDrop += framesOut;
7346 if (activeTrack->mFramesToDrop >= 0 || activeTrack->mSyncStartEvent == 0 ||
7347 activeTrack->mSyncStartEvent->isCancelled()) {
7348 ALOGW("Synced record %s, session %d, trigger session %d",
7349 (activeTrack->mFramesToDrop >= 0) ? "timed out" : "cancelled",
7350 activeTrack->sessionId(),
7351 (activeTrack->mSyncStartEvent != 0) ?
7352 activeTrack->mSyncStartEvent->triggerSession() :
7353 AUDIO_SESSION_NONE);
7354 activeTrack->clearSyncStartEvent();
7355 }
7356 }
7357 }
7358
7359 if (framesOut == 0) {
7360 break;
7361 }
7362 }
7363
7364 switch (overrun) {
7365 case OVERRUN_TRUE:
7366 // client isn't retrieving buffers fast enough
7367 if (!activeTrack->setOverflow()) {
7368 nsecs_t now = systemTime();
7369 // FIXME should lastWarning per track?
7370 if ((now - lastWarning) > kWarningThrottleNs) {
7371 ALOGW("RecordThread: buffer overflow");
7372 lastWarning = now;
7373 }
7374 }
7375 break;
7376 case OVERRUN_FALSE:
7377 activeTrack->clearOverflow();
7378 break;
7379 case OVERRUN_UNKNOWN:
7380 break;
7381 }
7382
7383 // update frame information and push timestamp out
7384 activeTrack->updateTrackFrameInfo(
7385 activeTrack->mServerProxy->framesReleased(),
7386 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER],
7387 mSampleRate, mTimestamp);
7388 }
7389
7390 unlock:
7391 // enable changes in effect chain
7392 unlockEffectChains(effectChains);
7393 // effectChains doesn't need to be cleared, since it is cleared by destructor at scope end
7394 if (audio_has_proportional_frames(mFormat)
7395 && loopCount == lastLoopCountRead + 1) {
7396 const int64_t readPeriodNs = lastIoEndNs - mLastIoEndNs;
7397 const double jitterMs =
7398 TimestampVerifier<int64_t, int64_t>::computeJitterMs(
7399 {framesRead, readPeriodNs},
7400 {0, 0} /* lastTimestamp */, mSampleRate);
7401 const double processMs = (lastIoBeginNs - mLastIoEndNs) * 1e-6;
7402
7403 Mutex::Autolock _l(mLock);
7404 mIoJitterMs.add(jitterMs);
7405 mProcessTimeMs.add(processMs);
7406 }
7407 // update timing info.
7408 mLastIoBeginNs = lastIoBeginNs;
7409 mLastIoEndNs = lastIoEndNs;
7410 lastLoopCountRead = loopCount;
7411 }
7412
7413 standbyIfNotAlreadyInStandby();
7414
7415 {
7416 Mutex::Autolock _l(mLock);
7417 for (size_t i = 0; i < mTracks.size(); i++) {
7418 sp<RecordTrack> track = mTracks[i];
7419 track->invalidate();
7420 }
7421 mActiveTracks.clear();
7422 mStartStopCond.broadcast();
7423 }
7424
7425 releaseWakeLock();
7426
7427 ALOGV("RecordThread %p exiting", this);
7428 return false;
7429 }
7430
standbyIfNotAlreadyInStandby()7431 void AudioFlinger::RecordThread::standbyIfNotAlreadyInStandby()
7432 {
7433 if (!mStandby) {
7434 inputStandBy();
7435 mStandby = true;
7436 }
7437 }
7438
inputStandBy()7439 void AudioFlinger::RecordThread::inputStandBy()
7440 {
7441 // Idle the fast capture if it's currently running
7442 if (mFastCapture != 0) {
7443 FastCaptureStateQueue *sq = mFastCapture->sq();
7444 FastCaptureState *state = sq->begin();
7445 if (!(state->mCommand & FastCaptureState::IDLE)) {
7446 state->mCommand = FastCaptureState::COLD_IDLE;
7447 state->mColdFutexAddr = &mFastCaptureFutex;
7448 state->mColdGen++;
7449 mFastCaptureFutex = 0;
7450 sq->end();
7451 // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
7452 sq->push(FastCaptureStateQueue::BLOCK_UNTIL_ACKED);
7453 #if 0
7454 if (kUseFastCapture == FastCapture_Dynamic) {
7455 // FIXME
7456 }
7457 #endif
7458 #ifdef AUDIO_WATCHDOG
7459 // FIXME
7460 #endif
7461 } else {
7462 sq->end(false /*didModify*/);
7463 }
7464 }
7465 status_t result = mSource->standby();
7466 ALOGE_IF(result != OK, "Error when putting input stream into standby: %d", result);
7467
7468 // If going into standby, flush the pipe source.
7469 if (mPipeSource.get() != nullptr) {
7470 const ssize_t flushed = mPipeSource->flush();
7471 if (flushed > 0) {
7472 ALOGV("Input standby flushed PipeSource %zd frames", flushed);
7473 mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] += flushed;
7474 mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = systemTime();
7475 }
7476 }
7477 }
7478
7479 // RecordThread::createRecordTrack_l() must be called with AudioFlinger::mLock held
createRecordTrack_l(const sp<AudioFlinger::Client> & client,const audio_attributes_t & attr,uint32_t * pSampleRate,audio_format_t format,audio_channel_mask_t channelMask,size_t * pFrameCount,audio_session_t sessionId,size_t * pNotificationFrameCount,pid_t creatorPid,uid_t uid,audio_input_flags_t * flags,pid_t tid,status_t * status,audio_port_handle_t portId,const String16 & opPackageName)7480 sp<AudioFlinger::RecordThread::RecordTrack> AudioFlinger::RecordThread::createRecordTrack_l(
7481 const sp<AudioFlinger::Client>& client,
7482 const audio_attributes_t& attr,
7483 uint32_t *pSampleRate,
7484 audio_format_t format,
7485 audio_channel_mask_t channelMask,
7486 size_t *pFrameCount,
7487 audio_session_t sessionId,
7488 size_t *pNotificationFrameCount,
7489 pid_t creatorPid,
7490 uid_t uid,
7491 audio_input_flags_t *flags,
7492 pid_t tid,
7493 status_t *status,
7494 audio_port_handle_t portId,
7495 const String16& opPackageName)
7496 {
7497 size_t frameCount = *pFrameCount;
7498 size_t notificationFrameCount = *pNotificationFrameCount;
7499 sp<RecordTrack> track;
7500 status_t lStatus;
7501 audio_input_flags_t inputFlags = mInput->flags;
7502 audio_input_flags_t requestedFlags = *flags;
7503 uint32_t sampleRate;
7504
7505 lStatus = initCheck();
7506 if (lStatus != NO_ERROR) {
7507 ALOGE("createRecordTrack_l() audio driver not initialized");
7508 goto Exit;
7509 }
7510
7511 if (!audio_is_linear_pcm(mFormat) && (*flags & AUDIO_INPUT_FLAG_DIRECT) == 0) {
7512 ALOGE("createRecordTrack_l() on an encoded stream requires AUDIO_INPUT_FLAG_DIRECT");
7513 lStatus = BAD_VALUE;
7514 goto Exit;
7515 }
7516
7517 if (*pSampleRate == 0) {
7518 *pSampleRate = mSampleRate;
7519 }
7520 sampleRate = *pSampleRate;
7521
7522 // special case for FAST flag considered OK if fast capture is present
7523 if (hasFastCapture()) {
7524 inputFlags = (audio_input_flags_t)(inputFlags | AUDIO_INPUT_FLAG_FAST);
7525 }
7526
7527 // Check if requested flags are compatible with input stream flags
7528 if ((*flags & inputFlags) != *flags) {
7529 ALOGW("createRecordTrack_l(): mismatch between requested flags (%08x) and"
7530 " input flags (%08x)",
7531 *flags, inputFlags);
7532 *flags = (audio_input_flags_t)(*flags & inputFlags);
7533 }
7534
7535 // client expresses a preference for FAST, but we get the final say
7536 if (*flags & AUDIO_INPUT_FLAG_FAST) {
7537 if (
7538 // we formerly checked for a callback handler (non-0 tid),
7539 // but that is no longer required for TRANSFER_OBTAIN mode
7540 //
7541 // Frame count is not specified (0), or is less than or equal the pipe depth.
7542 // It is OK to provide a higher capacity than requested.
7543 // We will force it to mPipeFramesP2 below.
7544 (frameCount <= mPipeFramesP2) &&
7545 // PCM data
7546 audio_is_linear_pcm(format) &&
7547 // hardware format
7548 (format == mFormat) &&
7549 // hardware channel mask
7550 (channelMask == mChannelMask) &&
7551 // hardware sample rate
7552 (sampleRate == mSampleRate) &&
7553 // record thread has an associated fast capture
7554 hasFastCapture() &&
7555 // there are sufficient fast track slots available
7556 mFastTrackAvail
7557 ) {
7558 // check compatibility with audio effects.
