1 /*
2  * Copyright (C) 2016 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <chrono>
18 #include <deque>
19 #include <fcntl.h>
20 #include <random>
21 #include <string.h>
22 #include <stdio.h>
23 #include <sys/stat.h>
24 #include <unistd.h>
25 
26 #include <gtest/gtest.h>
27 
28 #include <healthhalutils/HealthHalUtils.h>
29 #include <storaged.h>               // data structures
30 #include <storaged_utils.h>         // functions to test
31 
32 #define MMC_DISK_STATS_PATH "/sys/block/mmcblk0/stat"
33 #define SDA_DISK_STATS_PATH "/sys/block/sda/stat"
34 
35 using namespace std;
36 using namespace chrono;
37 using namespace storaged_proto;
38 
39 namespace {
40 
write_and_pause(uint32_t sec)41 void write_and_pause(uint32_t sec) {
42     const char* path = "/cache/test";
43     int fd = open(path, O_WRONLY | O_CREAT, 0600);
44     ASSERT_LT(-1, fd);
45     char buffer[2048];
46     memset(buffer, 1, sizeof(buffer));
47     int loop_size = 100;
48     for (int i = 0; i < loop_size; ++i) {
49         ASSERT_EQ(2048, write(fd, buffer, sizeof(buffer)));
50     }
51     fsync(fd);
52     close(fd);
53 
54     fd = open(path, O_RDONLY);
55     ASSERT_LT(-1, fd);
56     for (int i = 0; i < loop_size; ++i) {
57         ASSERT_EQ(2048, read(fd, buffer, sizeof(buffer)));
58     }
59     close(fd);
60 
61     sleep(sec);
62 }
63 
64 } // namespace
65 
66 // the return values of the tested functions should be the expected ones
67 const char* DISK_STATS_PATH;
TEST(storaged_test,retvals)68 TEST(storaged_test, retvals) {
69     struct disk_stats stats;
70     memset(&stats, 0, sizeof(struct disk_stats));
71 
72     if (access(MMC_DISK_STATS_PATH, R_OK) >= 0) {
73         DISK_STATS_PATH = MMC_DISK_STATS_PATH;
74     } else if (access(SDA_DISK_STATS_PATH, R_OK) >= 0) {
75         DISK_STATS_PATH = SDA_DISK_STATS_PATH;
76     } else {
77         return;
78     }
79 
80     EXPECT_TRUE(parse_disk_stats(DISK_STATS_PATH, &stats));
81 
82     struct disk_stats old_stats;
83     memset(&old_stats, 0, sizeof(struct disk_stats));
84     old_stats = stats;
85 
86     const char wrong_path[] = "/this/is/wrong";
87     EXPECT_FALSE(parse_disk_stats(wrong_path, &stats));
88 
89     // reading a wrong path should not damage the output structure
90     EXPECT_EQ(stats, old_stats);
91 }
92 
TEST(storaged_test,disk_stats)93 TEST(storaged_test, disk_stats) {
94     struct disk_stats stats = {};
95     ASSERT_TRUE(parse_disk_stats(DISK_STATS_PATH, &stats));
96 
97     // every entry of stats (except io_in_flight) should all be greater than 0
98     for (uint i = 0; i < DISK_STATS_SIZE; ++i) {
99         if (i == 8) continue; // skip io_in_flight which can be 0
100         EXPECT_LT((uint64_t)0, *((uint64_t*)&stats + i));
101     }
102 
103     // accumulation of the increments should be the same with the overall increment
104     struct disk_stats base = {}, tmp = {}, curr, acc = {}, inc[5];
105     for (uint i = 0; i < 5; ++i) {
106         ASSERT_TRUE(parse_disk_stats(DISK_STATS_PATH, &curr));
107         if (i == 0) {
108             base = curr;
109             tmp = curr;
110             sleep(5);
111             continue;
112         }
113         get_inc_disk_stats(&tmp, &curr, &inc[i]);
114         add_disk_stats(&inc[i], &acc);
115         tmp = curr;
116         write_and_pause(5);
117     }
118     struct disk_stats overall_inc = {};
119     get_inc_disk_stats(&base, &curr, &overall_inc);
120 
