1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "libufdt.h"
18
19 #include "ufdt_node_pool.h"
20 #include "ufdt_prop_dict.h"
21
ufdt_construct(void * fdtp,struct ufdt_node_pool * pool)22 struct ufdt *ufdt_construct(void *fdtp, struct ufdt_node_pool *pool) {
23 (void)(pool); /* unused parameter */
24
25 /* Inital size is 2, will be exponentially increased when it needed later.
26 (2 -> 4 -> 8 -> ...) */
27 const int DEFAULT_MEM_SIZE_FDTPS = 2;
28
29 void **fdtps = NULL;
30 struct ufdt *res_ufdt = NULL;
31
32 fdtps = (void **)dto_malloc(sizeof(void *) * DEFAULT_MEM_SIZE_FDTPS);
33 if (fdtps == NULL) goto error;
34 fdtps[0] = fdtp;
35
36 res_ufdt = dto_malloc(sizeof(struct ufdt));
37 if (res_ufdt == NULL) goto error;
38
39 res_ufdt->fdtps = fdtps;
40 res_ufdt->mem_size_fdtps = DEFAULT_MEM_SIZE_FDTPS;
41 res_ufdt->num_used_fdtps = (fdtp != NULL ? 1 : 0);
42 res_ufdt->root = NULL;
43
44 return res_ufdt;
45
46 error:
47 if (res_ufdt) dto_free(res_ufdt);
48 if (fdtps) dto_free(fdtps);
49
50 return NULL;
51 }
52
ufdt_destruct(struct ufdt * tree,struct ufdt_node_pool * pool)53 void ufdt_destruct(struct ufdt *tree, struct ufdt_node_pool *pool) {
54 if (tree == NULL) return;
55
56 ufdt_node_destruct(tree->root, pool);
57
58 dto_free(tree->fdtps);
59 dto_free(tree->phandle_table.data);
60 dto_free(tree);
61 }
62
ufdt_add_fdt(struct ufdt * tree,void * fdtp)63 int ufdt_add_fdt(struct ufdt *tree, void *fdtp) {
64 if (fdtp == NULL) {
65 return -1;
66 }
67
68 int i = tree->num_used_fdtps;
69 if (i >= tree->mem_size_fdtps) {
70 int new_size = tree->mem_size_fdtps * 2;
71 void **new_fdtps = dto_malloc(sizeof(void *) * new_size);
72 if (new_fdtps == NULL) return -1;
73
74 dto_memcpy(new_fdtps, tree->fdtps, sizeof(void *) * tree->mem_size_fdtps);
75 dto_free(tree->fdtps);
76
77 tree->fdtps = new_fdtps;
78 tree->mem_size_fdtps = new_size;
79 }
80
81 tree->fdtps[i] = fdtp;
82 tree->num_used_fdtps = i + 1;
83
84 return 0;
85 }
86
ufdt_get_string_off(const struct ufdt * tree,const char * s)87 int ufdt_get_string_off(const struct ufdt *tree, const char *s) {
88 /* fdt_create() sets the dt_string_off to the end of fdt buffer,
89 and _ufdt_output_strtab_to_fdt() copy all string tables in reversed order.
90 So, here the return offset value is base on the end of all string buffers,
91 and it should be a minus value. */
92 int res_off = 0;
93 for (int i = 0; i < tree->num_used_fdtps; i++) {
94 void *fdt = tree->fdtps[i];
95 const char *strtab_start = (const char *)fdt + fdt_off_dt_strings(fdt);
96 int strtab_size = fdt_size_dt_strings(fdt);
97 const char *strtab_end = strtab_start + strtab_size;
98
99 /* Check if the string is in the string table */
100 if (s >= strtab_start && s < strtab_end) {
101 res_off += (s - strtab_end);
102 return res_off;
103 }
104
105 res_off -= strtab_size;
106 }
107 /* Can not find the string, return 0 */
108 return 0;
109 }
110
ufdt_new_node(void * fdtp,int node_offset,struct ufdt_node_pool * pool)111 static struct ufdt_node *ufdt_new_node(void *fdtp, int node_offset,
112 struct ufdt_node_pool *pool) {
113 if (fdtp == NULL) {
114 dto_error("Failed to get new_node because tree is NULL\n");
115 return NULL;
116 }
117
118 fdt32_t *fdt_tag_ptr =
119 (fdt32_t *)fdt_offset_ptr(fdtp, node_offset, sizeof(fdt32_t));
