1 /*
2  ** Copyright 2003-2010, VisualOn, Inc.
3  **
4  ** Licensed under the Apache License, Version 2.0 (the "License");
5  ** you may not use this file except in compliance with the License.
6  ** You may obtain a copy of the License at
7  **
8  **     http://www.apache.org/licenses/LICENSE-2.0
9  **
10  ** Unless required by applicable law or agreed to in writing, software
11  ** distributed under the License is distributed on an "AS IS" BASIS,
12  ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  ** See the License for the specific language governing permissions and
14  ** limitations under the License.
15  */
16 
17 /***********************************************************************
18 *      File: voAMRWBEnc.c                                              *
19 *                                                                      *
20 *      Description: Performs the main encoder routine                  *
21 *                   Fixed-point C simulation of AMR WB ACELP coding    *
22 *           algorithm with 20 msspeech frames for              *
23 *           wideband speech signals.                           *
24 *                                                                      *
25 ************************************************************************/
26 
27 #include <stdio.h>
28 #include <stdlib.h>
29 #include "typedef.h"
30 #include "basic_op.h"
31 #include "oper_32b.h"
32 #include "math_op.h"
33 #include "cnst.h"
34 #include "acelp.h"
35 #include "cod_main.h"
36 #include "bits.h"
37 #include "main.h"
38 #include "voAMRWB.h"
39 #include "mem_align.h"
40 #include "cmnMemory.h"
41 
42 #define UNUSED(x) (void)(x)
43 
44 #ifdef __cplusplus
45 extern "C" {
46 #endif
47 
48 /* LPC interpolation coef {0.45, 0.8, 0.96, 1.0}; in Q15 */
49 static Word16 interpol_frac[NB_SUBFR] = {14746, 26214, 31457, 32767};
50 
51 /* isp tables for initialization */
52 static Word16 isp_init[M] =
53 {
54     32138, 30274, 27246, 23170, 18205, 12540, 6393, 0,
55     -6393, -12540, -18205, -23170, -27246, -30274, -32138, 1475
56 };
57 
58 static Word16 isf_init[M] =
59 {
60     1024, 2048, 3072, 4096, 5120, 6144, 7168, 8192,
61     9216, 10240, 11264, 12288, 13312, 14336, 15360, 3840
62 };
63 
64 /* High Band encoding */
65 static const Word16 HP_gain[16] =
66 {
67     3624, 4673, 5597, 6479, 7425, 8378, 9324, 10264,
68     11210, 12206, 13391, 14844, 16770, 19655, 24289, 32728
69 };
70 
71 /* Private function declaration */
72 static Word16 synthesis(
73             Word16 Aq[],                          /* A(z)  : quantized Az               */
74             Word16 exc[],                         /* (i)   : excitation at 12kHz        */
75             Word16 Q_new,                         /* (i)   : scaling performed on exc   */
76             Word16 synth16k[],                    /* (o)   : 16kHz synthesis signal     */
77             Coder_State * st                      /* (i/o) : State structure            */
78             );
79 
80 /* Codec some parameters initialization */
Reset_encoder(void * st,Word16 reset_all)81 void Reset_encoder(void *st, Word16 reset_all)
82 {
83     Word16 i;
84     Coder_State *cod_state;
85     cod_state = (Coder_State *) st;
86     Set_zero(cod_state->old_exc, PIT_MAX + L_INTERPOL);
87     Set_zero(cod_state->mem_syn, M);
88     Set_zero(cod_state->past_isfq, M);
89     cod_state->mem_w0 = 0;
90     cod_state->tilt_code = 0;
91     cod_state->first_frame = 1;
92     Init_gp_clip(cod_state->gp_clip);
93     cod_state->L_gc_thres = 0;
94     if (reset_all != 0)
95     {
96         /* Static vectors to zero */
97         Set_zero(cod_state->old_speech, L_TOTAL - L_FRAME);
98         Set_zero(cod_state->old_wsp, (PIT_MAX / OPL_DECIM));
99         Set_zero(cod_state->mem_decim2, 3);
100         /* routines initialization */
101         Init_Decim_12k8(cod_state->mem_decim);
102         Init_HP50_12k8(cod_state->mem_sig_in);
103         Init_Levinson(cod_state->mem_levinson);
104         Init_Q_gain2(cod_state->qua_gain);
105         Init_Hp_wsp(cod_state->hp_wsp_mem);
106         /* isp initialization */
107         Copy(isp_init, cod_state->ispold, M);
108         Copy(isp_init, cod_state->ispold_q, M);
109         /* variable initialization */
110         cod_state->mem_preemph = 0;
111         cod_state->mem_wsp = 0;
112         cod_state->Q_old = 15;
113         cod_state->Q_max[0] = 15;
114         cod_state->Q_max[1] = 15;
115         cod_state->old_wsp_max = 0;
116         cod_state->old_wsp_shift = 0;
117         /* pitch ol initialization */
118         cod_state->old_T0_med = 40;
119         cod_state->ol_gain = 0;
120         cod_state->ada_w = 0;
121         cod_state->ol_wght_flg = 0;
122         for (i = 0; i < 5; i++)
123         {
124             cod_state->old_ol_lag[i] = 40;
125         }
126         Set_zero(cod_state->old_hp_wsp, (L_FRAME / 2) / OPL_DECIM + (PIT_MAX / OPL_DECIM));
127         Set_zero(cod_state->mem_syn_hf, M);
128         Set_zero(cod_state->mem_syn_hi, M);
129         Set_zero(cod_state->mem_syn_lo, M);
130         Init_HP50_12k8(cod_state->mem_sig_out);
131         Init_Filt_6k_7k(cod_state->mem_hf);
132         Init_HP400_12k8(cod_state->mem_hp400);
133         Copy(isf_init, cod_state->isfold, M);
134         cod_state->mem_deemph = 0;
135         cod_state->seed2 = 21845;
136         Init_Filt_6k_7k(cod_state->mem_hf2);
137         cod_state->gain_alpha = 32767;
138         cod_state->vad_hist = 0;
139         wb_vad_reset(cod_state->vadSt);
140         dtx_enc_reset(cod_state->dtx_encSt, isf_init);
141     }
142     return;
143 }
144 
145 /*-----------------------------------------------------------------*
146 *   Funtion  coder                                                *
147 *            ~~~~~                                                *
148 *   ->Main coder routine.                                         *
149 *                                                                 *
150 *-----------------------------------------------------------------*/
coder(Word16 * mode,Word16 speech16k[],Word16 prms[],Word16 * ser_size,void * spe_state,Word16 allow_dtx)151 void coder(
152         Word16 * mode,                        /* input :  used mode                             */
153         Word16 speech16k[],                   /* input :  320 new speech samples (at 16 kHz)    */
154         Word16 prms[],                        /* output:  output parameters                     */
155         Word16 * ser_size,                    /* output:  bit rate of the used mode             */
156         void *spe_state,                      /* i/o   :  State structure                       */
157         Word16 allow_dtx                      /* input :  DTX ON/OFF                            */
158       )
159 {
160     /* Coder states */
161     Coder_State *st;
162     /* Speech vector */
163     Word16 old_speech[L_TOTAL];
164     Word16 *new_speech, *speech, *p_window;
165 
166     /* Weighted speech vector */
167     Word16 old_wsp[L_FRAME + (PIT_MAX / OPL_DECIM)];
168     Word16 *wsp;
169 
170     /* Excitation vector */
171     Word16 old_exc[(L_FRAME + 1) + PIT_MAX + L_INTERPOL];
172     Word16 *exc;