121     EXPECT_EQ(overall_inc, acc);
122 }
123 
mean(std::deque<uint32_t> nums)124 double mean(std::deque<uint32_t> nums) {
125     double sum = 0.0;
126     for (uint32_t i : nums) {
127     sum += i;
128     }
129     return sum / nums.size();
130 }
131 
standard_deviation(std::deque<uint32_t> nums)132 double standard_deviation(std::deque<uint32_t> nums) {
133     double sum = 0.0;
134     double avg = mean(nums);
135     for (uint32_t i : nums) {
136     sum += ((double)i - avg) * ((double)i - avg);
137     }
138     return sqrt(sum / nums.size());
139 }
140 
TEST(storaged_test,stream_stats)141 TEST(storaged_test, stream_stats) {
142     // 100 random numbers
143     std::vector<uint32_t> data = {8147,9058,1270,9134,6324,975,2785,5469,9575,9649,1576,9706,9572,4854,8003,1419,4218,9157,7922,9595,6557,357,8491,9340,6787,7577,7431,3922,6555,1712,7060,318,2769,462,971,8235,6948,3171,9502,344,4387,3816,7655,7952,1869,4898,4456,6463,7094,7547,2760,6797,6551,1626,1190,4984,9597,3404,5853,2238,7513,2551,5060,6991,8909,9593,5472,1386,1493,2575,8407,2543,8143,2435,9293,3500,1966,2511,6160,4733,3517,8308,5853,5497,9172,2858,7572,7537,3804,5678,759,540,5308,7792,9340,1299,5688,4694,119,3371};
144     std::deque<uint32_t> test_data;
145     stream_stats sstats;
146     for (uint32_t i : data) {
147         test_data.push_back(i);
148         sstats.add(i);
149 
150         EXPECT_EQ((int)standard_deviation(test_data), (int)sstats.get_std());
151         EXPECT_EQ((int)mean(test_data), (int)sstats.get_mean());
152     }
153 
154     for (uint32_t i : data) {
155         test_data.pop_front();
156         sstats.evict(i);
157 
158         EXPECT_EQ((int)standard_deviation(test_data), (int)sstats.get_std());
159         EXPECT_EQ((int)mean(test_data), (int)sstats.get_mean());
160     }
161 
162     // some real data
163     std::vector<uint32_t> another_data = {113875,81620,103145,28327,86855,207414,96526,52567,28553,250311};
164     test_data.clear();
165     uint32_t window_size = 2;
166     uint32_t idx;
167     stream_stats sstats1;
168     for (idx = 0; idx < window_size; ++idx) {
169         test_data.push_back(another_data[idx]);
170         sstats1.add(another_data[idx]);
171     }
172     EXPECT_EQ((int)standard_deviation(test_data), (int)sstats1.get_std());
173     EXPECT_EQ((int)mean(test_data), (int)sstats1.get_mean());
174     for (;idx < another_data.size(); ++idx) {
175         test_data.pop_front();
176         sstats1.evict(another_data[idx - window_size]);
177         test_data.push_back(another_data[idx]);
178         sstats1.add(another_data[idx]);
179         EXPECT_EQ((int)standard_deviation(test_data), (int)sstats1.get_std());
180         EXPECT_EQ((int)mean(test_data), (int)sstats1.get_mean());
181     }
182 }
183 
disk_perf_multiply(struct disk_perf perf,double mul)184 struct disk_perf disk_perf_multiply(struct disk_perf perf, double mul) {
185     struct disk_perf retval;
186     retval.read_perf = (double)perf.read_perf * mul;
187     retval.read_ios = (double)perf.read_ios * mul;
188     retval.write_perf = (double)perf.write_perf * mul;
189     retval.write_ios = (double)perf.write_ios * mul;
190     retval.queue = (double)perf.queue * mul;
191 
192     return retval;
193 }
194 
disk_stats_add(struct disk_stats stats1,struct disk_stats stats2)195 struct disk_stats disk_stats_add(struct disk_stats stats1, struct disk_stats stats2) {
196     struct disk_stats retval;