120 struct ufdt_node *res = ufdt_node_construct(fdtp, fdt_tag_ptr, pool);
121 return res;
122 }
123
fdt_to_ufdt_tree(void * fdtp,int cur_fdt_tag_offset,int * next_fdt_tag_offset,int cur_tag,struct ufdt_node_pool * pool)124 static struct ufdt_node *fdt_to_ufdt_tree(void *fdtp, int cur_fdt_tag_offset,
125 int *next_fdt_tag_offset, int cur_tag,
126 struct ufdt_node_pool *pool) {
127 if (fdtp == NULL) {
128 return NULL;
129 }
130 uint32_t tag;
131 struct ufdt_node *res, *child_node;
132
133 res = NULL;
134 child_node = NULL;
135 tag = cur_tag;
136
137 switch (tag) {
138 case FDT_END_NODE:
139 case FDT_NOP:
140 case FDT_END:
141 break;
142
143 case FDT_PROP:
144 res = ufdt_new_node(fdtp, cur_fdt_tag_offset, pool);
145 break;
146
147 case FDT_BEGIN_NODE:
148 res = ufdt_new_node(fdtp, cur_fdt_tag_offset, pool);
149
150 do {
151 cur_fdt_tag_offset = *next_fdt_tag_offset;
152 tag = fdt_next_tag(fdtp, cur_fdt_tag_offset, next_fdt_tag_offset);
153 child_node = fdt_to_ufdt_tree(fdtp, cur_fdt_tag_offset,
154 next_fdt_tag_offset, tag, pool);
155 ufdt_node_add_child(res, child_node);
156 } while (tag != FDT_END_NODE);
157 break;
158
159 default:
160 break;
161 }
162
163 return res;
164 }
165
ufdt_print(struct ufdt * tree)166 void ufdt_print(struct ufdt *tree) {
167 ufdt_node_print(tree->root, 0);
168 }
169
ufdt_get_node_by_path_len(struct ufdt * tree,const char * path,int len)170 struct ufdt_node *ufdt_get_node_by_path_len(struct ufdt *tree, const char *path,
171 int len) {
172 /*
173 * RARE: aliases
174 * In device tree, we can assign some alias to specific nodes by defining
175 * these relation in "/aliases" node.
176 * The node has the form:
177 * {
178 * a = "/a_for_apple";
179 * b = "/b_for_banana";
180 * };
181 * So the path "a/subnode_1" should be expanded to "/a_for_apple/subnode_1".
182 */
183 if (*path != '/') {
184 const char *end = path + len;
185
186 const char *next_slash;
187 next_slash = dto_memchr(path, '/', end - path);
188 if (!next_slash) next_slash = end;
189
190 struct ufdt_node *aliases_node =
191 ufdt_node_get_node_by_path(tree->root, "/aliases");
192 aliases_node = ufdt_node_get_property_by_name_len(aliases_node, path,
193 next_slash - path);
194
195 int path_len = 0;
196 const char *alias_path =
197 ufdt_node_get_fdt_prop_data(aliases_node, &path_len);
198
199 if (alias_path == NULL) {
200 dto_error("Failed to find alias %s\n", path);
201 return NULL;
202 }
203
204 struct ufdt_node *target_node =
205 ufdt_node_get_node_by_path_len(tree->root, alias_path, path_len);
206
207 return ufdt_node_get_node_by_path_len(target_node, next_slash,
208 end - next_slash);
209 }
210 return ufdt_node_get_node_by_path_len(tree->root, path, len);
211 }
212
ufdt_get_node_by_path(struct ufdt * tree,const char * path)213 struct ufdt_node *ufdt_get_node_by_path(struct ufdt *tree, const char *path) {
214 return ufdt_get_node_by_path_len(tree, path, dto_strlen(path));
215 }
216
ufdt_get_node_by_phandle(struct ufdt * tree,uint32_t phandle)217 struct ufdt_node *ufdt_get_node_by_phandle(struct ufdt *tree,
218 uint32_t phandle) {
219 struct ufdt_node *res = NULL;
220 /*
221 * Do binary search in phandle_table.data.
222 * [s, e) means the possible range which contains target node.