173 
174     /* LPC coefficients */
175     Word16 r_h[M + 1], r_l[M + 1];         /* Autocorrelations of windowed speech  */
176     Word16 rc[M];                          /* Reflection coefficients.             */
177     Word16 Ap[M + 1];                      /* A(z) with spectral expansion         */
178     Word16 ispnew[M];                      /* immittance spectral pairs at 4nd sfr */
179     Word16 ispnew_q[M];                    /* quantized ISPs at 4nd subframe       */
180     Word16 isf[M];                         /* ISF (frequency domain) at 4nd sfr    */
181     Word16 *p_A, *p_Aq;                    /* ptr to A(z) for the 4 subframes      */
182     Word16 A[NB_SUBFR * (M + 1)];          /* A(z) unquantized for the 4 subframes */
183     Word16 Aq[NB_SUBFR * (M + 1)];         /* A(z)   quantized for the 4 subframes */
184 
185     /* Other vectors */
186     Word16 xn[L_SUBFR];                    /* Target vector for pitch search     */
187     Word16 xn2[L_SUBFR];                   /* Target vector for codebook search  */
188     Word16 dn[L_SUBFR];                    /* Correlation between xn2 and h1     */
189     Word16 cn[L_SUBFR];                    /* Target vector in residual domain   */
190     Word16 h1[L_SUBFR];                    /* Impulse response vector            */
191     Word16 h2[L_SUBFR];                    /* Impulse response vector            */
192     Word16 code[L_SUBFR];                  /* Fixed codebook excitation          */
193     Word16 y1[L_SUBFR];                    /* Filtered adaptive excitation       */
194     Word16 y2[L_SUBFR];                    /* Filtered adaptive excitation       */
195     Word16 error[M + L_SUBFR];             /* error of quantization              */
196     Word16 synth[L_SUBFR];                 /* 12.8kHz synthesis vector           */
197     Word16 exc2[L_FRAME];                  /* excitation vector                  */
198     Word16 buf[L_FRAME];                   /* VAD buffer                         */
199 
200     /* Scalars */
201     Word32 i, j, i_subfr, select, pit_flag, clip_gain, vad_flag;
202     Word16 codec_mode;
203     Word16 T_op, T_op2, T0, T0_min, T0_max, T0_frac, index;
204     Word16 gain_pit, gain_code, g_coeff[4], g_coeff2[4];
205     Word16 tmp, gain1, gain2, exp, Q_new, mu, shift, max;
206     Word16 voice_fac;
207     Word16 indice[8];
208     Word32 L_tmp, L_gain_code, L_max, L_tmp1;
209     Word16 code2[L_SUBFR];                         /* Fixed codebook excitation  */
210     Word16 stab_fac, fac, gain_code_lo;
211 
212     Word16 corr_gain;
213     Word16 *vo_p0, *vo_p1, *vo_p2, *vo_p3;
214 
215     st = (Coder_State *) spe_state;
216 
217     *ser_size = nb_of_bits[*mode];
218     codec_mode = *mode;
219 
220     /*--------------------------------------------------------------------------*
221      *          Initialize pointers to speech vector.                           *
222      *                                                                          *
223      *                                                                          *
224      *                    |-------|-------|-------|-------|-------|-------|     *
225      *                     past sp   sf1     sf2     sf3     sf4    L_NEXT      *
226      *                    <-------  Total speech buffer (L_TOTAL)   ------>     *
227      *              old_speech                                                  *
228      *                    <-------  LPC analysis window (L_WINDOW)  ------>     *
229      *                    |       <-- present frame (L_FRAME) ---->             *
230      *                   p_window |       <----- new speech (L_FRAME) ---->     *
231      *                            |       |                                     *
232      *                          speech    |                                     *
233      *                                 new_speech                               *
234      *--------------------------------------------------------------------------*/
235 
236     new_speech = old_speech + L_TOTAL - L_FRAME - L_FILT;         /* New speech     */
237     speech = old_speech + L_TOTAL - L_FRAME - L_NEXT;             /* Present frame  */
238     p_window = old_speech + L_TOTAL - L_WINDOW;
239 
240     exc = old_exc + PIT_MAX + L_INTERPOL;
241     wsp = old_wsp + (PIT_MAX / OPL_DECIM);
242 
243     /* copy coder memory state into working space */
244     Copy(st->old_speech, old_speech, L_TOTAL - L_FRAME);
245     Copy(st->old_wsp, old_wsp, PIT_MAX / OPL_DECIM);
246     Copy(st->old_exc, old_exc, PIT_MAX + L_INTERPOL);
247 
248     /*---------------------------------------------------------------*
249      * Down sampling signal from 16kHz to 12.8kHz                    *
250      * -> The signal is extended by L_FILT samples (padded to zero)  *
251      * to avoid additional delay (L_FILT samples) in the coder.      *
252      * The last L_FILT samples are approximated after decimation and *
253      * are used (and windowed) only in autocorrelations.             *
254      *---------------------------------------------------------------*/
255 
256     Decim_12k8(speech16k, L_FRAME16k, new_speech, st->mem_decim);
257 
258     /* last L_FILT samples for autocorrelation window */
259     Copy(st->mem_decim, code, 2 * L_FILT16k);
260     Set_zero(error, L_FILT16k);            /* set next sample to zero */
261     Decim_12k8(error, L_FILT16k, new_speech + L_FRAME, code);
262 
263     /*---------------------------------------------------------------*
264      * Perform 50Hz HP filtering of input signal.                    *
265      *---------------------------------------------------------------*/
266 
267     HP50_12k8(new_speech, L_FRAME, st->mem_sig_in);
268 
269     /* last L_FILT samples for autocorrelation window */
270     Copy(st->mem_sig_in, code, 6);
271     HP50_12k8(new_speech + L_FRAME, L_FILT, code);
272 
273     /*---------------------------------------------------------------*
274      * Perform fixed preemphasis through 1 - g z^-1                  *
275      * Scale signal to get maximum of precision in filtering         *
276      *---------------------------------------------------------------*/
277 
278     mu = PREEMPH_FAC >> 1;              /* Q15 --> Q14 */
279 
280     /* get max of new preemphased samples (L_FRAME+L_FILT) */
281     L_tmp = new_speech[0] << 15;
282     L_tmp -= (st->mem_preemph * mu)<<1;
283     L_max = L_abs(L_tmp);
284 
285     for (i = 1; i < L_FRAME + L_FILT; i++)
286     {
287         L_tmp = new_speech[i] << 15;
288         L_tmp -= (new_speech[i - 1] * mu)<<1;
289         L_tmp = L_abs(L_tmp);
290         if(L_tmp > L_max)
291         {
292             L_max = L_tmp;
293         }
294     }
295 
296     /* get scaling factor for new and previous samples */
297     /* limit scaling to Q_MAX to keep dynamic for ringing in low signal */
298     /* limit scaling to Q_MAX also to avoid a[0]<1 in syn_filt_32 */
299     tmp = extract_h(L_max);
300     if (tmp == 0)
301     {
302         shift = Q_MAX;
303     } else
304     {
305         shift = norm_s(tmp) - 1;
306         if (shift < 0)
307         {