197     retval.read_ios = stats1.read_ios + stats2.read_ios;
198     retval.read_merges = stats1.read_merges + stats2.read_merges;
199     retval.read_sectors = stats1.read_sectors + stats2.read_sectors;
200     retval.read_ticks = stats1.read_ticks + stats2.read_ticks;
201     retval.write_ios = stats1.write_ios + stats2.write_ios;
202     retval.write_merges = stats1.write_merges + stats2.write_merges;
203     retval.write_sectors = stats1.write_sectors + stats2.write_sectors;
204     retval.write_ticks = stats1.write_ticks + stats2.write_ticks;
205     retval.io_in_flight = stats1.io_in_flight + stats2.io_in_flight;
206     retval.io_ticks = stats1.io_ticks + stats2.io_ticks;
207     retval.io_in_queue = stats1.io_in_queue + stats2.io_in_queue;
208     retval.end_time = stats1.end_time + stats2.end_time;
209 
210     return retval;
211 }
212 
expect_increasing(struct disk_stats stats1,struct disk_stats stats2)213 void expect_increasing(struct disk_stats stats1, struct disk_stats stats2) {
214     EXPECT_LE(stats1.read_ios, stats2.read_ios);
215     EXPECT_LE(stats1.read_merges, stats2.read_merges);
216     EXPECT_LE(stats1.read_sectors, stats2.read_sectors);
217     EXPECT_LE(stats1.read_ticks, stats2.read_ticks);
218     EXPECT_LE(stats1.write_ios, stats2.write_ios);
219     EXPECT_LE(stats1.write_merges, stats2.write_merges);
220     EXPECT_LE(stats1.write_sectors, stats2.write_sectors);
221     EXPECT_LE(stats1.write_ticks, stats2.write_ticks);
222     EXPECT_LE(stats1.io_ticks, stats2.io_ticks);
223     EXPECT_LE(stats1.io_in_queue, stats2.io_in_queue);
224 
225     EXPECT_TRUE(stats1.read_ios < stats2.read_ios ||
226         stats1.read_merges < stats2.read_merges ||
227         stats1.read_sectors < stats2.read_sectors ||
228         stats1.read_ticks < stats2.read_ticks ||
229         stats1.write_ios < stats2.write_ios ||
230         stats1.write_merges < stats2.write_merges ||
231         stats1.write_sectors < stats2.write_sectors ||
232         stats1.write_ticks < stats2.write_ticks ||
233         stats1.io_ticks < stats2.io_ticks ||
234         stats1.io_in_queue < stats2.io_in_queue);
235 }
236 
TEST(storaged_test,disk_stats_monitor)237 TEST(storaged_test, disk_stats_monitor) {
238     using android::hardware::health::V2_0::get_health_service;
239 
240     auto healthService = get_health_service();
241 
242     // asserting that there is one file for diskstats
243     ASSERT_TRUE(healthService != nullptr || access(MMC_DISK_STATS_PATH, R_OK) >= 0 ||
244                 access(SDA_DISK_STATS_PATH, R_OK) >= 0);
245 
246     // testing if detect() will return the right value
247     disk_stats_monitor dsm_detect{healthService};
248     ASSERT_TRUE(dsm_detect.enabled());
249     // feed monitor with constant perf data for io perf baseline
250     // using constant perf is reasonable since the functionality of stream_stats
251     // has already been tested
252     struct disk_perf norm_perf = {
253         .read_perf = 10 * 1024,
254         .read_ios = 50,
255         .write_perf = 5 * 1024,
256         .write_ios = 25,
257         .queue = 5
258     };
259 
260     std::random_device rd;
261     std::mt19937 gen(rd());
262     std::uniform_real_distribution<> rand(0.8, 1.2);
263 
264     for (uint i = 0; i < dsm_detect.mWindow; ++i) {
265         struct disk_perf perf = disk_perf_multiply(norm_perf, rand(gen));
266 
267         dsm_detect.add(&perf);
268         dsm_detect.mBuffer.push(perf);