223 */
224 int s = 0, e = tree->phandle_table.len;
225 while (e - s > 1) {
226 int mid = s + ((e - s) >> 1);
227 uint32_t mid_phandle = tree->phandle_table.data[mid].phandle;
228 if (phandle < mid_phandle)
229 e = mid;
230 else
231 s = mid;
232 }
233 if (e - s > 0 && tree->phandle_table.data[s].phandle == phandle) {
234 res = tree->phandle_table.data[s].node;
235 }
236 return res;
237 }
238
count_phandle_node(struct ufdt_node * node)239 static int count_phandle_node(struct ufdt_node *node) {
240 if (node == NULL) return 0;
241 if (ufdt_node_tag(node) != FDT_BEGIN_NODE) return 0;
242 int res = 0;
243 if (ufdt_node_get_phandle(node) > 0) res++;
244 struct ufdt_node **it;
245 for_each_child(it, node) { res += count_phandle_node(*it); }
246 return res;
247 }
248
set_phandle_table_entry(struct ufdt_node * node,struct ufdt_phandle_table_entry * data,int * cur)249 static void set_phandle_table_entry(struct ufdt_node *node,
250 struct ufdt_phandle_table_entry *data,
251 int *cur) {
252 if (node == NULL || ufdt_node_tag(node) != FDT_BEGIN_NODE) return;
253 int ph = ufdt_node_get_phandle(node);
254 if (ph > 0) {
255 data[*cur].phandle = ph;
256 data[*cur].node = node;
257 (*cur)++;
258 }
259 struct ufdt_node **it;
260 for_each_node(it, node) set_phandle_table_entry(*it, data, cur);
261 return;
262 }
263
phandle_table_entry_cmp(const void * pa,const void * pb)264 int phandle_table_entry_cmp(const void *pa, const void *pb) {
265 uint32_t ph_a = ((const struct ufdt_phandle_table_entry *)pa)->phandle;
266 uint32_t ph_b = ((const struct ufdt_phandle_table_entry *)pb)->phandle;
267 if (ph_a < ph_b)
268 return -1;
269 else if (ph_a == ph_b)
270 return 0;
271 else
272 return 1;
273 }
274
build_phandle_table(struct ufdt * tree)275 struct ufdt_static_phandle_table build_phandle_table(struct ufdt *tree) {
276 struct ufdt_static_phandle_table res;
277 res.len = count_phandle_node(tree->root);
278 res.data = dto_malloc(sizeof(struct ufdt_phandle_table_entry) * res.len);
279 int cur = 0;
280 set_phandle_table_entry(tree->root, res.data, &cur);
281 dto_qsort(res.data, res.len, sizeof(struct ufdt_phandle_table_entry),
282 phandle_table_entry_cmp);
283 return res;
284 }
285
ufdt_from_fdt(void * fdtp,size_t fdt_size,struct ufdt_node_pool * pool)286 struct ufdt *ufdt_from_fdt(void *fdtp, size_t fdt_size,
287 struct ufdt_node_pool *pool) {
288 (void)(fdt_size); /* unused parameter */
289
290 int start_offset = fdt_path_offset(fdtp, "/");
291 if (start_offset < 0) {
292 return ufdt_construct(NULL, pool);
293 }
294
295 struct ufdt *res_tree = ufdt_construct(fdtp, pool);
296 int end_offset;
297 int start_tag = fdt_next_tag(fdtp, start_offset, &end_offset);
298 res_tree->root =
299 fdt_to_ufdt_tree(fdtp, start_offset, &end_offset, start_tag, pool);
300
301 res_tree->phandle_table = build_phandle_table(res_tree);
302
303 return res_tree;
304 }
305
_ufdt_get_property_nameoff(const struct ufdt * tree,const char * name,const struct ufdt_prop_dict * dict)306 static int _ufdt_get_property_nameoff(const struct ufdt *tree, const char *name,
307 const struct ufdt_prop_dict *dict) {
308 int res;
309 const struct fdt_property *same_name_prop = ufdt_prop_dict_find(dict, name);
310 if (same_name_prop != NULL) {
311 /* There is a property with same name, just use its string offset */
312 res = fdt32_to_cpu(same_name_prop->nameoff);
313 } else {
314 /* Get the string offset from the string table of the current tree */
315 res = ufdt_get_string_off(tree, name);
316 if (res == 0) {
317 dto_error("Cannot find property name in string table: %s\n", name);
318 return 0;
319 }
320 }
321 return res;
322 }
323
_ufdt_output_property_to_fdt(const struct ufdt * tree,void * fdtp,const struct ufdt_node_fdt_prop * prop_node,struct ufdt_prop_dict * dict)324 static int _ufdt_output_property_to_fdt(
325 const struct ufdt *tree, void *fdtp,
326 const struct ufdt_node_fdt_prop *prop_node, struct ufdt_prop_dict *dict) {
327 int nameoff = _ufdt_get_property_nameoff(tree, prop_node->name, dict);
328 if (nameoff == 0) return -1;
329
330 int data_len = 0;
331 void *data = ufdt_node_get_fdt_prop_data(&prop_node->parent, &data_len);