308             shift = 0;
309         }
310         if (shift > Q_MAX)
311         {
312             shift = Q_MAX;
313         }
314     }
315     Q_new = shift;
316     if (Q_new > st->Q_max[0])
317     {
318         Q_new = st->Q_max[0];
319     }
320     if (Q_new > st->Q_max[1])
321     {
322         Q_new = st->Q_max[1];
323     }
324     exp = (Q_new - st->Q_old);
325     st->Q_old = Q_new;
326     st->Q_max[1] = st->Q_max[0];
327     st->Q_max[0] = shift;
328 
329     /* preemphasis with scaling (L_FRAME+L_FILT) */
330     tmp = new_speech[L_FRAME - 1];
331 
332     for (i = L_FRAME + L_FILT - 1; i > 0; i--)
333     {
334         L_tmp = new_speech[i] << 15;
335         L_tmp -= (new_speech[i - 1] * mu)<<1;
336         L_tmp = (L_tmp << Q_new);
337         new_speech[i] = vo_round(L_tmp);
338     }
339 
340     L_tmp = new_speech[0] << 15;
341     L_tmp -= (st->mem_preemph * mu)<<1;
342     L_tmp = (L_tmp << Q_new);
343     new_speech[0] = vo_round(L_tmp);
344 
345     st->mem_preemph = tmp;
346 
347     /* scale previous samples and memory */
348 
349     Scale_sig(old_speech, L_TOTAL - L_FRAME - L_FILT, exp);
350     Scale_sig(old_exc, PIT_MAX + L_INTERPOL, exp);
351     Scale_sig(st->mem_syn, M, exp);
352     Scale_sig(st->mem_decim2, 3, exp);
353     Scale_sig(&(st->mem_wsp), 1, exp);
354     Scale_sig(&(st->mem_w0), 1, exp);
355 
356     /*------------------------------------------------------------------------*
357      *  Call VAD                                                              *
358      *  Preemphesis scale down signal in low frequency and keep dynamic in HF.*
359      *  Vad work slightly in futur (new_speech = speech + L_NEXT - L_FILT).   *
360      *------------------------------------------------------------------------*/
361     Copy(new_speech, buf, L_FRAME);
362 
363 #ifdef ASM_OPT        /* asm optimization branch */
364     Scale_sig_opt(buf, L_FRAME, 1 - Q_new);
365 #else
366     Scale_sig(buf, L_FRAME, 1 - Q_new);
367 #endif
368 
369     vad_flag = wb_vad(st->vadSt, buf);          /* Voice Activity Detection */
370     if (vad_flag == 0)
371     {
372         st->vad_hist = (st->vad_hist + 1);
373     } else
374     {
375         st->vad_hist = 0;
376     }
377 
378     /* DTX processing */
379     if (allow_dtx != 0)
380     {
381         /* Note that mode may change here */
382         tx_dtx_handler(st->dtx_encSt, vad_flag, mode);
383         *ser_size = nb_of_bits[*mode];
384     }
385 
386     if(*mode != MRDTX)
387     {
388         Parm_serial(vad_flag, 1, &prms);
389     }
390     /*------------------------------------------------------------------------*
391      *  Perform LPC analysis                                                  *
392      *  ~~~~~~~~~~~~~~~~~~~~                                                  *
393      *   - autocorrelation + lag windowing                                    *
394      *   - Levinson-durbin algorithm to find a[]                              *
395      *   - convert a[] to isp[]                                               *
396      *   - convert isp[] to isf[] for quantization                            *
397      *   - quantize and code the isf[]                                        *
398      *   - convert isf[] to isp[] for interpolation                           *
399      *   - find the interpolated ISPs and convert to a[] for the 4 subframes  *
400      *------------------------------------------------------------------------*/
401 
402     /* LP analysis centered at 4nd subframe */
403     Autocorr(p_window, M, r_h, r_l);                        /* Autocorrelations */
404     Lag_window(r_h, r_l);                                   /* Lag windowing    */
405     Levinson(r_h, r_l, A, rc, st->mem_levinson);            /* Levinson Durbin  */
406     Az_isp(A, ispnew, st->ispold);                          /* From A(z) to ISP */
407 
408     /* Find the interpolated ISPs and convert to a[] for all subframes */
409     Int_isp(st->ispold, ispnew, interpol_frac, A);
410 
411     /* update ispold[] for the next frame */
412     Copy(ispnew, st->ispold, M);
413 
414     /* Convert ISPs to frequency domain 0..6400 */
415     Isp_isf(ispnew, isf, M);
416 
417     /* check resonance for pitch clipping algorithm */
418     Gp_clip_test_isf(isf, st->gp_clip);
419 
420     /*----------------------------------------------------------------------*
421      *  Perform PITCH_OL analysis                                           *
422      *  ~~~~~~~~~~~~~~~~~~~~~~~~~                                           *
423      * - Find the residual res[] for the whole speech frame                 *
424      * - Find the weighted input speech wsp[] for the whole speech frame    *
425      * - scale wsp[] to avoid overflow in pitch estimation                  *
426      * - Find open loop pitch lag for whole speech frame                    *
427      *----------------------------------------------------------------------*/
428     p_A = A;
429     for (i_subfr = 0; i_subfr < L_FRAME; i_subfr += L_SUBFR)
430     {
431         /* Weighting of LPC coefficients */
432         Weight_a(p_A, Ap, GAMMA1, M);
433 
434 #ifdef ASM_OPT                    /* asm optimization branch */
435         Residu_opt(Ap, &speech[i_subfr], &wsp[i_subfr], L_SUBFR);
436 #else
437         Residu(Ap, &speech[i_subfr], &wsp[i_subfr], L_SUBFR);
438 #endif
439 
440         p_A += (M + 1);
441     }
442 
443     Deemph2(wsp, TILT_FAC, L_FRAME, &(st->mem_wsp));
444 
445     /* find maximum value on wsp[] for 12 bits scaling */
446     max = 0;
447     for (i = 0; i < L_FRAME; i++)
448     {
449         tmp = abs_s(wsp[i]);
450         if(tmp > max)
451         {
452             max = tmp;
453         }
454     }
455     tmp = st->old_wsp_max;
456     if(max > tmp)
457     {
458         tmp = max;                         /* tmp = max(wsp_max, old_wsp_max) */
459     }
460     st->old_wsp_max = max;
461 
462     shift = norm_s(tmp) - 3;
463     if (shift > 0)
464     {
465         shift = 0;                         /* shift = 0..-3 */
466     }
467     /* decimation of wsp[] to search pitch in LF and to reduce complexity */
468     LP_Decim2(wsp, L_FRAME, st->mem_decim2);
469 
470     /* scale wsp[] in 12 bits to avoid overflow */
471 #ifdef  ASM_OPT                  /* asm optimization branch */
472     Scale_sig_opt(wsp, L_FRAME / OPL_DECIM, shift);
473 #else
474     Scale_sig(wsp, L_FRAME / OPL_DECIM, shift);
475 #endif
476     /* scale old_wsp (warning: exp must be Q_new-Q_old) */
477     exp = exp + (shift - st->old_wsp_shift);
478     st->old_wsp_shift = shift;
479 
480     Scale_sig(old_wsp, PIT_MAX / OPL_DECIM, exp);
481     Scale_sig(st->old_hp_wsp, PIT_MAX / OPL_DECIM, exp);
482 
483     scale_mem_Hp_wsp(st->hp_wsp_mem, exp);
484 
485     /* Find open loop pitch lag for whole speech frame */
486 
487     if(*ser_size == NBBITS_7k)
488     {
489         /* Find open loop pitch lag for whole speech frame */
490         T_op = Pitch_med_ol(wsp, st, L_FRAME / OPL_DECIM);
491     } else
492     {
493         /* Find open loop pitch lag for first 1/2 frame */
494         T_op = Pitch_med_ol(wsp, st, (L_FRAME/2) / OPL_DECIM);