269         EXPECT_EQ(dsm_detect.mBuffer.size(), (uint64_t)i + 1);
270     }
271 
272     dsm_detect.mValid = true;
273     dsm_detect.update_mean();
274     dsm_detect.update_std();
275 
276     for (double i = 0; i < 2 * dsm_detect.mSigma; i += 0.5) {
277         struct disk_perf test_perf;
278         struct disk_perf test_mean = dsm_detect.mMean;
279         struct disk_perf test_std = dsm_detect.mStd;
280 
281         test_perf.read_perf = (double)test_mean.read_perf - i * test_std.read_perf;
282         test_perf.read_ios = (double)test_mean.read_ios - i * test_std.read_ios;
283         test_perf.write_perf = (double)test_mean.write_perf - i * test_std.write_perf;
284         test_perf.write_ios = (double)test_mean.write_ios - i * test_std.write_ios;
285         test_perf.queue = (double)test_mean.queue + i * test_std.queue;
286 
287         EXPECT_EQ((i > dsm_detect.mSigma), dsm_detect.detect(&test_perf));
288     }
289 
290     // testing if stalled disk_stats can be correctly accumulated in the monitor
291     disk_stats_monitor dsm_acc{healthService};
292     struct disk_stats norm_inc = {
293         .read_ios = 200,
294         .read_merges = 0,
295         .read_sectors = 200,
296         .read_ticks = 200,
297         .write_ios = 100,
298         .write_merges = 0,
299         .write_sectors = 100,
300         .write_ticks = 100,
301         .io_in_flight = 0,
302         .io_ticks = 600,
303         .io_in_queue = 300,
304         .start_time = 0,
305         .end_time = 100,
306         .counter = 0,
307         .io_avg = 0
308     };
309 
310     struct disk_stats stall_inc = {
311         .read_ios = 200,
312         .read_merges = 0,
313         .read_sectors = 20,
314         .read_ticks = 200,
315         .write_ios = 100,
316         .write_merges = 0,
317         .write_sectors = 10,
318         .write_ticks = 100,
319         .io_in_flight = 0,
320         .io_ticks = 600,
321         .io_in_queue = 1200,
322         .start_time = 0,
323         .end_time = 100,
324         .counter = 0,
325         .io_avg = 0
326     };
327 
328     struct disk_stats stats_base = {};
329     int loop_size = 100;
330     for (int i = 0; i < loop_size; ++i) {
331         stats_base = disk_stats_add(stats_base, norm_inc);
332         dsm_acc.update(&stats_base);
333         EXPECT_EQ(dsm_acc.mValid, (uint32_t)i >= dsm_acc.mWindow);
334         EXPECT_FALSE(dsm_acc.mStall);
335     }
336 
337     stats_base = disk_stats_add(stats_base, stall_inc);
338     dsm_acc.update(&stats_base);
339     EXPECT_TRUE(dsm_acc.mValid);
340     EXPECT_TRUE(dsm_acc.mStall);
341 
342     for (int i = 0; i < 10; ++i) {
343         stats_base = disk_stats_add(stats_base, norm_inc);
344         dsm_acc.update(&stats_base);
345         EXPECT_TRUE(dsm_acc.mValid);
346         EXPECT_FALSE(dsm_acc.mStall);
347     }
348 
349     struct disk_stats stats_prev = {};
350     loop_size = 10;
351     write_and_pause(5);
352     for (int i = 0; i < loop_size; ++i) {
353         dsm_detect.update();
354         expect_increasing(stats_prev, dsm_detect.mPrevious);
355         stats_prev = dsm_detect.mPrevious;
356         write_and_pause(5);
357     }
358 }
359 
TEST(storaged_test,storage_info_t)360 TEST(storaged_test, storage_info_t) {
361     storage_info_t si;
362     time_point<steady_clock> tp;
363     time_point<system_clock> stp;
364 
365     // generate perf history [least_recent  ------> most recent]