7559 Mutex::Autolock _l(mLock);
7560 // Do not accept FAST flag if the session has software effects
7561 sp<EffectChain> chain = getEffectChain_l(sessionId);
7562 if (chain != 0) {
7563 audio_input_flags_t old = *flags;
7564 chain->checkInputFlagCompatibility(flags);
7565 if (old != *flags) {
7566 ALOGV("%p AUDIO_INPUT_FLAGS denied by effect old=%#x new=%#x",
7567 this, (int)old, (int)*flags);
7568 }
7569 }
7570 ALOGV_IF((*flags & AUDIO_INPUT_FLAG_FAST) != 0,
7571 "%p AUDIO_INPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu",
7572 this, frameCount, mFrameCount);
7573 } else {
7574 ALOGV("%p AUDIO_INPUT_FLAG_FAST denied: frameCount=%zu mFrameCount=%zu mPipeFramesP2=%zu "
7575 "format=%#x isLinear=%d mFormat=%#x channelMask=%#x sampleRate=%u mSampleRate=%u "
7576 "hasFastCapture=%d tid=%d mFastTrackAvail=%d",
7577 this, frameCount, mFrameCount, mPipeFramesP2,
7578 format, audio_is_linear_pcm(format), mFormat, channelMask, sampleRate, mSampleRate,
7579 hasFastCapture(), tid, mFastTrackAvail);
7580 *flags = (audio_input_flags_t)(*flags & ~AUDIO_INPUT_FLAG_FAST);
7581 }
7582 }
7583
7584 // If FAST or RAW flags were corrected, ask caller to request new input from audio policy
7585 if ((*flags & AUDIO_INPUT_FLAG_FAST) !=
7586 (requestedFlags & AUDIO_INPUT_FLAG_FAST)) {
7587 *flags = (audio_input_flags_t) (*flags & ~(AUDIO_INPUT_FLAG_FAST | AUDIO_INPUT_FLAG_RAW));
7588 lStatus = BAD_TYPE;
7589 goto Exit;
7590 }
7591
7592 // compute track buffer size in frames, and suggest the notification frame count
7593 if (*flags & AUDIO_INPUT_FLAG_FAST) {
7594 // fast track: frame count is exactly the pipe depth
7595 frameCount = mPipeFramesP2;
7596 // ignore requested notificationFrames, and always notify exactly once every HAL buffer
7597 notificationFrameCount = mFrameCount;
7598 } else {
7599 // not fast track: max notification period is resampled equivalent of one HAL buffer time
7600 // or 20 ms if there is a fast capture
7601 // TODO This could be a roundupRatio inline, and const
7602 size_t maxNotificationFrames = ((int64_t) (hasFastCapture() ? mSampleRate/50 : mFrameCount)
7603 * sampleRate + mSampleRate - 1) / mSampleRate;
7604 // minimum number of notification periods is at least kMinNotifications,
7605 // and at least kMinMs rounded up to a whole notification period (minNotificationsByMs)
7606 static const size_t kMinNotifications = 3;
7607 static const uint32_t kMinMs = 30;
7608 // TODO This could be a roundupRatio inline
7609 const size_t minFramesByMs = (sampleRate * kMinMs + 1000 - 1) / 1000;
7610 // TODO This could be a roundupRatio inline
7611 const size_t minNotificationsByMs = (minFramesByMs + maxNotificationFrames - 1) /
7612 maxNotificationFrames;
7613 const size_t minFrameCount = maxNotificationFrames *
7614 max(kMinNotifications, minNotificationsByMs);
7615 frameCount = max(frameCount, minFrameCount);
7616 if (notificationFrameCount == 0 || notificationFrameCount > maxNotificationFrames) {
7617 notificationFrameCount = maxNotificationFrames;
7618 }
7619 }
7620 *pFrameCount = frameCount;
7621 *pNotificationFrameCount = notificationFrameCount;
7622
7623 { // scope for mLock
7624 Mutex::Autolock _l(mLock);
7625
7626 track = new RecordTrack(this, client, attr, sampleRate,
7627 format, channelMask, frameCount,
7628 nullptr /* buffer */, (size_t)0 /* bufferSize */, sessionId, creatorPid, uid,
7629 *flags, TrackBase::TYPE_DEFAULT, opPackageName, portId);
7630
7631 lStatus = track->initCheck();
7632 if (lStatus != NO_ERROR) {
7633 ALOGE("createRecordTrack_l() initCheck failed %d; no control block?", lStatus);
7634 // track must be cleared from the caller as the caller has the AF lock
7635 goto Exit;
7636 }
7637 mTracks.add(track);
7638
7639 if ((*flags & AUDIO_INPUT_FLAG_FAST) && (tid != -1)) {
7640 pid_t callingPid = IPCThreadState::self()->getCallingPid();
7641 // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
7642 // so ask activity manager to do this on our behalf
7643 sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp, true /*forApp*/);
7644 }
7645 }
7646
7647 lStatus = NO_ERROR;
7648
7649 Exit:
7650 *status = lStatus;
7651 return track;
7652 }
7653
start(RecordThread::RecordTrack * recordTrack,AudioSystem::sync_event_t event,audio_session_t triggerSession)7654 status_t AudioFlinger::RecordThread::start(RecordThread::RecordTrack* recordTrack,
7655 AudioSystem::sync_event_t event,
7656 audio_session_t triggerSession)
7657 {
7658 ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession);
7659 sp<ThreadBase> strongMe = this;
7660 status_t status = NO_ERROR;
7661
7662 if (event == AudioSystem::SYNC_EVENT_NONE) {
7663 recordTrack->clearSyncStartEvent();
7664 } else if (event != AudioSystem::SYNC_EVENT_SAME) {
7665 recordTrack->mSyncStartEvent = mAudioFlinger->createSyncEvent(event,
7666 triggerSession,
7667 recordTrack->sessionId(),
7668 syncStartEventCallback,
7669 recordTrack);
7670 // Sync event can be cancelled by the trigger session if the track is not in a
7671 // compatible state in which case we start record immediately
7672 if (recordTrack->mSyncStartEvent->isCancelled()) {
7673 recordTrack->clearSyncStartEvent();
7674 } else {
7675 // do not wait for the event for more than AudioSystem::kSyncRecordStartTimeOutMs
7676 recordTrack->mFramesToDrop = -(ssize_t)
7677 ((AudioSystem::kSyncRecordStartTimeOutMs * recordTrack->mSampleRate) / 1000);
7678 }
7679 }
7680
7681 {
7682 // This section is a rendezvous between binder thread executing start() and RecordThread
7683 AutoMutex lock(mLock);
7684 if (recordTrack->isInvalid()) {
7685 recordTrack->clearSyncStartEvent();
7686 return INVALID_OPERATION;
7687 }
7688 if (mActiveTracks.indexOf(recordTrack) >= 0) {
7689 if (recordTrack->mState == TrackBase::PAUSING) {
7690 // We haven't stopped yet (moved to PAUSED and not in mActiveTracks)
7691 // so no need to startInput().
7692 ALOGV("active record track PAUSING -> ACTIVE");
7693 recordTrack->mState = TrackBase::ACTIVE;
7694 } else {
7695 ALOGV("active record track state %d", recordTrack->mState);
7696 }
7697 return status;
7698 }
7699
7700 // TODO consider other ways of handling this, such as changing the state to :STARTING and
7701 // adding the track to mActiveTracks after returning from AudioSystem::startInput(),
7702 // or using a separate command thread
7703 recordTrack->mState = TrackBase::STARTING_1;
7704 mActiveTracks.add(recordTrack);
7705 status_t status = NO_ERROR;
7706 if (recordTrack->isExternalTrack()) {
7707 mLock.unlock();
7708 status = AudioSystem::startInput(recordTrack->portId());
7709 mLock.lock();
7710 if (recordTrack->isInvalid()) {
7711 recordTrack->clearSyncStartEvent();
7712 if (status == NO_ERROR && recordTrack->mState == TrackBase::STARTING_1) {
7713 recordTrack->mState = TrackBase::STARTING_2;
7714 // STARTING_2 forces destroy to call stopInput.
7715 }
7716 return INVALID_OPERATION;
7717 }
7718 if (recordTrack->mState != TrackBase::STARTING_1) {
7719 ALOGW("%s(%d): unsynchronized mState:%d change",
7720 __func__, recordTrack->id(), recordTrack->mState);
7721 // Someone else has changed state, let them take over,
7722 // leave mState in the new state.
7723 recordTrack->clearSyncStartEvent();
7724 return INVALID_OPERATION;
7725 }
7726 // we're ok, but perhaps startInput has failed
7727 if (status != NO_ERROR) {
7728 ALOGW("%s(%d): startInput failed, status %d",
7729 __func__, recordTrack->id(), status);
7730 // We are in ActiveTracks if STARTING_1 and valid, so remove from ActiveTracks,
7731 // leave in STARTING_1, so destroy() will not call stopInput.
7732 mActiveTracks.remove(recordTrack);
7733 recordTrack->clearSyncStartEvent();
7734 return status;
7735 }
7736 sendIoConfigEvent_l(
7737 AUDIO_CLIENT_STARTED, recordTrack->creatorPid(), recordTrack->portId());
7738 }
7739 // Catch up with current buffer indices if thread is already running.
7740 // This is what makes a new client discard all buffered data. If the track's mRsmpInFront
7741 // was initialized to some value closer to the thread's mRsmpInFront, then the track could
7742 // see previously buffered data before it called start(), but with greater risk of overrun.
7743
7744 recordTrack->mResamplerBufferProvider->reset();
7745 if (!recordTrack->isDirect()) {
7746 // clear any converter state as new data will be discontinuous
7747 recordTrack->mRecordBufferConverter->reset();
7748 }
7749 recordTrack->mState = TrackBase::STARTING_2;
7750 // signal thread to start
7751 mWaitWorkCV.broadcast();
7752 return status;
7753 }
7754 }
7755
syncStartEventCallback(const wp<SyncEvent> & event)7756 void AudioFlinger::RecordThread::syncStartEventCallback(const wp<SyncEvent>& event)
7757 {
7758 sp<SyncEvent> strongEvent = event.promote();
7759
7760 if (strongEvent != 0) {
7761 sp<RefBase> ptr = strongEvent->cookie().promote();
7762 if (ptr != 0) {
7763 RecordTrack *recordTrack = (RecordTrack *)ptr.get();
7764 recordTrack->handleSyncStartEvent(strongEvent);
7765 }
7766 }
7767 }
7768
stop(RecordThread::RecordTrack * recordTrack)7769 bool AudioFlinger::RecordThread::stop(RecordThread::RecordTrack* recordTrack) {
7770 ALOGV("RecordThread::stop");
7771 AutoMutex _l(mLock);
7772 // if we're invalid, we can't be on the ActiveTracks.
7773 if (mActiveTracks.indexOf(recordTrack) < 0 || recordTrack->mState == TrackBase::PAUSING) {
7774 return false;
7775 }
7776 // note that threadLoop may still be processing the track at this point [without lock]
7777 recordTrack->mState = TrackBase::PAUSING;
7778
7779 // NOTE: Waiting here is important to keep stop synchronous.
7780 // This is needed for proper patchRecord peer release.
7781 while (recordTrack->mState == TrackBase::PAUSING && !recordTrack->isInvalid()) {
7782 mWaitWorkCV.broadcast(); // signal thread to stop
7783 mStartStopCond.wait(mLock);
7784 }
7785
7786 if (recordTrack->mState == TrackBase::PAUSED) { // successful stop
7787 ALOGV("Record stopped OK");
7788 return true;
7789 }
7790
7791 // don't handle anything - we've been invalidated or restarted and in a different state
7792 ALOGW_IF("%s(%d): unsynchronized stop, state: %d",
7793 __func__, recordTrack->id(), recordTrack->mState);
7794 return false;
7795 }
7796
isValidSyncEvent(const sp<SyncEvent> & event __unused) const7797 bool AudioFlinger::RecordThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
7798 {
7799 return false;
7800 }
7801
setSyncEvent(const sp<SyncEvent> & event __unused)7802 status_t AudioFlinger::RecordThread::setSyncEvent(const sp<SyncEvent>& event __unused)
7803 {
7804 #if 0 // This branch is currently dead code, but is preserved in case it will be needed in future
7805 if (!isValidSyncEvent(event)) {
7806 return BAD_VALUE;
7807 }
7808
7809 audio_session_t eventSession = event->triggerSession();
7810 status_t ret = NAME_NOT_FOUND;
7811
7812 Mutex::Autolock _l(mLock);
7813
7814 for (size_t i = 0; i < mTracks.size(); i++) {
7815 sp<RecordTrack> track = mTracks[i];
7816 if (eventSession == track->sessionId()) {
7817 (void) track->setSyncEvent(event);
7818 ret = NO_ERROR;
7819 }
7820 }
7821 return ret;
7822 #else
7823 return BAD_VALUE;
7824 #endif
7825 }
7826
getActiveMicrophones(std::vector<media::MicrophoneInfo> * activeMicrophones)7827 status_t AudioFlinger::RecordThread::getActiveMicrophones(
7828 std::vector<media::MicrophoneInfo>* activeMicrophones)
7829 {
7830 ALOGV("RecordThread::getActiveMicrophones");
7831 AutoMutex _l(mLock);
7832 status_t status = mInput->stream->getActiveMicrophones(activeMicrophones);
7833 return status;
7834 }
7835
setPreferredMicrophoneDirection(audio_microphone_direction_t direction)7836 status_t AudioFlinger::RecordThread::setPreferredMicrophoneDirection(
7837 audio_microphone_direction_t direction)
7838 {
7839 ALOGV("setPreferredMicrophoneDirection(%d)", direction);
7840 AutoMutex _l(mLock);
7841 return mInput->stream->setPreferredMicrophoneDirection(direction);
7842 }
7843
setPreferredMicrophoneFieldDimension(float zoom)7844 status_t AudioFlinger::RecordThread::setPreferredMicrophoneFieldDimension(float zoom)
7845 {
7846 ALOGV("setPreferredMicrophoneFieldDimension(%f)", zoom);
7847 AutoMutex _l(mLock);
7848 return mInput->stream->setPreferredMicrophoneFieldDimension(zoom);
7849 }
7850
updateMetadata_l()7851 void AudioFlinger::RecordThread::updateMetadata_l()
7852 {
7853 if (mInput == nullptr || mInput->stream == nullptr ||
7854 !mActiveTracks.readAndClearHasChanged()) {
7855 return;
7856 }
7857 StreamInHalInterface::SinkMetadata metadata;
7858 for (const sp<RecordTrack> &track : mActiveTracks) {
7859 // No track is invalid as this is called after prepareTrack_l in the same critical section
7860 metadata.tracks.push_back({
7861 .source = track->attributes().source,
7862 .gain = 1, // capture tracks do not have volumes
7863 });
7864 }
7865 mInput->stream->updateSinkMetadata(metadata);
7866 }
7867
7868 // destroyTrack_l() must be called with ThreadBase::mLock held
destroyTrack_l(const sp<RecordTrack> & track)7869 void AudioFlinger::RecordThread::destroyTrack_l(const sp<RecordTrack>& track)
7870 {
7871 track->terminate();
7872 track->mState = TrackBase::STOPPED;
7873 // active tracks are removed by threadLoop()
7874 if (mActiveTracks.indexOf(track) < 0) {
7875 removeTrack_l(track);
7876 }
7877 }
7878
removeTrack_l(const sp<RecordTrack> & track)7879 void AudioFlinger::RecordThread::removeTrack_l(const sp<RecordTrack>& track)
7880 {
7881 String8 result;
7882 track->appendDump(result, false /* active */);
7883 mLocalLog.log("removeTrack_l (%p) %s", track.get(), result.string());
7884
7885 mTracks.remove(track);
7886 // need anything related to effects here?