495     }
496 
497     if(st->ol_gain > 19661)       /* 0.6 in Q15 */
498     {
499         st->old_T0_med = Med_olag(T_op, st->old_ol_lag);
500         st->ada_w = 32767;
501     } else
502     {
503         st->ada_w = vo_mult(st->ada_w, 29491);
504     }
505 
506     if(st->ada_w < 26214)
507         st->ol_wght_flg = 0;
508     else
509         st->ol_wght_flg = 1;
510 
511     wb_vad_tone_detection(st->vadSt, st->ol_gain);
512     T_op *= OPL_DECIM;
513 
514     if(*ser_size != NBBITS_7k)
515     {
516         /* Find open loop pitch lag for second 1/2 frame */
517         T_op2 = Pitch_med_ol(wsp + ((L_FRAME / 2) / OPL_DECIM), st, (L_FRAME/2) / OPL_DECIM);
518 
519         if(st->ol_gain > 19661)   /* 0.6 in Q15 */
520         {
521             st->old_T0_med = Med_olag(T_op2, st->old_ol_lag);
522             st->ada_w = 32767;
523         } else
524         {
525             st->ada_w = mult(st->ada_w, 29491);
526         }
527 
528         if(st->ada_w < 26214)
529             st->ol_wght_flg = 0;
530         else
531             st->ol_wght_flg = 1;
532 
533         wb_vad_tone_detection(st->vadSt, st->ol_gain);
534 
535         T_op2 *= OPL_DECIM;
536 
537     } else
538     {
539         T_op2 = T_op;
540     }
541     /*----------------------------------------------------------------------*
542      *                              DTX-CNG                                 *
543      *----------------------------------------------------------------------*/
544     if(*mode == MRDTX)            /* CNG mode */
545     {
546         /* Buffer isf's and energy */
547 #ifdef ASM_OPT                   /* asm optimization branch */
548         Residu_opt(&A[3 * (M + 1)], speech, exc, L_FRAME);
549 #else
550         Residu(&A[3 * (M + 1)], speech, exc, L_FRAME);
551 #endif
552 
553         for (i = 0; i < L_FRAME; i++)
554         {
555             exc2[i] = shr(exc[i], Q_new);
556         }
557 
558         L_tmp = 0;
559         for (i = 0; i < L_FRAME; i++)
560             L_tmp += (exc2[i] * exc2[i])<<1;
561 
562         L_tmp >>= 1;
563 
564         dtx_buffer(st->dtx_encSt, isf, L_tmp, codec_mode);
565 
566         /* Quantize and code the ISFs */
567         dtx_enc(st->dtx_encSt, isf, exc2, &prms);
568 
569         /* Convert ISFs to the cosine domain */
570         Isf_isp(isf, ispnew_q, M);
571         Isp_Az(ispnew_q, Aq, M, 0);
572 
573         for (i_subfr = 0; i_subfr < L_FRAME; i_subfr += L_SUBFR)
574         {
575             corr_gain = synthesis(Aq, &exc2[i_subfr], 0, &speech16k[i_subfr * 5 / 4], st);
576         }
577         Copy(isf, st->isfold, M);
578 
579         /* reset speech coder memories */
580         Reset_encoder(st, 0);
581 
582         /*--------------------------------------------------*
583          * Update signal for next frame.                    *
584          * -> save past of speech[] and wsp[].              *
585          *--------------------------------------------------*/
586 
587         Copy(&old_speech[L_FRAME], st->old_speech, L_TOTAL - L_FRAME);
588         Copy(&old_wsp[L_FRAME / OPL_DECIM], st->old_wsp, PIT_MAX / OPL_DECIM);
589 
590         return;
591     }
592     /*----------------------------------------------------------------------*
593      *                               ACELP                                  *
594      *----------------------------------------------------------------------*/
595 
596     /* Quantize and code the ISFs */
597 
598     if (*ser_size <= NBBITS_7k)
599     {
600         Qpisf_2s_36b(isf, isf, st->past_isfq, indice, 4);
601 
602         Parm_serial(indice[0], 8, &prms);
603         Parm_serial(indice[1], 8, &prms);
604         Parm_serial(indice[2], 7, &prms);
605         Parm_serial(indice[3], 7, &prms);
606         Parm_serial(indice[4], 6, &prms);
607     } else
608     {
609         Qpisf_2s_46b(isf, isf, st->past_isfq, indice, 4);
610 
611         Parm_serial(indice[0], 8, &prms);
612         Parm_serial(indice[1], 8, &prms);
613         Parm_serial(indice[2], 6, &prms);
614         Parm_serial(indice[3], 7, &prms);
615         Parm_serial(indice[4], 7, &prms);
616         Parm_serial(indice[5], 5, &prms);
617         Parm_serial(indice[6], 5, &prms);
618     }
619 
620     /* Check stability on isf : distance between old isf and current isf */
621 
622     L_tmp = 0;
623     for (i = 0; i < M - 1; i++)
624     {
625         tmp = vo_sub(isf[i], st->isfold[i]);
626         L_tmp += (tmp * tmp)<<1;
627     }
628 
629     tmp = extract_h(L_shl2(L_tmp, 8));
630 
631     tmp = vo_mult(tmp, 26214);                /* tmp = L_tmp*0.8/256 */
632     tmp = vo_sub(20480, tmp);                 /* 1.25 - tmp (in Q14) */
633 
634     stab_fac = shl(tmp, 1);
635 
636     if (stab_fac < 0)
637     {
638         stab_fac = 0;
639     }
640     Copy(isf, st->isfold, M);
641 
642     /* Convert ISFs to the cosine domain */
643     Isf_isp(isf, ispnew_q, M);
644 
645     if (st->first_frame != 0)
646     {
647         st->first_frame = 0;
648         Copy(ispnew_q, st->ispold_q, M);
649     }
650     /* Find the interpolated ISPs and convert to a[] for all subframes */
651 
652     Int_isp(st->ispold_q, ispnew_q, interpol_frac, Aq);
653 
654     /* update ispold[] for the next frame */
655     Copy(ispnew_q, st->ispold_q, M);
656 
657     p_Aq = Aq;
658     for (i_subfr = 0; i_subfr < L_FRAME; i_subfr += L_SUBFR)
659     {
660 #ifdef ASM_OPT               /* asm optimization branch */
661         Residu_opt(p_Aq, &speech[i_subfr], &exc[i_subfr], L_SUBFR);
662 #else
663         Residu(p_Aq, &speech[i_subfr], &exc[i_subfr], L_SUBFR);
664 #endif
665         p_Aq += (M + 1);
666     }
667 
668     /* Buffer isf's and energy for dtx on non-speech frame */
669     if (vad_flag == 0)
670     {
671         for (i = 0; i < L_FRAME; i++)
672         {
673             exc2[i] = exc[i] >> Q_new;
674         }
675         L_tmp = 0;
676         for (i = 0; i < L_FRAME; i++) {
677             Word32 tmp = L_mult(exc2[i], exc2[i]); // (exc2[i] * exc2[i])<<1;
678             L_tmp = L_add(L_tmp, tmp);
679         }
680         L_tmp >>= 1;
681 
682         dtx_buffer(st->dtx_encSt, isf, L_tmp, codec_mode);
683     }
684     /* range for closed loop pitch search in 1st subframe */
685 
686     T0_min = T_op - 8;
687     if (T0_min < PIT_MIN)
688     {
689         T0_min = PIT_MIN;
690     }
691     T0_max = (T0_min + 15);
692 
693     if(T0_max > PIT_MAX)
694     {
695         T0_max = PIT_MAX;
696         T0_min = T0_max - 15;
697     }
698     /*------------------------------------------------------------------------*
699      *          Loop for every subframe in the analysis frame                 *
700      *------------------------------------------------------------------------*
701      *  To find the pitch and innovation parameters. The subframe size is     *
702      *  L_SUBFR and the loop is repeated L_FRAME/L_SUBFR times.               *
703      *     - compute the target signal for pitch search                       *
704      *     - compute impulse response of weighted synthesis filter (h1[])     *
705      *     - find the closed-loop pitch parameters                            *