366     // day 1:   5,  10,  15,  20            | daily average 12
367     // day 2:  25,  30,  35,  40,  45       | daily average 35
368     // day 3:  50,  55,  60,  65,  70       | daily average 60
369     // day 4:  75,  80,  85,  90,  95       | daily average 85
370     // day 5: 100, 105, 110, 115,           | daily average 107
371     // day 6: 120, 125, 130, 135, 140       | daily average 130
372     // day 7: 145, 150, 155, 160, 165       | daily average 155
373     // end of week 1:                       | weekly average 83
374     // day 1: 170, 175, 180, 185, 190       | daily average 180
375     // day 2: 195, 200, 205, 210, 215       | daily average 205
376     // day 3: 220, 225, 230, 235            | daily average 227
377     // day 4: 240, 245, 250, 255, 260       | daily average 250
378     // day 5: 265, 270, 275, 280, 285       | daily average 275
379     // day 6: 290, 295, 300, 305, 310       | daily average 300
380     // day 7: 315, 320, 325, 330, 335       | daily average 325
381     // end of week 2:                       | weekly average 251
382     // day 1: 340, 345, 350, 355            | daily average 347
383     // day 2: 360, 365, 370, 375
384     si.day_start_tp = {};
385     for (int i = 0; i < 75; i++) {
386         tp += hours(5);
387         stp = {};
388         stp += duration_cast<chrono::seconds>(tp.time_since_epoch());
389         si.update_perf_history((i + 1) * 5, stp);
390     }
391 
392     vector<int> history = si.get_perf_history();
393     EXPECT_EQ(history.size(), 66UL);
394     size_t i = 0;
395     EXPECT_EQ(history[i++], 4);
396     EXPECT_EQ(history[i++], 7);    // 7 days
397     EXPECT_EQ(history[i++], 52);   // 52 weeks
398     // last 24 hours
399     EXPECT_EQ(history[i++], 375);
400     EXPECT_EQ(history[i++], 370);
401     EXPECT_EQ(history[i++], 365);
402     EXPECT_EQ(history[i++], 360);
403     // daily average of last 7 days
404     EXPECT_EQ(history[i++], 347);
405     EXPECT_EQ(history[i++], 325);
406     EXPECT_EQ(history[i++], 300);
407     EXPECT_EQ(history[i++], 275);
408     EXPECT_EQ(history[i++], 250);
409     EXPECT_EQ(history[i++], 227);
410     EXPECT_EQ(history[i++], 205);
411     // weekly average of last 52 weeks
412     EXPECT_EQ(history[i++], 251);
413     EXPECT_EQ(history[i++], 83);
414     for (; i < history.size(); i++) {
415         EXPECT_EQ(history[i], 0);
416     }
417 }
418 
TEST(storaged_test,storage_info_t_proto)419 TEST(storaged_test, storage_info_t_proto) {
420     storage_info_t si;
421     si.day_start_tp = {};
422 
423     IOPerfHistory proto;
424     proto.set_nr_samples(10);
425     proto.set_day_start_sec(0);
426     si.load_perf_history_proto(proto);
427 
428     // Skip ahead > 1 day, with no data points in the previous day.
429     time_point<system_clock> stp;
430     stp += hours(36);
431     si.update_perf_history(100, stp);
432 
433     vector<int> history = si.get_perf_history();
434     EXPECT_EQ(history.size(), 63UL);
435     EXPECT_EQ(history[0], 1);
436     EXPECT_EQ(history[1], 7);
437     EXPECT_EQ(history[2], 52);
438     EXPECT_EQ(history[3], 100);
439     for (size_t i = 4; i < history.size(); i++) {
440         EXPECT_EQ(history[i], 0);
441     }
442 }
443 
TEST(storaged_test,uid_monitor)444 TEST(storaged_test, uid_monitor) {
445     uid_monitor uidm;
446     auto& io_history = uidm.io_history();
447 
448     io_history[200] = {
449         .start_ts = 100,
450         .entries = {