7887 if (track->isFastTrack()) {
7888 ALOG_ASSERT(!mFastTrackAvail);
7889 mFastTrackAvail = true;
7890 }
7891 }
7892
dumpInternals_l(int fd,const Vector<String16> & args __unused)7893 void AudioFlinger::RecordThread::dumpInternals_l(int fd, const Vector<String16>& args __unused)
7894 {
7895 AudioStreamIn *input = mInput;
7896 audio_input_flags_t flags = input != NULL ? input->flags : AUDIO_INPUT_FLAG_NONE;
7897 dprintf(fd, " AudioStreamIn: %p flags %#x (%s)\n",
7898 input, flags, toString(flags).c_str());
7899 dprintf(fd, " Frames read: %lld\n", (long long)mFramesRead);
7900 if (mActiveTracks.isEmpty()) {
7901 dprintf(fd, " No active record clients\n");
7902 }
7903
7904 if (input != nullptr) {
7905 dprintf(fd, " Hal stream dump:\n");
7906 (void)input->stream->dump(fd);
7907 }
7908
7909 dprintf(fd, " Fast capture thread: %s\n", hasFastCapture() ? "yes" : "no");
7910 dprintf(fd, " Fast track available: %s\n", mFastTrackAvail ? "yes" : "no");
7911
7912 // Make a non-atomic copy of fast capture dump state so it won't change underneath us
7913 // while we are dumping it. It may be inconsistent, but it won't mutate!
7914 // This is a large object so we place it on the heap.
7915 // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages.
7916 const std::unique_ptr<FastCaptureDumpState> copy =
7917 std::make_unique<FastCaptureDumpState>(mFastCaptureDumpState);
7918 copy->dump(fd);
7919 }
7920
dumpTracks_l(int fd,const Vector<String16> & args __unused)7921 void AudioFlinger::RecordThread::dumpTracks_l(int fd, const Vector<String16>& args __unused)
7922 {
7923 String8 result;
7924 size_t numtracks = mTracks.size();
7925 size_t numactive = mActiveTracks.size();
7926 size_t numactiveseen = 0;
7927 dprintf(fd, " %zu Tracks", numtracks);
7928 const char *prefix = " ";
7929 if (numtracks) {
7930 dprintf(fd, " of which %zu are active\n", numactive);
7931 result.append(prefix);
7932 mTracks[0]->appendDumpHeader(result);
7933 for (size_t i = 0; i < numtracks ; ++i) {
7934 sp<RecordTrack> track = mTracks[i];
7935 if (track != 0) {
7936 bool active = mActiveTracks.indexOf(track) >= 0;
7937 if (active) {
7938 numactiveseen++;
7939 }
7940 result.append(prefix);
7941 track->appendDump(result, active);
7942 }
7943 }
7944 } else {
7945 dprintf(fd, "\n");
7946 }
7947
7948 if (numactiveseen != numactive) {
7949 result.append(" The following tracks are in the active list but"
7950 " not in the track list\n");
7951 result.append(prefix);
7952 mActiveTracks[0]->appendDumpHeader(result);
7953 for (size_t i = 0; i < numactive; ++i) {
7954 sp<RecordTrack> track = mActiveTracks[i];
7955 if (mTracks.indexOf(track) < 0) {
7956 result.append(prefix);
7957 track->appendDump(result, true /* active */);
7958 }
7959 }
7960
7961 }
7962 write(fd, result.string(), result.size());
7963 }
7964
setRecordSilenced(uid_t uid,bool silenced)7965 void AudioFlinger::RecordThread::setRecordSilenced(uid_t uid, bool silenced)
7966 {
7967 Mutex::Autolock _l(mLock);
7968 for (size_t i = 0; i < mTracks.size() ; i++) {
7969 sp<RecordTrack> track = mTracks[i];
7970 if (track != 0 && track->uid() == uid) {
7971 track->setSilenced(silenced);
7972 }
7973 }
7974 }
7975
reset()7976 void AudioFlinger::RecordThread::ResamplerBufferProvider::reset()
7977 {
7978 sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
7979 RecordThread *recordThread = (RecordThread *) threadBase.get();
7980 mRsmpInFront = recordThread->mRsmpInRear;
7981 mRsmpInUnrel = 0;
7982 }
7983
sync(size_t * framesAvailable,bool * hasOverrun)7984 void AudioFlinger::RecordThread::ResamplerBufferProvider::sync(
7985 size_t *framesAvailable, bool *hasOverrun)
7986 {
7987 sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
7988 RecordThread *recordThread = (RecordThread *) threadBase.get();
7989 const int32_t rear = recordThread->mRsmpInRear;
7990 const int32_t front = mRsmpInFront;
7991 const ssize_t filled = audio_utils::safe_sub_overflow(rear, front);
7992
7993 size_t framesIn;
7994 bool overrun = false;
7995 if (filled < 0) {
7996 // should not happen, but treat like a massive overrun and re-sync
7997 framesIn = 0;
7998 mRsmpInFront = rear;
7999 overrun = true;
8000 } else if ((size_t) filled <= recordThread->mRsmpInFrames) {
8001 framesIn = (size_t) filled;
8002 } else {
8003 // client is not keeping up with server, but give it latest data
8004 framesIn = recordThread->mRsmpInFrames;
8005 mRsmpInFront = /* front = */ audio_utils::safe_sub_overflow(
8006 rear, static_cast<int32_t>(framesIn));
8007 overrun = true;
8008 }
8009 if (framesAvailable != NULL) {
8010 *framesAvailable = framesIn;
8011 }
8012 if (hasOverrun != NULL) {
8013 *hasOverrun = overrun;
8014 }
8015 }
8016
8017 // AudioBufferProvider interface
getNextBuffer(AudioBufferProvider::Buffer * buffer)8018 status_t AudioFlinger::RecordThread::ResamplerBufferProvider::getNextBuffer(
8019 AudioBufferProvider::Buffer* buffer)
8020 {
8021 sp<ThreadBase> threadBase = mRecordTrack->mThread.promote();
8022 if (threadBase == 0) {
8023 buffer->frameCount = 0;
8024 buffer->raw = NULL;
8025 return NOT_ENOUGH_DATA;
8026 }
8027 RecordThread *recordThread = (RecordThread *) threadBase.get();
8028 int32_t rear = recordThread->mRsmpInRear;
8029 int32_t front = mRsmpInFront;
8030 ssize_t filled = audio_utils::safe_sub_overflow(rear, front);
8031 // FIXME should not be P2 (don't want to increase latency)
8032 // FIXME if client not keeping up, discard
8033 LOG_ALWAYS_FATAL_IF(!(0 <= filled && (size_t) filled <= recordThread->mRsmpInFrames));
8034 // 'filled' may be non-contiguous, so return only the first contiguous chunk
8035 front &= recordThread->mRsmpInFramesP2 - 1;
8036 size_t part1 = recordThread->mRsmpInFramesP2 - front;
8037 if (part1 > (size_t) filled) {
8038 part1 = filled;
8039 }
8040 size_t ask = buffer->frameCount;
8041 ALOG_ASSERT(ask > 0);
8042 if (part1 > ask) {
8043 part1 = ask;
8044 }
8045 if (part1 == 0) {
8046 // out of data is fine since the resampler will return a short-count.
8047 buffer->raw = NULL;
8048 buffer->frameCount = 0;
8049 mRsmpInUnrel = 0;
8050 return NOT_ENOUGH_DATA;
8051 }
8052
8053 buffer->raw = (uint8_t*)recordThread->mRsmpInBuffer + front * recordThread->mFrameSize;
8054 buffer->frameCount = part1;
8055 mRsmpInUnrel = part1;
8056 return NO_ERROR;
8057 }
8058
8059 // AudioBufferProvider interface
releaseBuffer(AudioBufferProvider::Buffer * buffer)8060 void AudioFlinger::RecordThread::ResamplerBufferProvider::releaseBuffer(
8061 AudioBufferProvider::Buffer* buffer)
8062 {
8063 int32_t stepCount = static_cast<int32_t>(buffer->frameCount);
8064 if (stepCount == 0) {
8065 return;
8066 }
8067 ALOG_ASSERT(stepCount <= mRsmpInUnrel);
8068 mRsmpInUnrel -= stepCount;
8069 mRsmpInFront = audio_utils::safe_add_overflow(mRsmpInFront, stepCount);
8070 buffer->raw = NULL;
8071 buffer->frameCount = 0;
8072 }
8073
checkBtNrec()8074 void AudioFlinger::RecordThread::checkBtNrec()
8075 {
8076 Mutex::Autolock _l(mLock);
8077 checkBtNrec_l();
8078 }
8079
checkBtNrec_l()8080 void AudioFlinger::RecordThread::checkBtNrec_l()
8081 {
8082 // disable AEC and NS if the device is a BT SCO headset supporting those
8083 // pre processings
8084 bool suspend = audio_is_bluetooth_sco_device(inDeviceType()) &&
8085 mAudioFlinger->btNrecIsOff();
8086 if (mBtNrecSuspended.exchange(suspend) != suspend) {
8087 for (size_t i = 0; i < mEffectChains.size(); i++) {
8088 setEffectSuspended_l(FX_IID_AEC, suspend, mEffectChains[i]->sessionId());
8089 setEffectSuspended_l(FX_IID_NS, suspend, mEffectChains[i]->sessionId());
8090 }
8091 }
8092 }
8093
8094
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)8095 bool AudioFlinger::RecordThread::checkForNewParameter_l(const String8& keyValuePair,
8096 status_t& status)
8097 {
8098 bool reconfig = false;
8099
8100 status = NO_ERROR;
8101
8102 audio_format_t reqFormat = mFormat;
8103 uint32_t samplingRate = mSampleRate;
8104 // TODO this may change if we want to support capture from HDMI PCM multi channel (e.g on TVs).
8105 audio_channel_mask_t channelMask = audio_channel_in_mask_from_count(mChannelCount);
8106
8107 AudioParameter param = AudioParameter(keyValuePair);
8108 int value;
8109
8110 // scope for AutoPark extends to end of method
8111 AutoPark<FastCapture> park(mFastCapture);
8112
8113 // TODO Investigate when this code runs. Check with audio policy when a sample rate and
8114 // channel count change can be requested. Do we mandate the first client defines the
8115 // HAL sampling rate and channel count or do we allow changes on the fly?