706      *     - encode the pitch dealy                                           *
707      *     - find 2 lt prediction (with / without LP filter for lt pred)      *
708      *     - find 2 pitch gains and choose the best lt prediction.            *
709      *     - find target vector for codebook search                           *
710      *     - update the impulse response h1[] for codebook search             *
711      *     - correlation between target vector and impulse response           *
712      *     - codebook search and encoding                                     *
713      *     - VQ of pitch and codebook gains                                   *
714      *     - find voicing factor and tilt of code for next subframe.          *
715      *     - update states of weighting filter                                *
716      *     - find excitation and synthesis speech                             *
717      *------------------------------------------------------------------------*/
718     p_A = A;
719     p_Aq = Aq;
720     for (i_subfr = 0; i_subfr < L_FRAME; i_subfr += L_SUBFR)
721     {
722         pit_flag = i_subfr;
723         if ((i_subfr == 2 * L_SUBFR) && (*ser_size > NBBITS_7k))
724         {
725             pit_flag = 0;
726             /* range for closed loop pitch search in 3rd subframe */
727             T0_min = (T_op2 - 8);
728 
729             if (T0_min < PIT_MIN)
730             {
731                 T0_min = PIT_MIN;
732             }
733             T0_max = (T0_min + 15);
734             if (T0_max > PIT_MAX)
735             {
736                 T0_max = PIT_MAX;
737                 T0_min = (T0_max - 15);
738             }
739         }
740         /*-----------------------------------------------------------------------*
741          *                                                                       *
742          *        Find the target vector for pitch search:                       *
743          *        ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                        *
744          *                                                                       *
745          *             |------|  res[n]                                          *
746          * speech[n]---| A(z) |--------                                          *
747          *             |------|       |   |--------| error[n]  |------|          *
748          *                   zero -- (-)--| 1/A(z) |-----------| W(z) |-- target *
749          *                   exc          |--------|           |------|          *
750          *                                                                       *
751          * Instead of subtracting the zero-input response of filters from        *
752          * the weighted input speech, the above configuration is used to         *
753          * compute the target vector.                                            *
754          *                                                                       *
755          *-----------------------------------------------------------------------*/
756 
757         for (i = 0; i < M; i++)
758         {
759             error[i] = vo_sub(speech[i + i_subfr - M], st->mem_syn[i]);
760         }
761 
762 #ifdef ASM_OPT              /* asm optimization branch */
763         Residu_opt(p_Aq, &speech[i_subfr], &exc[i_subfr], L_SUBFR);
764 #else
765         Residu(p_Aq, &speech[i_subfr], &exc[i_subfr], L_SUBFR);
766 #endif
767         Syn_filt(p_Aq, &exc[i_subfr], error + M, L_SUBFR, error, 0);
768         Weight_a(p_A, Ap, GAMMA1, M);
769 
770 #ifdef ASM_OPT             /* asm optimization branch */
771         Residu_opt(Ap, error + M, xn, L_SUBFR);
772 #else
773         Residu(Ap, error + M, xn, L_SUBFR);
774 #endif
775         Deemph2(xn, TILT_FAC, L_SUBFR, &(st->mem_w0));
776 
777         /*----------------------------------------------------------------------*
778          * Find approx. target in residual domain "cn[]" for inovation search.  *
779          *----------------------------------------------------------------------*/
780         /* first half: xn[] --> cn[] */
781         Set_zero(code, M);
782         Copy(xn, code + M, L_SUBFR / 2);
783         tmp = 0;
784         Preemph2(code + M, TILT_FAC, L_SUBFR / 2, &tmp);
785         Weight_a(p_A, Ap, GAMMA1, M);
786         Syn_filt(Ap,code + M, code + M, L_SUBFR / 2, code, 0);
787 
788 #ifdef ASM_OPT                /* asm optimization branch */
789         Residu_opt(p_Aq,code + M, cn, L_SUBFR / 2);
790 #else
791         Residu(p_Aq,code + M, cn, L_SUBFR / 2);
792 #endif
793 
794         /* second half: res[] --> cn[] (approximated and faster) */
795         Copy(&exc[i_subfr + (L_SUBFR / 2)], cn + (L_SUBFR / 2), L_SUBFR / 2);
796 
797         /*---------------------------------------------------------------*
798          * Compute impulse response, h1[], of weighted synthesis filter  *
799          *---------------------------------------------------------------*/
800 
801         Set_zero(error, M + L_SUBFR);
802         Weight_a(p_A, error + M, GAMMA1, M);
803 
804         vo_p0 = error+M;
805         vo_p3 = h1;
806         for (i = 0; i < L_SUBFR; i++)
807         {
808             L_tmp = *vo_p0 << 14;        /* x4 (Q12 to Q14) */
809             vo_p1 = p_Aq + 1;
810             vo_p2 = vo_p0-1;
811             for (j = 1; j <= M/4; j++)
812             {
813                 L_tmp = L_sub(L_tmp, *vo_p1++ * *vo_p2--);
814                 L_tmp = L_sub(L_tmp, *vo_p1++ * *vo_p2--);
815                 L_tmp = L_sub(L_tmp, *vo_p1++ * *vo_p2--);
816                 L_tmp = L_sub(L_tmp, *vo_p1++ * *vo_p2--);
817             }
818             *vo_p3++ = *vo_p0++ = vo_round((L_tmp <<4));
819         }
820         /* deemph without division by 2 -> Q14 to Q15 */
821         tmp = 0;
822         Deemph2(h1, TILT_FAC, L_SUBFR, &tmp);   /* h1 in Q14 */
823 
824         /* h2 in Q12 for codebook search */
825         Copy(h1, h2, L_SUBFR);
826 
827         /*---------------------------------------------------------------*
828          * scale xn[] and h1[] to avoid overflow in dot_product12()      *
829          *---------------------------------------------------------------*/
830 #ifdef  ASM_OPT                  /* asm optimization branch */
831         Scale_sig_opt(h2, L_SUBFR, -2);
832         Scale_sig_opt(xn, L_SUBFR, shift);     /* scaling of xn[] to limit dynamic at 12 bits */
833         Scale_sig_opt(h1, L_SUBFR, 1 + shift);  /* set h1[] in Q15 with scaling for convolution */
834 #else
835         Scale_sig(h2, L_SUBFR, -2);
836         Scale_sig(xn, L_SUBFR, shift);     /* scaling of xn[] to limit dynamic at 12 bits */
837         Scale_sig(h1, L_SUBFR, 1 + shift);  /* set h1[] in Q15 with scaling for convolution */
838 #endif
839         /*----------------------------------------------------------------------*
840          *                 Closed-loop fractional pitch search                  *
841          *----------------------------------------------------------------------*/
842         /* find closed loop fractional pitch  lag */
843         if(*ser_size <= NBBITS_9k)
844         {