451             { "app1", {
452                 .user_id = 0,
453                 .uid_ios.bytes[WRITE][FOREGROUND][CHARGER_ON] = 1000,
454               }
455             },
456             { "app2", {
457                 .user_id = 0,
458                 .uid_ios.bytes[READ][FOREGROUND][CHARGER_OFF] = 1000,
459               }
460             },
461             { "app1", {
462                 .user_id = 1,
463                 .uid_ios.bytes[WRITE][FOREGROUND][CHARGER_ON] = 1000,
464                 .uid_ios.bytes[READ][FOREGROUND][CHARGER_ON] = 1000,
465               }
466             },
467         },
468     };
469 
470     io_history[300] = {
471         .start_ts = 200,
472         .entries = {
473             { "app1", {
474                 .user_id = 1,
475                 .uid_ios.bytes[WRITE][FOREGROUND][CHARGER_OFF] = 1000,
476               }
477             },
478             { "app3", {
479                 .user_id = 0,
480                 .uid_ios.bytes[READ][BACKGROUND][CHARGER_OFF] = 1000,
481               }
482             },
483         },
484     };
485 
486     unordered_map<int, StoragedProto> protos;
487 
488     uidm.update_uid_io_proto(&protos);
489 
490     EXPECT_EQ(protos.size(), 2U);
491     EXPECT_EQ(protos.count(0), 1UL);
492     EXPECT_EQ(protos.count(1), 1UL);
493 
494     EXPECT_EQ(protos[0].uid_io_usage().uid_io_items_size(), 2);
495     const UidIOItem& user_0_item_0 = protos[0].uid_io_usage().uid_io_items(0);
496     EXPECT_EQ(user_0_item_0.end_ts(), 200UL);
497     EXPECT_EQ(user_0_item_0.records().start_ts(), 100UL);
498     EXPECT_EQ(user_0_item_0.records().entries_size(), 2);
499     EXPECT_EQ(user_0_item_0.records().entries(0).uid_name(), "app1");
500     EXPECT_EQ(user_0_item_0.records().entries(0).user_id(), 0UL);
501     EXPECT_EQ(user_0_item_0.records().entries(0).uid_io().wr_fg_chg_on(), 1000UL);
502     EXPECT_EQ(user_0_item_0.records().entries(1).uid_name(), "app2");
503     EXPECT_EQ(user_0_item_0.records().entries(1).user_id(), 0UL);
504     EXPECT_EQ(user_0_item_0.records().entries(1).uid_io().rd_fg_chg_off(), 1000UL);
505     const UidIOItem& user_0_item_1 = protos[0].uid_io_usage().uid_io_items(1);
506     EXPECT_EQ(user_0_item_1.end_ts(), 300UL);
507     EXPECT_EQ(user_0_item_1.records().start_ts(), 200UL);
508     EXPECT_EQ(user_0_item_1.records().entries_size(), 1);
509     EXPECT_EQ(user_0_item_1.records().entries(0).uid_name(), "app3");
510     EXPECT_EQ(user_0_item_1.records().entries(0).user_id(), 0UL);
511     EXPECT_EQ(user_0_item_1.records().entries(0).uid_io().rd_bg_chg_off(), 1000UL);
512 
513     EXPECT_EQ(protos[1].uid_io_usage().uid_io_items_size(), 2);
514     const UidIOItem& user_1_item_0 = protos[1].uid_io_usage().uid_io_items(0);
515     EXPECT_EQ(user_1_item_0.end_ts(), 200UL);
516     EXPECT_EQ(user_1_item_0.records().start_ts(), 100UL);
517     EXPECT_EQ(user_1_item_0.records().entries_size(), 1);
518     EXPECT_EQ(user_1_item_0.records().entries(0).uid_name(), "app1");
519     EXPECT_EQ(user_1_item_0.records().entries(0).user_id(), 1UL);
520     EXPECT_EQ(user_1_item_0.records().entries(0).uid_io().rd_fg_chg_on(), 1000UL);
521     EXPECT_EQ(user_1_item_0.records().entries(0).uid_io().wr_fg_chg_on(), 1000UL);
522     const UidIOItem& user_1_item_1 = protos[1].uid_io_usage().uid_io_items(1);
523     EXPECT_EQ(user_1_item_1.end_ts(), 300UL);
524     EXPECT_EQ(user_1_item_1.records().start_ts(), 200UL);