8116 if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
8117 samplingRate = value;
8118 reconfig = true;
8119 }
8120 if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
8121 if (!audio_is_linear_pcm((audio_format_t) value)) {
8122 status = BAD_VALUE;
8123 } else {
8124 reqFormat = (audio_format_t) value;
8125 reconfig = true;
8126 }
8127 }
8128 if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
8129 audio_channel_mask_t mask = (audio_channel_mask_t) value;
8130 if (!audio_is_input_channel(mask) ||
8131 audio_channel_count_from_in_mask(mask) > FCC_8) {
8132 status = BAD_VALUE;
8133 } else {
8134 channelMask = mask;
8135 reconfig = true;
8136 }
8137 }
8138 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
8139 // do not accept frame count changes if tracks are open as the track buffer
8140 // size depends on frame count and correct behavior would not be guaranteed
8141 // if frame count is changed after track creation
8142 if (mActiveTracks.size() > 0) {
8143 status = INVALID_OPERATION;
8144 } else {
8145 reconfig = true;
8146 }
8147 }
8148 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
8149 LOG_FATAL("Should not set routing device in RecordThread");
8150 }
8151 if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR &&
8152 mAudioSource != (audio_source_t)value) {
8153 LOG_FATAL("Should not set audio source in RecordThread");
8154 }
8155
8156 if (status == NO_ERROR) {
8157 status = mInput->stream->setParameters(keyValuePair);
8158 if (status == INVALID_OPERATION) {
8159 inputStandBy();
8160 status = mInput->stream->setParameters(keyValuePair);
8161 }
8162 if (reconfig) {
8163 if (status == BAD_VALUE) {
8164 uint32_t sRate;
8165 audio_channel_mask_t channelMask;
8166 audio_format_t format;
8167 if (mInput->stream->getAudioProperties(&sRate, &channelMask, &format) == OK &&
8168 audio_is_linear_pcm(format) && audio_is_linear_pcm(reqFormat) &&
8169 sRate <= (AUDIO_RESAMPLER_DOWN_RATIO_MAX * samplingRate) &&
8170 audio_channel_count_from_in_mask(channelMask) <= FCC_8) {
8171 status = NO_ERROR;
8172 }
8173 }
8174 if (status == NO_ERROR) {
8175 readInputParameters_l();
8176 sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
8177 }
8178 }
8179 }
8180
8181 return reconfig;
8182 }
8183
getParameters(const String8 & keys)8184 String8 AudioFlinger::RecordThread::getParameters(const String8& keys)
8185 {
8186 Mutex::Autolock _l(mLock);
8187 if (initCheck() == NO_ERROR) {
8188 String8 out_s8;
8189 if (mInput->stream->getParameters(keys, &out_s8) == OK) {
8190 return out_s8;
8191 }
8192 }
8193 return String8();
8194 }
8195
ioConfigChanged(audio_io_config_event event,pid_t pid,audio_port_handle_t portId)8196 void AudioFlinger::RecordThread::ioConfigChanged(audio_io_config_event event, pid_t pid,
8197 audio_port_handle_t portId) {
8198 sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
8199
8200 desc->mIoHandle = mId;
8201
8202 switch (event) {
8203 case AUDIO_INPUT_OPENED:
8204 case AUDIO_INPUT_REGISTERED:
8205 case AUDIO_INPUT_CONFIG_CHANGED:
8206 desc->mPatch = mPatch;
8207 desc->mChannelMask = mChannelMask;
8208 desc->mSamplingRate = mSampleRate;
8209 desc->mFormat = mFormat;
8210 desc->mFrameCount = mFrameCount;
8211 desc->mFrameCountHAL = mFrameCount;
8212 desc->mLatency = 0;
8213 break;
8214 case AUDIO_CLIENT_STARTED:
8215 desc->mPatch = mPatch;
8216 desc->mPortId = portId;
8217 break;
8218 case AUDIO_INPUT_CLOSED:
8219 default:
8220 break;
8221 }
8222 mAudioFlinger->ioConfigChanged(event, desc, pid);
8223 }
8224
readInputParameters_l()8225 void AudioFlinger::RecordThread::readInputParameters_l()
8226 {
8227 status_t result = mInput->stream->getAudioProperties(&mSampleRate, &mChannelMask, &mHALFormat);
8228 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving audio properties from HAL: %d", result);
8229 mFormat = mHALFormat;
8230 mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
8231 if (audio_is_linear_pcm(mFormat)) {
8232 LOG_ALWAYS_FATAL_IF(mChannelCount > FCC_8, "HAL channel count %d > %d",
8233 mChannelCount, FCC_8);
8234 } else {
8235 // Can have more that FCC_8 channels in encoded streams.
8236 ALOGI("HAL format %#x is not linear pcm", mFormat);
8237 }
8238 result = mInput->stream->getFrameSize(&mFrameSize);
8239 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving frame size from HAL: %d", result);
8240 result = mInput->stream->getBufferSize(&mBufferSize);
8241 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving buffer size from HAL: %d", result);
8242 mFrameCount = mBufferSize / mFrameSize;
8243 ALOGV("%p RecordThread params: mChannelCount=%u, mFormat=%#x, mFrameSize=%lld, "
8244 "mBufferSize=%lld, mFrameCount=%lld",
8245 this, mChannelCount, mFormat, (long long)mFrameSize, (long long)mBufferSize,
8246 (long long)mFrameCount);
8247 // This is the formula for calculating the temporary buffer size.
8248 // With 7 HAL buffers, we can guarantee ability to down-sample the input by ratio of 6:1 to
8249 // 1 full output buffer, regardless of the alignment of the available input.
8250 // The value is somewhat arbitrary, and could probably be even larger.
8251 // A larger value should allow more old data to be read after a track calls start(),
8252 // without increasing latency.
8253 //
8254 // Note this is independent of the maximum downsampling ratio permitted for capture.
8255 mRsmpInFrames = mFrameCount * 7;
8256 mRsmpInFramesP2 = roundup(mRsmpInFrames);
8257 free(mRsmpInBuffer);
8258 mRsmpInBuffer = NULL;
8259
8260 // TODO optimize audio capture buffer sizes ...
8261 // Here we calculate the size of the sliding buffer used as a source
8262 // for resampling. mRsmpInFramesP2 is currently roundup(mFrameCount * 7).
8263 // For current HAL frame counts, this is usually 2048 = 40 ms. It would
8264 // be better to have it derived from the pipe depth in the long term.
8265 // The current value is higher than necessary. However it should not add to latency.
8266
8267 // Over-allocate beyond mRsmpInFramesP2 to permit a HAL read past end of buffer
8268 mRsmpInFramesOA = mRsmpInFramesP2 + mFrameCount - 1;
8269 (void)posix_memalign(&mRsmpInBuffer, 32, mRsmpInFramesOA * mFrameSize);
8270 // if posix_memalign fails, will segv here.
8271 memset(mRsmpInBuffer, 0, mRsmpInFramesOA * mFrameSize);
8272
8273 // AudioRecord mSampleRate and mChannelCount are constant due to AudioRecord API constraints.
8274 // But if thread's mSampleRate or mChannelCount changes, how will that affect active tracks?
8275 }
8276
getInputFramesLost()8277 uint32_t AudioFlinger::RecordThread::getInputFramesLost()
8278 {
8279 Mutex::Autolock _l(mLock);
8280 uint32_t result;
8281 if (initCheck() == NO_ERROR && mInput->stream->getInputFramesLost(&result) == OK) {
8282 return result;
8283 }
8284 return 0;
8285 }
8286
sessionIds() const8287 KeyedVector<audio_session_t, bool> AudioFlinger::RecordThread::sessionIds() const
8288 {
8289 KeyedVector<audio_session_t, bool> ids;
8290 Mutex::Autolock _l(mLock);
8291 for (size_t j = 0; j < mTracks.size(); ++j) {
8292 sp<RecordThread::RecordTrack> track = mTracks[j];
8293 audio_session_t sessionId = track->sessionId();
8294 if (ids.indexOfKey(sessionId) < 0) {
8295 ids.add(sessionId, true);
8296 }
8297 }
8298 return ids;
8299 }
8300
clearInput()8301 AudioFlinger::AudioStreamIn* AudioFlinger::RecordThread::clearInput()
8302 {
8303 Mutex::Autolock _l(mLock);
8304 AudioStreamIn *input = mInput;
8305 mInput = NULL;
8306 return input;
8307 }
8308
8309 // this method must always be called either with ThreadBase mLock held or inside the thread loop
stream() const8310 sp<StreamHalInterface> AudioFlinger::RecordThread::stream() const
8311 {
8312 if (mInput == NULL) {
8313 return NULL;
8314 }
8315 return mInput->stream;
8316 }
8317
addEffectChain_l(const sp<EffectChain> & chain)8318 status_t AudioFlinger::RecordThread::addEffectChain_l(const sp<EffectChain>& chain)
8319 {
8320 ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this);
8321 chain->setThread(this);
8322 chain->setInBuffer(NULL);
8323 chain->setOutBuffer(NULL);
8324
8325 checkSuspendOnAddEffectChain_l(chain);
8326
8327 // make sure enabled pre processing effects state is communicated to the HAL as we
8328 // just moved them to a new input stream.