845             T0 = Pitch_fr4(&exc[i_subfr], xn, h1, T0_min, T0_max, &T0_frac,
846                     pit_flag, PIT_MIN, PIT_FR1_8b, L_SUBFR);
847 
848             /* encode pitch lag */
849             if (pit_flag == 0)             /* if 1st/3rd subframe */
850             {
851                 /*--------------------------------------------------------------*
852                  * The pitch range for the 1st/3rd subframe is encoded with     *
853                  * 8 bits and is divided as follows:                            *
854                  *   PIT_MIN to PIT_FR1-1  resolution 1/2 (frac = 0 or 2)       *
855                  *   PIT_FR1 to PIT_MAX    resolution 1   (frac = 0)            *
856                  *--------------------------------------------------------------*/
857                 if (T0 < PIT_FR1_8b)
858                 {
859                     index = ((T0 << 1) + (T0_frac >> 1) - (PIT_MIN<<1));
860                 } else
861                 {
862                     index = ((T0 - PIT_FR1_8b) + ((PIT_FR1_8b - PIT_MIN)*2));
863                 }
864 
865                 Parm_serial(index, 8, &prms);
866 
867                 /* find T0_min and T0_max for subframe 2 and 4 */
868                 T0_min = (T0 - 8);
869                 if (T0_min < PIT_MIN)
870                 {
871                     T0_min = PIT_MIN;
872                 }
873                 T0_max = T0_min + 15;
874                 if (T0_max > PIT_MAX)
875                 {
876                     T0_max = PIT_MAX;
877                     T0_min = (T0_max - 15);
878                 }
879             } else
880             {                              /* if subframe 2 or 4 */
881                 /*--------------------------------------------------------------*
882                  * The pitch range for subframe 2 or 4 is encoded with 5 bits:  *
883                  *   T0_min  to T0_max     resolution 1/2 (frac = 0 or 2)       *
884                  *--------------------------------------------------------------*/
885                 i = (T0 - T0_min);
886                 index = (i << 1) + (T0_frac >> 1);
887 
888                 Parm_serial(index, 5, &prms);
889             }
890         } else
891         {
892             T0 = Pitch_fr4(&exc[i_subfr], xn, h1, T0_min, T0_max, &T0_frac,
893                     pit_flag, PIT_FR2, PIT_FR1_9b, L_SUBFR);
894 
895             /* encode pitch lag */
896             if (pit_flag == 0)             /* if 1st/3rd subframe */
897             {
898                 /*--------------------------------------------------------------*
899                  * The pitch range for the 1st/3rd subframe is encoded with     *
900                  * 9 bits and is divided as follows:                            *
901                  *   PIT_MIN to PIT_FR2-1  resolution 1/4 (frac = 0,1,2 or 3)   *
902                  *   PIT_FR2 to PIT_FR1-1  resolution 1/2 (frac = 0 or 1)       *
903                  *   PIT_FR1 to PIT_MAX    resolution 1   (frac = 0)            *
904                  *--------------------------------------------------------------*/
905 
906                 if (T0 < PIT_FR2)
907                 {
908                     index = ((T0 << 2) + T0_frac) - (PIT_MIN << 2);
909                 } else if(T0 < PIT_FR1_9b)
910                 {
911                     index = ((((T0 << 1) + (T0_frac >> 1)) - (PIT_FR2<<1)) + ((PIT_FR2 - PIT_MIN)<<2));
912                 } else
913                 {
914                     index = (((T0 - PIT_FR1_9b) + ((PIT_FR2 - PIT_MIN)<<2)) + ((PIT_FR1_9b - PIT_FR2)<<1));
915                 }
916 
917                 Parm_serial(index, 9, &prms);
918 
919                 /* find T0_min and T0_max for subframe 2 and 4 */
920 
921                 T0_min = (T0 - 8);
922                 if (T0_min < PIT_MIN)
923                 {
924                     T0_min = PIT_MIN;
925                 }
926                 T0_max = T0_min + 15;
927 
928                 if (T0_max > PIT_MAX)
929                 {
930                     T0_max = PIT_MAX;
931                     T0_min = (T0_max - 15);
932                 }
933             } else
934             {                              /* if subframe 2 or 4 */
935                 /*--------------------------------------------------------------*
936                  * The pitch range for subframe 2 or 4 is encoded with 6 bits:  *
937                  *   T0_min  to T0_max     resolution 1/4 (frac = 0,1,2 or 3)   *
938                  *--------------------------------------------------------------*/
939                 i = (T0 - T0_min);
940                 index = (i << 2) + T0_frac;
941                 Parm_serial(index, 6, &prms);
942             }
943         }
944 
945         /*-----------------------------------------------------------------*
946          * Gain clipping test to avoid unstable synthesis on frame erasure *
947          *-----------------------------------------------------------------*/
948 
949         clip_gain = 0;
950         if((st->gp_clip[0] < 154) && (st->gp_clip[1] > 14746))
951             clip_gain = 1;
952 
953         /*-----------------------------------------------------------------*
954          * - find unity gain pitch excitation (adaptive codebook entry)    *
955          *   with fractional interpolation.                                *
956          * - find filtered pitch exc. y1[]=exc[] convolved with h1[])      *
957          * - compute pitch gain1                                           *
958          *-----------------------------------------------------------------*/
959         /* find pitch exitation */
960 #ifdef ASM_OPT                  /* asm optimization branch */
961         pred_lt4_asm(&exc[i_subfr], T0, T0_frac, L_SUBFR + 1);
962 #else
963         Pred_lt4(&exc[i_subfr], T0, T0_frac, L_SUBFR + 1);
964 #endif
965         if (*ser_size > NBBITS_9k)
966         {
967 #ifdef ASM_OPT                   /* asm optimization branch */
968             Convolve_asm(&exc[i_subfr], h1, y1, L_SUBFR);
969 #else
970             Convolve(&exc[i_subfr], h1, y1, L_SUBFR);
971 #endif
972             gain1 = G_pitch(xn, y1, g_coeff, L_SUBFR);
973             /* clip gain if necessary to avoid problem at decoder */
974             if ((clip_gain != 0) && (gain1 > GP_CLIP))
975             {
976                 gain1 = GP_CLIP;
977             }
978             /* find energy of new target xn2[] */
979             Updt_tar(xn, dn, y1, gain1, L_SUBFR);       /* dn used temporary */
980         } else
981         {
982             gain1 = 0;
983         }
984         /*-----------------------------------------------------------------*
985          * - find pitch excitation filtered by 1st order LP filter.        *
986          * - find filtered pitch exc. y2[]=exc[] convolved with h1[])      *
987          * - compute pitch gain2                                           *
988          *-----------------------------------------------------------------*/
989         /* find pitch excitation with lp filter */
990         vo_p0 = exc + i_subfr-1;
991         vo_p1 = code;
992         /* find pitch excitation with lp filter */