525     EXPECT_EQ(user_1_item_1.records().entries_size(), 1);
526     EXPECT_EQ(user_1_item_1.records().entries(0).uid_name(), "app1");
527     EXPECT_EQ(user_1_item_1.records().entries(0).user_id(), 1UL);
528     EXPECT_EQ(user_1_item_1.records().entries(0).uid_io().wr_fg_chg_off(), 1000UL);
529 
530     io_history.clear();
531 
532     io_history[300] = {
533         .start_ts = 200,
534         .entries = {
535             { "app1", {
536                 .user_id = 0,
537                 .uid_ios.bytes[WRITE][FOREGROUND][CHARGER_ON] = 1000,
538               }
539             },
540         },
541     };
542 
543     io_history[400] = {
544         .start_ts = 300,
545         .entries = {
546             { "app1", {
547                 .user_id = 0,
548                 .uid_ios.bytes[WRITE][FOREGROUND][CHARGER_ON] = 1000,
549               }
550             },
551         },
552     };
553 
554     uidm.load_uid_io_proto(0, protos[0].uid_io_usage());
555     uidm.load_uid_io_proto(1, protos[1].uid_io_usage());
556 
557     EXPECT_EQ(io_history.size(), 3UL);
558     EXPECT_EQ(io_history.count(200), 1UL);
559     EXPECT_EQ(io_history.count(300), 1UL);
560     EXPECT_EQ(io_history.count(400), 1UL);
561 
562     EXPECT_EQ(io_history[200].start_ts, 100UL);
563     const vector<struct uid_record>& entries_0 = io_history[200].entries;
564     EXPECT_EQ(entries_0.size(), 3UL);
565     EXPECT_EQ(entries_0[0].name, "app1");
566     EXPECT_EQ(entries_0[0].ios.user_id, 0UL);
567     EXPECT_EQ(entries_0[0].ios.uid_ios.bytes[WRITE][FOREGROUND][CHARGER_ON], 1000UL);
568     EXPECT_EQ(entries_0[1].name, "app2");
569     EXPECT_EQ(entries_0[1].ios.user_id, 0UL);
570     EXPECT_EQ(entries_0[1].ios.uid_ios.bytes[READ][FOREGROUND][CHARGER_OFF], 1000UL);
571     EXPECT_EQ(entries_0[2].name, "app1");
572     EXPECT_EQ(entries_0[2].ios.user_id, 1UL);
573     EXPECT_EQ(entries_0[2].ios.uid_ios.bytes[WRITE][FOREGROUND][CHARGER_ON], 1000UL);
574     EXPECT_EQ(entries_0[2].ios.uid_ios.bytes[READ][FOREGROUND][CHARGER_ON], 1000UL);
575 
576     EXPECT_EQ(io_history[300].start_ts, 200UL);
577     const vector<struct uid_record>& entries_1 = io_history[300].entries;
578     EXPECT_EQ(entries_1.size(), 3UL);
579     EXPECT_EQ(entries_1[0].name, "app1");
580     EXPECT_EQ(entries_1[0].ios.user_id, 0UL);
581     EXPECT_EQ(entries_1[0].ios.uid_ios.bytes[WRITE][FOREGROUND][CHARGER_ON], 1000UL);
582     EXPECT_EQ(entries_1[1].name, "app3");
583     EXPECT_EQ(entries_1[1].ios.user_id, 0UL);
584     EXPECT_EQ(entries_1[1].ios.uid_ios.bytes[READ][BACKGROUND][CHARGER_OFF], 1000UL);
585     EXPECT_EQ(entries_1[2].name, "app1");
586     EXPECT_EQ(entries_1[2].ios.user_id, 1UL);
587     EXPECT_EQ(entries_1[2].ios.uid_ios.bytes[WRITE][FOREGROUND][CHARGER_OFF], 1000UL);
588 
589     EXPECT_EQ(io_history[400].start_ts, 300UL);
590     const vector<struct uid_record>& entries_2 = io_history[400].entries;
591     EXPECT_EQ(entries_2.size(), 1UL);
592     EXPECT_EQ(entries_2[0].name, "app1");
593     EXPECT_EQ(entries_2[0].ios.user_id, 0UL);
594     EXPECT_EQ(entries_2[0].ios.uid_ios.bytes[WRITE][FOREGROUND][CHARGER_ON], 1000UL);
595 
596     map<string, io_usage> merged_entries_0 = merge_io_usage(entries_0);
597     EXPECT_EQ(merged_entries_0.size(), 2UL);
598     EXPECT_EQ(merged_entries_0.count("app1"), 1UL);
599     EXPECT_EQ(merged_entries_0.count("app2"), 1UL);
600     EXPECT_EQ(merged_entries_0["app1"].bytes[READ][FOREGROUND][CHARGER_ON], 1000UL);