8329 chain->syncHalEffectsState();
8330
8331 mEffectChains.add(chain);
8332
8333 return NO_ERROR;
8334 }
8335
removeEffectChain_l(const sp<EffectChain> & chain)8336 size_t AudioFlinger::RecordThread::removeEffectChain_l(const sp<EffectChain>& chain)
8337 {
8338 ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this);
8339
8340 for (size_t i = 0; i < mEffectChains.size(); i++) {
8341 if (chain == mEffectChains[i]) {
8342 mEffectChains.removeAt(i);
8343 break;
8344 }
8345 }
8346 return mEffectChains.size();
8347 }
8348
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)8349 status_t AudioFlinger::RecordThread::createAudioPatch_l(const struct audio_patch *patch,
8350 audio_patch_handle_t *handle)
8351 {
8352 status_t status = NO_ERROR;
8353
8354 // store new device and send to effects
8355 mInDeviceTypeAddr.mType = patch->sources[0].ext.device.type;
8356 mInDeviceTypeAddr.mAddress = patch->sources[0].ext.device.address;
8357 audio_port_handle_t deviceId = patch->sources[0].id;
8358 for (size_t i = 0; i < mEffectChains.size(); i++) {
8359 mEffectChains[i]->setInputDevice_l(inDeviceTypeAddr());
8360 }
8361
8362 checkBtNrec_l();
8363
8364 // store new source and send to effects
8365 if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
8366 mAudioSource = patch->sinks[0].ext.mix.usecase.source;
8367 for (size_t i = 0; i < mEffectChains.size(); i++) {
8368 mEffectChains[i]->setAudioSource_l(mAudioSource);
8369 }
8370 }
8371
8372 if (mInput->audioHwDev->supportsAudioPatches()) {
8373 sp<DeviceHalInterface> hwDevice = mInput->audioHwDev->hwDevice();
8374 status = hwDevice->createAudioPatch(patch->num_sources,
8375 patch->sources,
8376 patch->num_sinks,
8377 patch->sinks,
8378 handle);
8379 } else {
8380 char *address;
8381 if (strcmp(patch->sources[0].ext.device.address, "") != 0) {
8382 address = audio_device_address_to_parameter(
8383 patch->sources[0].ext.device.type,
8384 patch->sources[0].ext.device.address);
8385 } else {
8386 address = (char *)calloc(1, 1);
8387 }
8388 AudioParameter param = AudioParameter(String8(address));
8389 free(address);
8390 param.addInt(String8(AudioParameter::keyRouting),
8391 (int)patch->sources[0].ext.device.type);
8392 param.addInt(String8(AudioParameter::keyInputSource),
8393 (int)patch->sinks[0].ext.mix.usecase.source);
8394 status = mInput->stream->setParameters(param.toString());
8395 *handle = AUDIO_PATCH_HANDLE_NONE;
8396 }
8397
8398 if ((mPatch.num_sources == 0) || (mPatch.sources[0].id != deviceId)) {
8399 sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
8400 mPatch = *patch;
8401 }
8402
8403 return status;
8404 }
8405
releaseAudioPatch_l(const audio_patch_handle_t handle)8406 status_t AudioFlinger::RecordThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
8407 {
8408 status_t status = NO_ERROR;
8409
8410 mPatch = audio_patch{};
8411 mInDeviceTypeAddr.reset();
8412
8413 if (mInput->audioHwDev->supportsAudioPatches()) {
8414 sp<DeviceHalInterface> hwDevice = mInput->audioHwDev->hwDevice();
8415 status = hwDevice->releaseAudioPatch(handle);
8416 } else {
8417 AudioParameter param;
8418 param.addInt(String8(AudioParameter::keyRouting), 0);
8419 status = mInput->stream->setParameters(param.toString());
8420 }
8421 return status;
8422 }
8423
updateOutDevices(const DeviceDescriptorBaseVector & outDevices)8424 void AudioFlinger::RecordThread::updateOutDevices(const DeviceDescriptorBaseVector& outDevices)
8425 {
8426 mOutDevices = outDevices;
8427 mOutDeviceTypeAddrs = deviceTypeAddrsFromDescriptors(mOutDevices);
8428 for (size_t i = 0; i < mEffectChains.size(); i++) {
8429 mEffectChains[i]->setDevices_l(outDeviceTypeAddrs());
8430 }
8431 }
8432
addPatchTrack(const sp<PatchRecord> & record)8433 void AudioFlinger::RecordThread::addPatchTrack(const sp<PatchRecord>& record)
8434 {
8435 Mutex::Autolock _l(mLock);
8436 mTracks.add(record);
8437 if (record->getSource()) {
8438 mSource = record->getSource();
8439 }
8440 }
8441
deletePatchTrack(const sp<PatchRecord> & record)8442 void AudioFlinger::RecordThread::deletePatchTrack(const sp<PatchRecord>& record)
8443 {
8444 Mutex::Autolock _l(mLock);
8445 if (mSource == record->getSource()) {
8446 mSource = mInput;
8447 }
8448 destroyTrack_l(record);
8449 }
8450
toAudioPortConfig(struct audio_port_config * config)8451 void AudioFlinger::RecordThread::toAudioPortConfig(struct audio_port_config *config)
8452 {
8453 ThreadBase::toAudioPortConfig(config);
8454 config->role = AUDIO_PORT_ROLE_SINK;
8455 config->ext.mix.hw_module = mInput->audioHwDev->handle();
8456 config->ext.mix.usecase.source = mAudioSource;
8457 if (mInput && mInput->flags != AUDIO_INPUT_FLAG_NONE) {
8458 config->config_mask |= AUDIO_PORT_CONFIG_FLAGS;
8459 config->flags.input = mInput->flags;
8460 }
8461 }
8462
8463 // ----------------------------------------------------------------------------
8464 // Mmap
8465 // ----------------------------------------------------------------------------
8466
MmapThreadHandle(const sp<MmapThread> & thread)8467 AudioFlinger::MmapThreadHandle::MmapThreadHandle(const sp<MmapThread>& thread)
8468 : mThread(thread)
8469 {
8470 assert(thread != 0); // thread must start non-null and stay non-null
8471 }
8472
~MmapThreadHandle()8473 AudioFlinger::MmapThreadHandle::~MmapThreadHandle()
8474 {
8475 mThread->disconnect();
8476 }
8477
createMmapBuffer(int32_t minSizeFrames,struct audio_mmap_buffer_info * info)8478 status_t AudioFlinger::MmapThreadHandle::createMmapBuffer(int32_t minSizeFrames,
8479 struct audio_mmap_buffer_info *info)
8480 {
8481 return mThread->createMmapBuffer(minSizeFrames, info);
8482 }
8483
getMmapPosition(struct audio_mmap_position * position)8484 status_t AudioFlinger::MmapThreadHandle::getMmapPosition(struct audio_mmap_position *position)
8485 {
8486 return mThread->getMmapPosition(position);
8487 }
8488
start(const AudioClient & client,audio_port_handle_t * handle)8489 status_t AudioFlinger::MmapThreadHandle::start(const AudioClient& client,
8490 audio_port_handle_t *handle)
8491
8492 {
8493 return mThread->start(client, handle);
8494 }
8495
stop(audio_port_handle_t handle)8496 status_t AudioFlinger::MmapThreadHandle::stop(audio_port_handle_t handle)
8497 {
8498 return mThread->stop(handle);
8499 }
8500
standby()8501 status_t AudioFlinger::MmapThreadHandle::standby()
8502 {
8503 return mThread->standby();
8504 }
8505
8506
MmapThread(const sp<AudioFlinger> & audioFlinger,audio_io_handle_t id,AudioHwDevice * hwDev,sp<StreamHalInterface> stream,bool systemReady)8507 AudioFlinger::MmapThread::MmapThread(
8508 const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
8509 AudioHwDevice *hwDev, sp<StreamHalInterface> stream, bool systemReady)
8510 : ThreadBase(audioFlinger, id, MMAP, systemReady),
8511 mSessionId(AUDIO_SESSION_NONE),
8512 mPortId(AUDIO_PORT_HANDLE_NONE),
8513 mHalStream(stream), mHalDevice(hwDev->hwDevice()), mAudioHwDev(hwDev),
8514 mActiveTracks(&this->mLocalLog),
8515 mHalVolFloat(-1.0f), // Initialize to illegal value so it always gets set properly later.
8516 mNoCallbackWarningCount(0)
8517 {
8518 mStandby = true;
8519 readHalParameters_l();
8520 }
8521
~MmapThread()8522 AudioFlinger::MmapThread::~MmapThread()
8523 {
8524 releaseWakeLock_l();
8525 }
8526
onFirstRef()8527 void AudioFlinger::MmapThread::onFirstRef()
8528 {
8529 run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO);
8530 }
8531
disconnect()8532 void AudioFlinger::MmapThread::disconnect()
8533 {
8534 ActiveTracks<MmapTrack> activeTracks;
8535 {
8536 Mutex::Autolock _l(mLock);
8537 for (const sp<MmapTrack> &t : mActiveTracks) {
8538 activeTracks.add(t);
8539 }
8540 }
8541 for (const sp<MmapTrack> &t : activeTracks) {
8542 stop(t->portId());
8543 }
8544 // This will decrement references and may cause the destruction of this thread.
8545 if (isOutput()) {
8546 AudioSystem::releaseOutput(mPortId);
8547 } else {
8548 AudioSystem::releaseInput(mPortId);
8549 }
8550 }
8551
8552
configure(const audio_attributes_t * attr,audio_stream_type_t streamType __unused,audio_session_t sessionId,const sp<MmapStreamCallback> & callback,audio_port_handle_t deviceId,audio_port_handle_t portId)8553 void AudioFlinger::MmapThread::configure(const audio_attributes_t *attr,
8554 audio_stream_type_t streamType __unused,
8555 audio_session_t sessionId,
8556 const sp<MmapStreamCallback>& callback,
8557 audio_port_handle_t deviceId,
8558 audio_port_handle_t portId)
8559 {
8560 mAttr = *attr;
8561 mSessionId = sessionId;
8562 mCallback = callback;
8563 mDeviceId = deviceId;
8564 mPortId = portId;
8565 }
8566
createMmapBuffer(int32_t minSizeFrames,struct audio_mmap_buffer_info * info)8567 status_t AudioFlinger::MmapThread::createMmapBuffer(int32_t minSizeFrames,
8568 struct audio_mmap_buffer_info *info)
8569 {
8570 if (mHalStream == 0) {
8571 return NO_INIT;
8572 }
8573 mStandby = true;
8574 acquireWakeLock();
8575 return mHalStream->createMmapBuffer(minSizeFrames, info);
8576 }
8577
getMmapPosition(struct audio_mmap_position * position)8578 status_t AudioFlinger::MmapThread::getMmapPosition(struct audio_mmap_position *position)
8579 {
8580 if (mHalStream == 0) {
8581 return NO_INIT;
8582 }
8583 return mHalStream->getMmapPosition(position);
8584 }
8585
exitStandby()8586 status_t AudioFlinger::MmapThread::exitStandby()
8587 {
8588 status_t ret = mHalStream->start();
8589 if (ret != NO_ERROR) {
8590 ALOGE("%s: error mHalStream->start() = %d for first track", __FUNCTION__, ret);
8591 return ret;
8592 }
8593 mStandby = false;
8594 return NO_ERROR;
8595 }
8596
start(const AudioClient & client,audio_port_handle_t * handle)8597 status_t AudioFlinger::MmapThread::start(const AudioClient& client,
8598 audio_port_handle_t *handle)
8599 {
8600 ALOGV("%s clientUid %d mStandby %d mPortId %d *handle %d", __FUNCTION__,
8601 client.clientUid, mStandby, mPortId, *handle);
8602 if (mHalStream == 0) {
8603 return NO_INIT;
8604 }
8605
8606 status_t ret;
8607
8608 if (*handle == mPortId) {
8609 // for the first track, reuse portId and session allocated when the stream was opened
8610 return exitStandby();
8611 }
8612
8613 audio_port_handle_t portId = AUDIO_PORT_HANDLE_NONE;
8614
8615 audio_io_handle_t io = mId;
8616 if (isOutput()) {
8617 audio_config_t config = AUDIO_CONFIG_INITIALIZER;
8618 config.sample_rate = mSampleRate;
8619 config.channel_mask = mChannelMask;
8620 config.format = mFormat;
8621 audio_stream_type_t stream = streamType();
8622 audio_output_flags_t flags =
8623 (audio_output_flags_t)(AUDIO_OUTPUT_FLAG_MMAP_NOIRQ | AUDIO_OUTPUT_FLAG_DIRECT);
8624 audio_port_handle_t deviceId = mDeviceId;
8625 std::vector<audio_io_handle_t> secondaryOutputs;
8626 ret = AudioSystem::getOutputForAttr(&mAttr, &io,
8627 mSessionId,
8628 &stream,
8629 client.clientPid,
8630 client.clientUid,
8631 &config,
8632 flags,
8633 &deviceId,
8634 &portId,
8635 &secondaryOutputs);
8636 ALOGD_IF(!secondaryOutputs.empty(),
8637 "MmapThread::start does not support secondary outputs, ignoring them");
8638 } else {
8639 audio_config_base_t config;
8640 config.sample_rate = mSampleRate;
8641 config.channel_mask = mChannelMask;
8642 config.format = mFormat;
8643 audio_port_handle_t deviceId = mDeviceId;
8644 ret = AudioSystem::getInputForAttr(&mAttr, &io,
8645 RECORD_RIID_INVALID,
8646 mSessionId,
8647 client.clientPid,
8648 client.clientUid,
8649 client.packageName,
8650 &config,
8651 AUDIO_INPUT_FLAG_MMAP_NOIRQ,
8652 &deviceId,
8653 &portId);
8654 }
8655 // APM should not chose a different input or output stream for the same set of attributes
8656 // and audo configuration
8657 if (ret != NO_ERROR || io != mId) {
8658 ALOGE("%s: error getting output or input from APM (error %d, io %d expected io %d)",
8659 __FUNCTION__, ret, io, mId);
8660 return BAD_VALUE;
8661 }
8662
8663 if (isOutput()) {
8664 ret = AudioSystem::startOutput(portId);
8665 } else {
8666 ret = AudioSystem::startInput(portId);
8667 }
8668
8669 Mutex::Autolock _l(mLock);
8670 // abort if start is rejected by audio policy manager
8671 if (ret != NO_ERROR) {
8672 ALOGE("%s: error start rejected by AudioPolicyManager = %d", __FUNCTION__, ret);
8673 if (!mActiveTracks.isEmpty()) {
8674 mLock.unlock();
8675 if (isOutput()) {
8676 AudioSystem::releaseOutput(portId);
8677 } else {
8678 AudioSystem::releaseInput(portId);
8679 }
8680 mLock.lock();
8681 } else {
8682 mHalStream->stop();
8683 }
8684 return PERMISSION_DENIED;
8685 }
8686
8687 // Given that MmapThread::mAttr is mutable, should a MmapTrack have attributes ?