993         for (i = 0; i < L_SUBFR/2; i++)
994         {
995             L_tmp = 5898 * *vo_p0++;
996             L_tmp1 = 5898 * *vo_p0;
997             L_tmp += 20972 * *vo_p0++;
998             L_tmp1 += 20972 * *vo_p0++;
999             L_tmp1 += 5898 * *vo_p0--;
1000             L_tmp += 5898 * *vo_p0;
1001             *vo_p1++ = (L_tmp + 0x4000)>>15;
1002             *vo_p1++ = (L_tmp1 + 0x4000)>>15;
1003         }
1004 
1005 #ifdef ASM_OPT                 /* asm optimization branch */
1006         Convolve_asm(code, h1, y2, L_SUBFR);
1007 #else
1008         Convolve(code, h1, y2, L_SUBFR);
1009 #endif
1010 
1011         gain2 = G_pitch(xn, y2, g_coeff2, L_SUBFR);
1012 
1013         /* clip gain if necessary to avoid problem at decoder */
1014         if ((clip_gain != 0) && (gain2 > GP_CLIP))
1015         {
1016             gain2 = GP_CLIP;
1017         }
1018         /* find energy of new target xn2[] */
1019         Updt_tar(xn, xn2, y2, gain2, L_SUBFR);
1020         /*-----------------------------------------------------------------*
1021          * use the best prediction (minimise quadratic error).             *
1022          *-----------------------------------------------------------------*/
1023         select = 0;
1024         if(*ser_size > NBBITS_9k)
1025         {
1026             L_tmp = 0L;
1027             vo_p0 = dn;
1028             vo_p1 = xn2;
1029             for (i = 0; i < L_SUBFR/2; i++)
1030             {
1031                 L_tmp = L_add(L_tmp, *vo_p0 * *vo_p0);
1032                 vo_p0++;
1033                 L_tmp = L_sub(L_tmp, *vo_p1 * *vo_p1);
1034                 vo_p1++;
1035                 L_tmp = L_add(L_tmp, *vo_p0 * *vo_p0);
1036                 vo_p0++;
1037                 L_tmp = L_sub(L_tmp, *vo_p1 * *vo_p1);
1038                 vo_p1++;
1039             }
1040 
1041             if (L_tmp <= 0)
1042             {
1043                 select = 1;
1044             }
1045             Parm_serial(select, 1, &prms);
1046         }
1047         if (select == 0)
1048         {
1049             /* use the lp filter for pitch excitation prediction */
1050             gain_pit = gain2;
1051             Copy(code, &exc[i_subfr], L_SUBFR);
1052             Copy(y2, y1, L_SUBFR);
1053             Copy(g_coeff2, g_coeff, 4);
1054         } else
1055         {
1056             /* no filter used for pitch excitation prediction */
1057             gain_pit = gain1;
1058             Copy(dn, xn2, L_SUBFR);        /* target vector for codebook search */
1059         }
1060         /*-----------------------------------------------------------------*
1061          * - update cn[] for codebook search                               *
1062          *-----------------------------------------------------------------*/
1063         Updt_tar(cn, cn, &exc[i_subfr], gain_pit, L_SUBFR);
1064 
1065 #ifdef  ASM_OPT                           /* asm optimization branch */
1066         Scale_sig_opt(cn, L_SUBFR, shift);     /* scaling of cn[] to limit dynamic at 12 bits */
1067 #else
1068         Scale_sig(cn, L_SUBFR, shift);     /* scaling of cn[] to limit dynamic at 12 bits */
1069 #endif
1070         /*-----------------------------------------------------------------*
1071          * - include fixed-gain pitch contribution into impulse resp. h1[] *
1072          *-----------------------------------------------------------------*/
1073         tmp = 0;
1074         Preemph(h2, st->tilt_code, L_SUBFR, &tmp);
1075 
1076         if (T0_frac > 2)
1077             T0 = (T0 + 1);
1078         Pit_shrp(h2, T0, PIT_SHARP, L_SUBFR);
1079         /*-----------------------------------------------------------------*
1080          * - Correlation between target xn2[] and impulse response h1[]    *
1081          * - Innovative codebook search                                    *
1082          *-----------------------------------------------------------------*/
1083         cor_h_x(h2, xn2, dn);
1084         if (*ser_size <= NBBITS_7k)
1085         {
1086             ACELP_2t64_fx(dn, cn, h2, code, y2, indice);
1087 
1088             Parm_serial(indice[0], 12, &prms);
1089         } else if(*ser_size <= NBBITS_9k)
1090         {
1091             ACELP_4t64_fx(dn, cn, h2, code, y2, 20, *ser_size, indice);
1092 
1093             Parm_serial(indice[0], 5, &prms);
1094             Parm_serial(indice[1], 5, &prms);
1095             Parm_serial(indice[2], 5, &prms);
1096             Parm_serial(indice[3], 5, &prms);
1097         } else if(*ser_size <= NBBITS_12k)
1098         {
1099             ACELP_4t64_fx(dn, cn, h2, code, y2, 36, *ser_size, indice);
1100 
1101             Parm_serial(indice[0], 9, &prms);
1102             Parm_serial(indice[1], 9, &prms);
1103             Parm_serial(indice[2], 9, &prms);
1104             Parm_serial(indice[3], 9, &prms);
1105         } else if(*ser_size <= NBBITS_14k)
1106         {
1107             ACELP_4t64_fx(dn, cn, h2, code, y2, 44, *ser_size, indice);
1108 
1109             Parm_serial(indice[0], 13, &prms);
1110             Parm_serial(indice[1], 13, &prms);
1111             Parm_serial(indice[2], 9, &prms);
1112             Parm_serial(indice[3], 9, &prms);
1113         } else if(*ser_size <= NBBITS_16k)
1114         {
1115             ACELP_4t64_fx(dn, cn, h2, code, y2, 52, *ser_size, indice);
1116 
1117             Parm_serial(indice[0], 13, &prms);
1118             Parm_serial(indice[1], 13, &prms);
1119             Parm_serial(indice[2], 13, &prms);
1120             Parm_serial(indice[3], 13, &prms);
1121         } else if(*ser_size <= NBBITS_18k)
1122         {
1123             ACELP_4t64_fx(dn, cn, h2, code, y2, 64, *ser_size, indice);
1124 
1125             Parm_serial(indice[0], 2, &prms);
1126             Parm_serial(indice[1], 2, &prms);
1127             Parm_serial(indice[2], 2, &prms);
1128             Parm_serial(indice[3], 2, &prms);
1129             Parm_serial(indice[4], 14, &prms);
1130             Parm_serial(indice[5], 14, &prms);
1131             Parm_serial(indice[6], 14, &prms);
1132             Parm_serial(indice[7], 14, &prms);
1133         } else if(*ser_size <= NBBITS_20k)
1134         {
1135             ACELP_4t64_fx(dn, cn, h2, code, y2, 72, *ser_size, indice);
1136 
1137             Parm_serial(indice[0], 10, &prms);
1138             Parm_serial(indice[1], 10, &prms);
1139             Parm_serial(indice[2], 2, &prms);
1140             Parm_serial(indice[3], 2, &prms);
1141             Parm_serial(indice[4], 10, &prms);
1142             Parm_serial(indice[5], 10, &prms);
1143             Parm_serial(indice[6], 14, &prms);
1144             Parm_serial(indice[7], 14, &prms);
1145         } else
1146         {
1147             ACELP_4t64_fx(dn, cn, h2, code, y2, 88, *ser_size, indice);
1148 
1149             Parm_serial(indice[0], 11, &prms);
1150             Parm_serial(indice[1], 11, &prms);
1151             Parm_serial(indice[2], 11, &prms);
1152             Parm_serial(indice[3], 11, &prms);
1153             Parm_serial(indice[4], 11, &prms);
1154             Parm_serial(indice[5], 11, &prms);
1155             Parm_serial(indice[6], 11, &prms);
1156             Parm_serial(indice[7], 11, &prms);
1157         }