332 int aligned_data_len = (data_len + (FDT_TAGSIZE - 1)) & ~(FDT_TAGSIZE - 1);
333
334 int new_propoff = fdt_size_dt_struct(fdtp);
335 int new_prop_size = sizeof(struct fdt_property) + aligned_data_len;
336 struct fdt_property *new_prop =
337 (struct fdt_property *)((char *)fdtp + fdt_off_dt_struct(fdtp) +
338 new_propoff);
339 char *fdt_end = (char *)fdtp + fdt_totalsize(fdtp);
340 if ((char *)new_prop + new_prop_size > fdt_end) {
341 dto_error("Not enough space for adding property.\n");
342 return -1;
343 }
344 fdt_set_size_dt_struct(fdtp, new_propoff + new_prop_size);
345
346 new_prop->tag = cpu_to_fdt32(FDT_PROP);
347 new_prop->nameoff = cpu_to_fdt32(nameoff);
348 new_prop->len = cpu_to_fdt32(data_len);
349 dto_memcpy(new_prop->data, data, data_len);
350
351 ufdt_prop_dict_add(dict, new_prop);
352
353 return 0;
354 }
355
_ufdt_output_node_to_fdt(const struct ufdt * tree,void * fdtp,const struct ufdt_node * node,struct ufdt_prop_dict * dict)356 static int _ufdt_output_node_to_fdt(const struct ufdt *tree, void *fdtp,
357 const struct ufdt_node *node,
358 struct ufdt_prop_dict *dict) {
359 uint32_t tag = ufdt_node_tag(node);
360
361 if (tag == FDT_PROP) {
362 return _ufdt_output_property_to_fdt(
363 tree, fdtp, (const struct ufdt_node_fdt_prop *)node, dict);
364 }
365
366 int err = fdt_begin_node(fdtp, ufdt_node_name(node));
367 if (err < 0) return -1;
368
369 struct ufdt_node **it;
370 for_each_prop(it, node) {
371 err = _ufdt_output_node_to_fdt(tree, fdtp, *it, dict);
372 if (err < 0) return -1;
373 }
374
375 for_each_node(it, node) {
376 err = _ufdt_output_node_to_fdt(tree, fdtp, *it, dict);
377 if (err < 0) return -1;
378 }
379
380 err = fdt_end_node(fdtp);
381 if (err < 0) return -1;
382
383 return 0;
384 }
385
_ufdt_output_strtab_to_fdt(const struct ufdt * tree,void * fdt)386 static int _ufdt_output_strtab_to_fdt(const struct ufdt *tree, void *fdt) {
387 /* Currently, we don't know the final dt_struct size, so we copy all
388 string tables to the end of the target fdt buffer in reversed order.
389 At last, fdt_finish() will adjust dt_string offset */
390 const char *struct_top =
391 (char *)fdt + fdt_off_dt_struct(fdt) + fdt_size_dt_struct(fdt);
392 char *dest = (char *)fdt + fdt_totalsize(fdt);
393
394 int dest_size = 0;
395 for (int i = 0; i < tree->num_used_fdtps; i++) {
396 void *src_fdt = tree->fdtps[i];
397 const char *src_strtab = (const char *)src_fdt + fdt_off_dt_strings(src_fdt);
398 int strtab_size = fdt_size_dt_strings(src_fdt);
399
400 dest -= strtab_size;
401 if (dest < struct_top) {
402 dto_error("Not enough space for string table.\n");
403 return -1;
404 }
405
406 dto_memcpy(dest, src_strtab, strtab_size);
407
408 dest_size += strtab_size;
409 }
410
411 fdt_set_size_dt_strings(fdt, dest_size);
412
413 return 0;
414 }
415
ufdt_to_fdt(const struct ufdt * tree,void * buf,int buf_size)416 int ufdt_to_fdt(const struct ufdt *tree, void *buf, int buf_size) {
417 if (tree->num_used_fdtps == 0) return -1;
418
419 int err;
420 err = fdt_create(buf, buf_size);
421 if (err < 0) return -1;
422
423 /* Here we output the memory reserve map of the ONLY FIRST fdt,
424 to be in compliance with the DTO behavior of libfdt. */
425 int n_mem_rsv = fdt_num_mem_rsv(tree->fdtps[0]);
426 for (int i = 0; i < n_mem_rsv; i++) {
427 uint64_t addr, size;
428 fdt_get_mem_rsv(tree->fdtps[0], i, &addr, &size);
429 fdt_add_reservemap_entry(buf, addr, size);
430 }
431
432 err = fdt_finish_reservemap(buf);
433 if (err < 0) return -1;
434
435 err = _ufdt_output_strtab_to_fdt(tree, buf);
436 if (err < 0) return -1;
437
438 struct ufdt_prop_dict dict;
439 err = ufdt_prop_dict_construct(&dict, buf);
440 if (err < 0) return -1;
441
442 err = _ufdt_output_node_to_fdt(tree, buf, tree->root, &dict);
443 if (err < 0) return -1;
444
445 ufdt_prop_dict_destruct(&dict);
446
447 err = fdt_finish(buf);
448 if (err < 0) return -1;
449
450 /*
451 * IMPORTANT: fdt_totalsize(buf) might be less than buf_size
452 * so this is needed to make use of remain spaces.
453 */
454 return fdt_open_into(buf, buf, buf_size);
455 }
456