8688 sp<MmapTrack> track = new MmapTrack(this, mAttr, mSampleRate, mFormat, mChannelMask, mSessionId,
8689 isOutput(), client.clientUid, client.clientPid,
8690 IPCThreadState::self()->getCallingPid(), portId);
8691
8692 if (isOutput()) {
8693 // force volume update when a new track is added
8694 mHalVolFloat = -1.0f;
8695 } else if (!track->isSilenced_l()) {
8696 for (const sp<MmapTrack> &t : mActiveTracks) {
8697 if (t->isSilenced_l() && t->uid() != client.clientUid)
8698 t->invalidate();
8699 }
8700 }
8701
8702
8703 mActiveTracks.add(track);
8704 sp<EffectChain> chain = getEffectChain_l(mSessionId);
8705 if (chain != 0) {
8706 chain->setStrategy(AudioSystem::getStrategyForStream(streamType()));
8707 chain->incTrackCnt();
8708 chain->incActiveTrackCnt();
8709 }
8710
8711 *handle = portId;
8712 broadcast_l();
8713
8714 ALOGV("%s DONE handle %d stream %p", __FUNCTION__, *handle, mHalStream.get());
8715
8716 return NO_ERROR;
8717 }
8718
stop(audio_port_handle_t handle)8719 status_t AudioFlinger::MmapThread::stop(audio_port_handle_t handle)
8720 {
8721 ALOGV("%s handle %d", __FUNCTION__, handle);
8722
8723 if (mHalStream == 0) {
8724 return NO_INIT;
8725 }
8726
8727 if (handle == mPortId) {
8728 mHalStream->stop();
8729 return NO_ERROR;
8730 }
8731
8732 Mutex::Autolock _l(mLock);
8733
8734 sp<MmapTrack> track;
8735 for (const sp<MmapTrack> &t : mActiveTracks) {
8736 if (handle == t->portId()) {
8737 track = t;
8738 break;
8739 }
8740 }
8741 if (track == 0) {
8742 return BAD_VALUE;
8743 }
8744
8745 mActiveTracks.remove(track);
8746
8747 mLock.unlock();
8748 if (isOutput()) {
8749 AudioSystem::stopOutput(track->portId());
8750 AudioSystem::releaseOutput(track->portId());
8751 } else {
8752 AudioSystem::stopInput(track->portId());
8753 AudioSystem::releaseInput(track->portId());
8754 }
8755 mLock.lock();
8756
8757 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
8758 if (chain != 0) {
8759 chain->decActiveTrackCnt();
8760 chain->decTrackCnt();
8761 }
8762
8763 broadcast_l();
8764
8765 return NO_ERROR;
8766 }
8767
standby()8768 status_t AudioFlinger::MmapThread::standby()
8769 {
8770 ALOGV("%s", __FUNCTION__);
8771
8772 if (mHalStream == 0) {
8773 return NO_INIT;
8774 }
8775 if (!mActiveTracks.isEmpty()) {
8776 return INVALID_OPERATION;
8777 }
8778 mHalStream->standby();
8779 mStandby = true;
8780 releaseWakeLock();
8781 return NO_ERROR;
8782 }
8783
8784
readHalParameters_l()8785 void AudioFlinger::MmapThread::readHalParameters_l()
8786 {
8787 status_t result = mHalStream->getAudioProperties(&mSampleRate, &mChannelMask, &mHALFormat);
8788 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving audio properties from HAL: %d", result);
8789 mFormat = mHALFormat;
8790 LOG_ALWAYS_FATAL_IF(!audio_is_linear_pcm(mFormat), "HAL format %#x is not linear pcm", mFormat);
8791 result = mHalStream->getFrameSize(&mFrameSize);
8792 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving frame size from HAL: %d", result);
8793 result = mHalStream->getBufferSize(&mBufferSize);
8794 LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving buffer size from HAL: %d", result);
8795 mFrameCount = mBufferSize / mFrameSize;
8796 }
8797
threadLoop()8798 bool AudioFlinger::MmapThread::threadLoop()
8799 {
8800 checkSilentMode_l();
8801
8802 const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
8803
8804 while (!exitPending())
8805 {
8806 Vector< sp<EffectChain> > effectChains;
8807
8808 { // under Thread lock
8809 Mutex::Autolock _l(mLock);
8810
8811 if (mSignalPending) {
8812 // A signal was raised while we were unlocked
8813 mSignalPending = false;
8814 } else {
8815 if (mConfigEvents.isEmpty()) {
8816 // we're about to wait, flush the binder command buffer
8817 IPCThreadState::self()->flushCommands();
8818
8819 if (exitPending()) {
8820 break;
8821 }
8822
8823 // wait until we have something to do...
8824 ALOGV("%s going to sleep", myName.string());
8825 mWaitWorkCV.wait(mLock);
8826 ALOGV("%s waking up", myName.string());
8827
8828 checkSilentMode_l();
8829
8830 continue;
8831 }
8832 }
8833
8834 processConfigEvents_l();
8835
8836 processVolume_l();
8837
8838 checkInvalidTracks_l();
8839
8840 mActiveTracks.updatePowerState(this);
8841
8842 updateMetadata_l();
8843
8844 lockEffectChains_l(effectChains);
8845 } // release Thread lock
8846
8847 for (size_t i = 0; i < effectChains.size(); i ++) {
8848 effectChains[i]->process_l(); // Thread is not locked, but effect chain is locked
8849 }
8850
8851 // enable changes in effect chain, including moving to another thread.
8852 unlockEffectChains(effectChains);
8853 // Effect chains will be actually deleted here if they were removed from
8854 // mEffectChains list during mixing or effects processing
8855 }
8856
8857 threadLoop_exit();
8858
8859 if (!mStandby) {
8860 threadLoop_standby();
8861 mStandby = true;
8862 }
8863
8864 ALOGV("Thread %p type %d exiting", this, mType);
8865 return false;
8866 }
8867
8868 // checkForNewParameter_l() must be called with ThreadBase::mLock held
checkForNewParameter_l(const String8 & keyValuePair,status_t & status)8869 bool AudioFlinger::MmapThread::checkForNewParameter_l(const String8& keyValuePair,
8870 status_t& status)
8871 {
8872 AudioParameter param = AudioParameter(keyValuePair);
8873 int value;
8874 bool sendToHal = true;
8875 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
8876 LOG_FATAL("Should not happen set routing device in MmapThread");
8877 }
8878 if (sendToHal) {
8879 status = mHalStream->setParameters(keyValuePair);
8880 } else {
8881 status = NO_ERROR;
8882 }
8883
8884 return false;
8885 }
8886
getParameters(const String8 & keys)8887 String8 AudioFlinger::MmapThread::getParameters(const String8& keys)
8888 {
8889 Mutex::Autolock _l(mLock);
8890 String8 out_s8;
8891 if (initCheck() == NO_ERROR && mHalStream->getParameters(keys, &out_s8) == OK) {
8892 return out_s8;
8893 }
8894 return String8();
8895 }
8896
ioConfigChanged(audio_io_config_event event,pid_t pid,audio_port_handle_t portId __unused)8897 void AudioFlinger::MmapThread::ioConfigChanged(audio_io_config_event event, pid_t pid,
8898 audio_port_handle_t portId __unused) {
8899 sp<AudioIoDescriptor> desc = new AudioIoDescriptor();
8900
8901 desc->mIoHandle = mId;
8902
8903 switch (event) {
8904 case AUDIO_INPUT_OPENED:
8905 case AUDIO_INPUT_REGISTERED:
8906 case AUDIO_INPUT_CONFIG_CHANGED:
8907 case AUDIO_OUTPUT_OPENED:
8908 case AUDIO_OUTPUT_REGISTERED:
8909 case AUDIO_OUTPUT_CONFIG_CHANGED:
8910 desc->mPatch = mPatch;
8911 desc->mChannelMask = mChannelMask;
8912 desc->mSamplingRate = mSampleRate;
8913 desc->mFormat = mFormat;
8914 desc->mFrameCount = mFrameCount;
8915 desc->mFrameCountHAL = mFrameCount;
8916 desc->mLatency = 0;
8917 break;
8918
8919 case AUDIO_INPUT_CLOSED:
8920 case AUDIO_OUTPUT_CLOSED:
8921 default:
8922 break;
8923 }
8924 mAudioFlinger->ioConfigChanged(event, desc, pid);
8925 }
8926
createAudioPatch_l(const struct audio_patch * patch,audio_patch_handle_t * handle)8927 status_t AudioFlinger::MmapThread::createAudioPatch_l(const struct audio_patch *patch,
8928 audio_patch_handle_t *handle)
8929 {
8930 status_t status = NO_ERROR;
8931
8932 // store new device and send to effects
8933 audio_devices_t type = AUDIO_DEVICE_NONE;
8934 audio_port_handle_t deviceId;
8935 AudioDeviceTypeAddrVector sinkDeviceTypeAddrs;
8936 AudioDeviceTypeAddr sourceDeviceTypeAddr;
8937 uint32_t numDevices = 0;
8938 if (isOutput()) {
8939 for (unsigned int i = 0; i < patch->num_sinks; i++) {
8940 LOG_ALWAYS_FATAL_IF(popcount(patch->sinks[i].ext.device.type) > 1
8941 && !mAudioHwDev->supportsAudioPatches(),
8942 "Enumerated device type(%#x) must not be used "
8943 "as it does not support audio patches",
8944 patch->sinks[i].ext.device.type);
8945 type |= patch->sinks[i].ext.device.type;
8946 sinkDeviceTypeAddrs.push_back(AudioDeviceTypeAddr(patch->sinks[i].ext.device.type,
8947 patch->sinks[i].ext.device.address));
8948 }
8949 deviceId = patch->sinks[0].id;
8950 numDevices = mPatch.num_sinks;
8951 } else {
8952 type = patch->sources[0].ext.device.type;
8953 deviceId = patch->sources[0].id;
8954 numDevices = mPatch.num_sources;
8955 sourceDeviceTypeAddr.mType = patch->sources[0].ext.device.type;
8956 sourceDeviceTypeAddr.mAddress = patch->sources[0].ext.device.address;
8957 }
8958
8959 for (size_t i = 0; i < mEffectChains.size(); i++) {
8960 if (isOutput()) {
8961 mEffectChains[i]->setDevices_l(sinkDeviceTypeAddrs);
8962 } else {
8963 mEffectChains[i]->setInputDevice_l(sourceDeviceTypeAddr);
8964 }
8965 }
8966
8967 if (!isOutput()) {
8968 // store new source and send to effects
8969 if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) {
8970 mAudioSource = patch->sinks[0].ext.mix.usecase.source;
8971 for (size_t i = 0; i < mEffectChains.size(); i++) {
8972 mEffectChains[i]->setAudioSource_l(mAudioSource);
8973 }
8974 }
8975 }
8976
8977 if (mAudioHwDev->supportsAudioPatches()) {
8978 status = mHalDevice->createAudioPatch(patch->num_sources,
8979 patch->sources,
8980 patch->num_sinks,
8981 patch->sinks,
8982 handle);
8983 } else {
8984 char *address;
8985 if (strcmp(patch->sinks[0].ext.device.address, "") != 0) {
8986 //FIXME: we only support address on first sink with HAL version < 3.0
8987 address = audio_device_address_to_parameter(
8988 patch->sinks[0].ext.device.type,
8989 patch->sinks[0].ext.device.address);
8990 } else {
8991 address = (char *)calloc(1, 1);
8992 }
8993 AudioParameter param = AudioParameter(String8(address));
8994 free(address);
8995 param.addInt(String8(AudioParameter::keyRouting), (int)type);
8996 if (!isOutput()) {
8997 param.addInt(String8(AudioParameter::keyInputSource),
8998 (int)patch->sinks[0].ext.mix.usecase.source);
8999 }
9000 status = mHalStream->setParameters(param.toString());
9001 *handle = AUDIO_PATCH_HANDLE_NONE;
9002 }
9003
9004 if (numDevices == 0 || mDeviceId != deviceId) {
9005 if (isOutput()) {
9006 sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED);
9007 mOutDeviceTypeAddrs = sinkDeviceTypeAddrs;
9008 } else {
9009 sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED);
9010 mInDeviceTypeAddr = sourceDeviceTypeAddr;
9011 }
9012 sp<MmapStreamCallback> callback = mCallback.promote();
9013 if (mDeviceId != deviceId && callback != 0) {
9014 mLock.unlock();
9015 callback->onRoutingChanged(deviceId);
9016 mLock.lock();
9017 }
9018 mPatch = *patch;
9019 mDeviceId = deviceId;
9020 }
9021 return status;
9022 }
9023
releaseAudioPatch_l(const audio_patch_handle_t handle)9024 status_t AudioFlinger::MmapThread::releaseAudioPatch_l(const audio_patch_handle_t handle)
9025 {
9026 status_t status = NO_ERROR;
9027
9028 mPatch = audio_patch{};
9029 mOutDeviceTypeAddrs.clear();
9030 mInDeviceTypeAddr.reset();
9031
9032 bool supportsAudioPatches = mHalDevice->supportsAudioPatches(&supportsAudioPatches) == OK ?