601     EXPECT_EQ(merged_entries_0["app1"].bytes[WRITE][FOREGROUND][CHARGER_ON], 2000UL);
602     EXPECT_EQ(merged_entries_0["app2"].bytes[READ][FOREGROUND][CHARGER_OFF], 1000UL);
603 
604     map<string, io_usage> merged_entries_1 = merge_io_usage(entries_1);
605     EXPECT_EQ(merged_entries_1.size(), 2UL);
606     EXPECT_EQ(merged_entries_1.count("app1"), 1UL);
607     EXPECT_EQ(merged_entries_1.count("app3"), 1UL);
608     EXPECT_EQ(merged_entries_1["app1"].bytes[WRITE][FOREGROUND][CHARGER_OFF], 1000UL);
609     EXPECT_EQ(merged_entries_1["app1"].bytes[WRITE][FOREGROUND][CHARGER_ON], 1000UL);
610     EXPECT_EQ(merged_entries_1["app3"].bytes[READ][BACKGROUND][CHARGER_OFF], 1000UL);
611 
612     map<string, io_usage> merged_entries_2 = merge_io_usage(entries_2);
613     EXPECT_EQ(merged_entries_2.size(), 1UL);
614     EXPECT_EQ(merged_entries_2.count("app1"), 1UL);
615     EXPECT_EQ(merged_entries_2["app1"].bytes[WRITE][FOREGROUND][CHARGER_ON], 1000UL);
616 
617     uidm.clear_user_history(0);
618 
619     EXPECT_EQ(io_history.size(), 2UL);
620     EXPECT_EQ(io_history.count(200), 1UL);
621     EXPECT_EQ(io_history.count(300), 1UL);
622 
623     EXPECT_EQ(io_history[200].entries.size(), 1UL);
624     EXPECT_EQ(io_history[300].entries.size(), 1UL);
625 
626     uidm.clear_user_history(1);
627 
628     EXPECT_EQ(io_history.size(), 0UL);
629 }
630 
TEST(storaged_test,load_uid_io_proto)631 TEST(storaged_test, load_uid_io_proto) {
632     uid_monitor uidm;
633     auto& io_history = uidm.io_history();
634 
635     static const uint64_t kProtoTime = 200;
636     io_history[kProtoTime] = {
637         .start_ts = 100,
638         .entries = {
639             { "app1", {
640                 .user_id = 0,
641                 .uid_ios.bytes[WRITE][FOREGROUND][CHARGER_ON] = 1000,
642               }
643             },
644             { "app2", {
645                 .user_id = 0,
646                 .uid_ios.bytes[READ][FOREGROUND][CHARGER_OFF] = 2000,
647               }
648             },
649             { "app3", {
650                 .user_id = 0,
651                 .uid_ios.bytes[READ][FOREGROUND][CHARGER_OFF] = 3000,
652               }
653             },
654         },
655     };
656 
657     unordered_map<int, StoragedProto> protos;
658     uidm.update_uid_io_proto(&protos);
659     ASSERT_EQ(protos.size(), size_t(1));
660 
661     // Loading the same proto many times should not add duplicate entries.
662     UidIOUsage user_0 = protos[0].uid_io_usage();
663     for (size_t i = 0; i < 10000; i++) {
664         uidm.load_uid_io_proto(0, user_0);
665     }
666     ASSERT_EQ(io_history.size(), size_t(1));
667     ASSERT_EQ(io_history[kProtoTime].entries.size(), size_t(3));
668 
669     // Create duplicate entries until we go over the limit.
670     auto record = io_history[kProtoTime];
671     io_history.clear();
672     for (size_t i = 0; i < uid_monitor::MAX_UID_RECORDS_SIZE * 2; i++) {
673         if (i == kProtoTime) {
674             continue;
675         }
676         io_history[i] = record;
677     }
678     ASSERT_GT(io_history.size(), size_t(uid_monitor::MAX_UID_RECORDS_SIZE));
679 
680     // After loading, the history should be truncated.
681     for (auto& item : *user_0.mutable_uid_io_items()) {
682         item.set_end_ts(io_history.size());
683     }
684     uidm.load_uid_io_proto(0, user_0);
685     ASSERT_LE(io_history.size(), size_t(uid_monitor::MAX_UID_RECORDS_SIZE));
686 }
687