9033 supportsAudioPatches : false;
9034
9035 if (supportsAudioPatches) {
9036 status = mHalDevice->releaseAudioPatch(handle);
9037 } else {
9038 AudioParameter param;
9039 param.addInt(String8(AudioParameter::keyRouting), 0);
9040 status = mHalStream->setParameters(param.toString());
9041 }
9042 return status;
9043 }
9044
toAudioPortConfig(struct audio_port_config * config)9045 void AudioFlinger::MmapThread::toAudioPortConfig(struct audio_port_config *config)
9046 {
9047 ThreadBase::toAudioPortConfig(config);
9048 if (isOutput()) {
9049 config->role = AUDIO_PORT_ROLE_SOURCE;
9050 config->ext.mix.hw_module = mAudioHwDev->handle();
9051 config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT;
9052 } else {
9053 config->role = AUDIO_PORT_ROLE_SINK;
9054 config->ext.mix.hw_module = mAudioHwDev->handle();
9055 config->ext.mix.usecase.source = mAudioSource;
9056 }
9057 }
9058
addEffectChain_l(const sp<EffectChain> & chain)9059 status_t AudioFlinger::MmapThread::addEffectChain_l(const sp<EffectChain>& chain)
9060 {
9061 audio_session_t session = chain->sessionId();
9062
9063 ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
9064 // Attach all tracks with same session ID to this chain.
9065 // indicate all active tracks in the chain
9066 for (const sp<MmapTrack> &track : mActiveTracks) {
9067 if (session == track->sessionId()) {
9068 chain->incTrackCnt();
9069 chain->incActiveTrackCnt();
9070 }
9071 }
9072
9073 chain->setThread(this);
9074 chain->setInBuffer(nullptr);
9075 chain->setOutBuffer(nullptr);
9076 chain->syncHalEffectsState();
9077
9078 mEffectChains.add(chain);
9079 checkSuspendOnAddEffectChain_l(chain);
9080 return NO_ERROR;
9081 }
9082
removeEffectChain_l(const sp<EffectChain> & chain)9083 size_t AudioFlinger::MmapThread::removeEffectChain_l(const sp<EffectChain>& chain)
9084 {
9085 audio_session_t session = chain->sessionId();
9086
9087 ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
9088
9089 for (size_t i = 0; i < mEffectChains.size(); i++) {
9090 if (chain == mEffectChains[i]) {
9091 mEffectChains.removeAt(i);
9092 // detach all active tracks from the chain
9093 // detach all tracks with same session ID from this chain
9094 for (const sp<MmapTrack> &track : mActiveTracks) {
9095 if (session == track->sessionId()) {
9096 chain->decActiveTrackCnt();
9097 chain->decTrackCnt();
9098 }
9099 }
9100 break;
9101 }
9102 }
9103 return mEffectChains.size();
9104 }
9105
threadLoop_standby()9106 void AudioFlinger::MmapThread::threadLoop_standby()
9107 {
9108 mHalStream->standby();
9109 }
9110
threadLoop_exit()9111 void AudioFlinger::MmapThread::threadLoop_exit()
9112 {
9113 // Do not call callback->onTearDown() because it is redundant for thread exit
9114 // and because it can cause a recursive mutex lock on stop().
9115 }
9116
setSyncEvent(const sp<SyncEvent> & event __unused)9117 status_t AudioFlinger::MmapThread::setSyncEvent(const sp<SyncEvent>& event __unused)
9118 {
9119 return BAD_VALUE;
9120 }
9121
isValidSyncEvent(const sp<SyncEvent> & event __unused) const9122 bool AudioFlinger::MmapThread::isValidSyncEvent(const sp<SyncEvent>& event __unused) const
9123 {
9124 return false;
9125 }
9126
checkEffectCompatibility_l(const effect_descriptor_t * desc,audio_session_t sessionId)9127 status_t AudioFlinger::MmapThread::checkEffectCompatibility_l(
9128 const effect_descriptor_t *desc, audio_session_t sessionId)
9129 {
9130 // No global effect sessions on mmap threads
9131 if (audio_is_global_session(sessionId)) {
9132 ALOGW("checkEffectCompatibility_l(): global effect %s on MMAP thread %s",
9133 desc->name, mThreadName);
9134 return BAD_VALUE;
9135 }
9136
9137 if (!isOutput() && ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_PRE_PROC)) {
9138 ALOGW("checkEffectCompatibility_l(): non pre processing effect %s on capture mmap thread",
9139 desc->name);
9140 return BAD_VALUE;
9141 }
9142 if (isOutput() && ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC)) {
9143 ALOGW("checkEffectCompatibility_l(): pre processing effect %s created on playback mmap "
9144 "thread", desc->name);
9145 return BAD_VALUE;
9146 }
9147
9148 // Only allow effects without processing load or latency
9149 if ((desc->flags & EFFECT_FLAG_NO_PROCESS_MASK) != EFFECT_FLAG_NO_PROCESS) {
9150 return BAD_VALUE;
9151 }
9152
9153 return NO_ERROR;
9154 }
9155
checkInvalidTracks_l()9156 void AudioFlinger::MmapThread::checkInvalidTracks_l()
9157 {
9158 for (const sp<MmapTrack> &track : mActiveTracks) {
9159 if (track->isInvalid()) {
9160 sp<MmapStreamCallback> callback = mCallback.promote();
9161 if (callback != 0) {
9162 mLock.unlock();
9163 callback->onTearDown(track->portId());
9164 mLock.lock();
9165 } else if (mNoCallbackWarningCount < kMaxNoCallbackWarnings) {
9166 ALOGW("Could not notify MMAP stream tear down: no onTearDown callback!");
9167 mNoCallbackWarningCount++;
9168 }
9169 }
9170 }
9171 }
9172
dumpInternals_l(int fd,const Vector<String16> & args __unused)9173 void AudioFlinger::MmapThread::dumpInternals_l(int fd, const Vector<String16>& args __unused)
9174 {
9175 dprintf(fd, " Attributes: content type %d usage %d source %d\n",
9176 mAttr.content_type, mAttr.usage, mAttr.source);
9177 dprintf(fd, " Session: %d port Id: %d\n", mSessionId, mPortId);
9178 if (mActiveTracks.isEmpty()) {
9179 dprintf(fd, " No active clients\n");
9180 }
9181 }
9182
dumpTracks_l(int fd,const Vector<String16> & args __unused)9183 void AudioFlinger::MmapThread::dumpTracks_l(int fd, const Vector<String16>& args __unused)
9184 {
9185 String8 result;
9186 size_t numtracks = mActiveTracks.size();
9187 dprintf(fd, " %zu Tracks\n", numtracks);
9188 const char *prefix = " ";
9189 if (numtracks) {
9190 result.append(prefix);
9191 mActiveTracks[0]->appendDumpHeader(result);
9192 for (size_t i = 0; i < numtracks ; ++i) {
9193 sp<MmapTrack> track = mActiveTracks[i];
9194 result.append(prefix);
9195 track->appendDump(result, true /* active */);
9196 }
9197 } else {
9198 dprintf(fd, "\n");
9199 }
9200 write(fd, result.string(), result.size());
9201 }
9202
MmapPlaybackThread(const sp<AudioFlinger> & audioFlinger,audio_io_handle_t id,AudioHwDevice * hwDev,AudioStreamOut * output,bool systemReady)9203 AudioFlinger::MmapPlaybackThread::MmapPlaybackThread(
9204 const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
9205 AudioHwDevice *hwDev, AudioStreamOut *output, bool systemReady)
9206 : MmapThread(audioFlinger, id, hwDev, output->stream, systemReady),
9207 mStreamType(AUDIO_STREAM_MUSIC),
9208 mStreamVolume(1.0),
9209 mStreamMute(false),
9210 mOutput(output)
9211 {
9212 snprintf(mThreadName, kThreadNameLength, "AudioMmapOut_%X", id);
9213 mChannelCount = audio_channel_count_from_out_mask(mChannelMask);
9214 mMasterVolume = audioFlinger->masterVolume_l();
9215 mMasterMute = audioFlinger->masterMute_l();
9216 if (mAudioHwDev) {
9217 if (mAudioHwDev->canSetMasterVolume()) {
9218 mMasterVolume = 1.0;
9219 }
9220
9221 if (mAudioHwDev->canSetMasterMute()) {
9222 mMasterMute = false;
9223 }
9224 }
9225 }
9226
configure(const audio_attributes_t * attr,audio_stream_type_t streamType,audio_session_t sessionId,const sp<MmapStreamCallback> & callback,audio_port_handle_t deviceId,audio_port_handle_t portId)9227 void AudioFlinger::MmapPlaybackThread::configure(const audio_attributes_t *attr,
9228 audio_stream_type_t streamType,
9229 audio_session_t sessionId,
9230 const sp<MmapStreamCallback>& callback,
9231 audio_port_handle_t deviceId,
9232 audio_port_handle_t portId)
9233 {
9234 MmapThread::configure(attr, streamType, sessionId, callback, deviceId, portId);
9235 mStreamType = streamType;
9236 }
9237
clearOutput()9238 AudioStreamOut* AudioFlinger::MmapPlaybackThread::clearOutput()
9239 {
9240 Mutex::Autolock _l(mLock);
9241 AudioStreamOut *output = mOutput;
9242 mOutput = NULL;
9243 return output;
9244 }
9245
setMasterVolume(float value)9246 void AudioFlinger::MmapPlaybackThread::setMasterVolume(float value)
9247 {
9248 Mutex::Autolock _l(mLock);
9249 // Don't apply master volume in SW if our HAL can do it for us.
9250 if (mAudioHwDev &&
9251 mAudioHwDev->canSetMasterVolume()) {
9252 mMasterVolume = 1.0;
9253 } else {
9254 mMasterVolume = value;
9255 }
9256 }
9257
setMasterMute(bool muted)9258 void AudioFlinger::MmapPlaybackThread::setMasterMute(bool muted)
9259 {
9260 Mutex::Autolock _l(mLock);
9261 // Don't apply master mute in SW if our HAL can do it for us.
9262 if (mAudioHwDev && mAudioHwDev->canSetMasterMute()) {
9263 mMasterMute = false;
9264 } else {
9265 mMasterMute = muted;
9266 }
9267 }
9268
setStreamVolume(audio_stream_type_t stream,float value)9269 void AudioFlinger::MmapPlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
9270 {
9271 Mutex::Autolock _l(mLock);
9272 if (stream == mStreamType) {
9273 mStreamVolume = value;
9274 broadcast_l();
9275 }
9276 }
9277
streamVolume(audio_stream_type_t stream) const9278 float AudioFlinger::MmapPlaybackThread::streamVolume(audio_stream_type_t stream) const
9279 {
9280 Mutex::Autolock _l(mLock);
9281 if (stream == mStreamType) {
9282 return mStreamVolume;
9283 }
9284 return 0.0f;
9285 }
9286
setStreamMute(audio_stream_type_t stream,bool muted)9287 void AudioFlinger::MmapPlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
9288 {
9289 Mutex::Autolock _l(mLock);
9290 if (stream == mStreamType) {
9291 mStreamMute= muted;
9292 broadcast_l();
9293 }
9294 }
9295
invalidateTracks(audio_stream_type_t streamType)9296 void AudioFlinger::MmapPlaybackThread::invalidateTracks(audio_stream_type_t streamType)
9297 {
9298 Mutex::Autolock _l(mLock);
9299 if (streamType == mStreamType) {
9300 for (const sp<MmapTrack> &track : mActiveTracks) {
9301 track->invalidate();
9302 }
9303 broadcast_l();
9304 }
9305 }
9306
processVolume_l()9307 void AudioFlinger::MmapPlaybackThread::processVolume_l()
9308 {
9309 float volume;
9310
9311 if (mMasterMute || mStreamMute) {
9312 volume = 0;
9313 } else {
9314 volume = mMasterVolume * mStreamVolume;
9315 }
9316
9317 if (volume != mHalVolFloat) {
9318
9319 // Convert volumes from float to 8.24
9320 uint32_t vol = (uint32_t)(volume * (1 << 24));
9321
9322 // Delegate volume control to effect in track effect chain if needed
9323 // only one effect chain can be present on DirectOutputThread, so if
9324 // there is one, the track is connected to it
9325 if (!mEffectChains.isEmpty()) {
9326 mEffectChains[0]->setVolume_l(&vol, &vol);
9327 volume = (float)vol / (1 << 24);
9328 }
9329 // Try to use HW volume control and fall back to SW control if not implemented
9330 if (mOutput->stream->setVolume(volume, volume) == NO_ERROR) {
9331 mHalVolFloat = volume; // HW volume control worked, so update value.
9332 mNoCallbackWarningCount = 0;
9333 } else {
9334 sp<MmapStreamCallback> callback = mCallback.promote();
9335 if (callback != 0) {
9336 int channelCount;
9337 if (isOutput()) {
9338 channelCount = audio_channel_count_from_out_mask(mChannelMask);
9339 } else {
9340 channelCount = audio_channel_count_from_in_mask(mChannelMask);
9341 }
9342 Vector<float> values;
9343 for (int i = 0; i < channelCount; i++) {
9344 values.add(volume);
9345 }
9346 mHalVolFloat = volume; // SW volume control worked, so update value.
9347 mNoCallbackWarningCount = 0;
9348 mLock.unlock();
9349 callback->onVolumeChanged(mChannelMask, values);
9350 mLock.lock();
9351 } else {
9352 if (mNoCallbackWarningCount < kMaxNoCallbackWarnings) {
9353 ALOGW("Could not set MMAP stream volume: no volume callback!");
9354 mNoCallbackWarningCount++;
9355 }
9356 }
9357 }
9358 }
9359 }
9360
updateMetadata_l()9361 void AudioFlinger::MmapPlaybackThread::updateMetadata_l()
9362 {
9363 if (mOutput == nullptr || mOutput->stream == nullptr ||
9364 !mActiveTracks.readAndClearHasChanged()) {
9365 return;
9366 }
9367 StreamOutHalInterface::SourceMetadata metadata;
9368 for (const sp<MmapTrack> &track : mActiveTracks) {
9369 // No track is invalid as this is called after prepareTrack_l in the same critical section
9370 metadata.tracks.push_back({
9371 .usage = track->attributes().usage,
9372 .content_type = track->attributes().content_type,
9373 .gain = mHalVolFloat, // TODO: propagate from aaudio pre-mix volume
9374 });
9375 }
9376 mOutput->stream->updateSourceMetadata(metadata);
9377 }
9378
checkSilentMode_l()9379 void AudioFlinger::MmapPlaybackThread::checkSilentMode_l()
9380 {
9381 if (!mMasterMute) {
9382 char value[PROPERTY_VALUE_MAX];
9383 if (property_get("ro.audio.silent", value, "0") > 0) {
9384 char *endptr;
9385 unsigned long ul = strtoul(value, &endptr, 0);
9386 if (*endptr == '\0' && ul != 0) {
9387 ALOGD("Silence is golden");
9388 // The setprop command will not allow a property to be changed after
9389 // the first time it is set, so we don't have to worry about un-muting.
9390 setMasterMute_l(true);
9391 }
9392 }
9393 }
9394 }
9395
toAudioPortConfig(struct audio_port_config * config)9396 void AudioFlinger::MmapPlaybackThread::toAudioPortConfig(struct audio_port_config *config)
9397 {
9398 MmapThread::toAudioPortConfig(config);
9399 if (mOutput && mOutput->flags != AUDIO_OUTPUT_FLAG_NONE) {
9400 config->config_mask |= AUDIO_PORT_CONFIG_FLAGS;
9401 config->flags.output = mOutput->flags;
9402 }
9403 }
9404
dumpInternals_l(int fd,const Vector<String16> & args)9405 void AudioFlinger::MmapPlaybackThread::dumpInternals_l(int fd, const Vector<String16>& args)
9406 {
9407 MmapThread::dumpInternals_l(fd, args);
9408
9409 dprintf(fd, " Stream type: %d Stream volume: %f HAL volume: %f Stream mute %d\n",
9410 mStreamType, mStreamVolume, mHalVolFloat, mStreamMute);
9411 dprintf(fd, " Master volume: %f Master mute %d\n", mMasterVolume, mMasterMute);
9412 }
9413
MmapCaptureThread(const sp<AudioFlinger> & audioFlinger,audio_io_handle_t id,AudioHwDevice * hwDev,AudioStreamIn * input,bool systemReady)9414 AudioFlinger::MmapCaptureThread::MmapCaptureThread(
9415 const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
9416 AudioHwDevice *hwDev, AudioStreamIn *input, bool systemReady)
9417 : MmapThread(audioFlinger, id, hwDev, input->stream, systemReady),
9418 mInput(input)
9419 {
9420 snprintf(mThreadName, kThreadNameLength, "AudioMmapIn_%X", id);
9421 mChannelCount = audio_channel_count_from_in_mask(mChannelMask);
9422 }
9423
exitStandby()9424 status_t AudioFlinger::MmapCaptureThread::exitStandby()
9425 {
9426 {
9427 // mInput might have been cleared by clearInput()
9428 Mutex::Autolock _l(mLock);
9429 if (mInput != nullptr && mInput->stream != nullptr) {
9430 mInput->stream->setGain(1.0f);
9431 }
9432 }
9433 return MmapThread::exitStandby();
9434 }
9435
clearInput()9436 AudioFlinger::AudioStreamIn* AudioFlinger::MmapCaptureThread::clearInput()
9437 {
9438 Mutex::Autolock _l(mLock);
9439 AudioStreamIn *input = mInput;
9440 mInput = NULL;
9441 return input;
9442 }
9443
9444
processVolume_l()9445 void AudioFlinger::MmapCaptureThread::processVolume_l()
9446 {
9447 bool changed = false;
9448 bool silenced = false;
9449
9450 sp<MmapStreamCallback> callback = mCallback.promote();
9451 if (callback == 0) {
9452 if (mNoCallbackWarningCount < kMaxNoCallbackWarnings) {
9453 ALOGW("Could not set MMAP stream silenced: no onStreamSilenced callback!");
9454 mNoCallbackWarningCount++;
9455 }
9456 }
9457
9458 // After a change occurred in track silenced state, mute capture in audio DSP if at least one
9459 // track is silenced and unmute otherwise
9460 for (size_t i = 0; i < mActiveTracks.size() && !silenced; i++) {
9461 if (!mActiveTracks[i]->getAndSetSilencedNotified_l()) {
9462 changed = true;
9463 silenced = mActiveTracks[i]->isSilenced_l();
9464 }
9465 }
9466
9467 if (changed) {
9468 mInput->stream->setGain(silenced ? 0.0f: 1.0f);
9469 }
9470 }
9471
updateMetadata_l()9472 void AudioFlinger::MmapCaptureThread::updateMetadata_l()
9473 {
9474 if (mInput == nullptr || mInput->stream == nullptr ||
9475 !mActiveTracks.readAndClearHasChanged()) {
9476 return;
9477 }
9478 StreamInHalInterface::SinkMetadata metadata;
9479 for (const sp<MmapTrack> &track : mActiveTracks) {
9480 // No track is invalid as this is called after prepareTrack_l in the same critical section
9481 metadata.tracks.push_back({
9482 .source = track->attributes().source,
9483 .gain = 1, // capture tracks do not have volumes
9484 });
9485 }
9486 mInput->stream->updateSinkMetadata(metadata);
9487 }
9488
setRecordSilenced(uid_t uid,bool silenced)9489 void AudioFlinger::MmapCaptureThread::setRecordSilenced(uid_t uid, bool silenced)
9490 {
9491 Mutex::Autolock _l(mLock);
9492 for (size_t i = 0; i < mActiveTracks.size() ; i++) {
9493 if (mActiveTracks[i]->uid() == uid) {
9494 mActiveTracks[i]->setSilenced_l(silenced);
9495 broadcast_l();
9496 }
9497 }
9498 }
9499
toAudioPortConfig(struct audio_port_config * config)9500 void AudioFlinger::MmapCaptureThread::toAudioPortConfig(struct audio_port_config *config)
9501 {
9502 MmapThread::toAudioPortConfig(config);
9503 if (mInput && mInput->flags != AUDIO_INPUT_FLAG_NONE) {
9504 config->config_mask |= AUDIO_PORT_CONFIG_FLAGS;
9505 config->flags.input = mInput->flags;
9506 }
9507 }
9508
9509 } // namespace android
9510