1158         /*-------------------------------------------------------*
1159          * - Add the fixed-gain pitch contribution to code[].    *
1160          *-------------------------------------------------------*/
1161         tmp = 0;
1162         Preemph(code, st->tilt_code, L_SUBFR, &tmp);
1163         Pit_shrp(code, T0, PIT_SHARP, L_SUBFR);
1164         /*----------------------------------------------------------*
1165          *  - Compute the fixed codebook gain                       *
1166          *  - quantize fixed codebook gain                          *
1167          *----------------------------------------------------------*/
1168         if(*ser_size <= NBBITS_9k)
1169         {
1170             index = Q_gain2(xn, y1, Q_new + shift, y2, code, g_coeff, L_SUBFR, 6,
1171                     &gain_pit, &L_gain_code, clip_gain, st->qua_gain);
1172             Parm_serial(index, 6, &prms);
1173         } else
1174         {
1175             index = Q_gain2(xn, y1, Q_new + shift, y2, code, g_coeff, L_SUBFR, 7,
1176                     &gain_pit, &L_gain_code, clip_gain, st->qua_gain);
1177             Parm_serial(index, 7, &prms);
1178         }
1179         /* test quantized gain of pitch for pitch clipping algorithm */
1180         Gp_clip_test_gain_pit(gain_pit, st->gp_clip);
1181 
1182         L_tmp = L_shl(L_gain_code, Q_new);
1183         gain_code = extract_h(L_add(L_tmp, 0x8000));
1184 
1185         /*----------------------------------------------------------*
1186          * Update parameters for the next subframe.                 *
1187          * - tilt of code: 0.0 (unvoiced) to 0.5 (voiced)           *
1188          *----------------------------------------------------------*/
1189         /* find voice factor in Q15 (1=voiced, -1=unvoiced) */
1190         Copy(&exc[i_subfr], exc2, L_SUBFR);
1191 
1192 #ifdef ASM_OPT                           /* asm optimization branch */
1193         Scale_sig_opt(exc2, L_SUBFR, shift);
1194 #else
1195         Scale_sig(exc2, L_SUBFR, shift);
1196 #endif
1197         voice_fac = voice_factor(exc2, shift, gain_pit, code, gain_code, L_SUBFR);
1198         /* tilt of code for next subframe: 0.5=voiced, 0=unvoiced */
1199         st->tilt_code = ((voice_fac >> 2) + 8192);
1200         /*------------------------------------------------------*
1201          * - Update filter's memory "mem_w0" for finding the    *
1202          *   target vector in the next subframe.                *
1203          * - Find the total excitation                          *
1204          * - Find synthesis speech to update mem_syn[].         *
1205          *------------------------------------------------------*/
1206 
1207         /* y2 in Q9, gain_pit in Q14 */
1208         L_tmp = L_mult(gain_code, y2[L_SUBFR - 1]);
1209         L_tmp = L_shl(L_tmp, (5 + shift));
1210         L_tmp = L_negate(L_tmp);
1211         L_tmp += (xn[L_SUBFR - 1] * 16384)<<1;
1212         L_tmp -= (y1[L_SUBFR - 1] * gain_pit)<<1;
1213         L_tmp = L_shl(L_tmp, (1 - shift));
1214         st->mem_w0 = extract_h(L_add(L_tmp, 0x8000));
1215 
1216         if (*ser_size >= NBBITS_24k)
1217             Copy(&exc[i_subfr], exc2, L_SUBFR);
1218 
1219         for (i = 0; i < L_SUBFR; i++)
1220         {
1221             Word32 tmp;
1222             /* code in Q9, gain_pit in Q14 */
1223             L_tmp = L_mult(gain_code, code[i]);
1224             L_tmp = L_shl(L_tmp, 5);
1225             tmp = L_mult(exc[i + i_subfr], gain_pit); // (exc[i + i_subfr] * gain_pit)<<1
1226             L_tmp = L_add(L_tmp, tmp);
1227             L_tmp = L_shl2(L_tmp, 1);
1228             exc[i + i_subfr] = extract_h(L_add(L_tmp, 0x8000));
1229         }
1230 
1231         Syn_filt(p_Aq,&exc[i_subfr], synth, L_SUBFR, st->mem_syn, 1);
1232 
1233         if(*ser_size >= NBBITS_24k)
1234         {
1235             /*------------------------------------------------------------*
1236              * phase dispersion to enhance noise in low bit rate          *
1237              *------------------------------------------------------------*/
1238             /* L_gain_code in Q16 */
1239             VO_L_Extract(L_gain_code, &gain_code, &gain_code_lo);
1240 
1241             /*------------------------------------------------------------*
1242              * noise enhancer                                             *
1243              * ~~~~~~~~~~~~~~                                             *
1244              * - Enhance excitation on noise. (modify gain of code)       *
1245              *   If signal is noisy and LPC filter is stable, move gain   *
1246              *   of code 1.5 dB toward gain of code threshold.            *
1247              *   This decrease by 3 dB noise energy variation.            *
1248              *------------------------------------------------------------*/
1249             tmp = (16384 - (voice_fac >> 1));        /* 1=unvoiced, 0=voiced */
1250             fac = vo_mult(stab_fac, tmp);
1251             L_tmp = L_gain_code;
1252             if(L_tmp < st->L_gc_thres)
1253             {
1254                 L_tmp = vo_L_add(L_tmp, Mpy_32_16(gain_code, gain_code_lo, 6226));
1255                 if(L_tmp > st->L_gc_thres)
1256                 {
1257                     L_tmp = st->L_gc_thres;
1258                 }
1259             } else
1260             {
1261                 L_tmp = Mpy_32_16(gain_code, gain_code_lo, 27536);
1262                 if(L_tmp < st->L_gc_thres)
1263                 {
1264                     L_tmp = st->L_gc_thres;
1265                 }
1266             }
1267             st->L_gc_thres = L_tmp;
1268 
1269             L_gain_code = Mpy_32_16(gain_code, gain_code_lo, (32767 - fac));
1270             VO_L_Extract(L_tmp, &gain_code, &gain_code_lo);
1271             L_gain_code = vo_L_add(L_gain_code, Mpy_32_16(gain_code, gain_code_lo, fac));
1272 
1273             /*------------------------------------------------------------*
1274              * pitch enhancer                                             *
1275              * ~~~~~~~~~~~~~~                                             *
1276              * - Enhance excitation on voice. (HP filtering of code)      *
1277              *   On voiced signal, filtering of code by a smooth fir HP   *
1278              *   filter to decrease energy of code in low frequency.      *
1279              *------------------------------------------------------------*/
1280 
1281             tmp = ((voice_fac >> 3) + 4096); /* 0.25=voiced, 0=unvoiced */
1282 
1283             L_tmp = L_deposit_h(code[0]);
1284             L_tmp -= (code[1] * tmp)<<1;
1285             code2[0] = vo_round(L_tmp);
1286 
1287             for (i = 1; i < L_SUBFR - 1; i++)
1288             {
1289                 L_tmp = L_deposit_h(code[i]);
1290                 L_tmp -= (code[i + 1] * tmp)<<1;
1291                 L_tmp -= (code[i - 1] * tmp)<<1;
1292                 code2[i] = vo_round(L_tmp);
1293             }
1294 
1295             L_tmp = L_deposit_h(code[L_SUBFR - 1]);
1296             L_tmp -= (code[L_SUBFR - 2] * tmp)<<1;
1297             code2[L_SUBFR - 1] = vo_round(L_tmp);
1298 
1299             /* build excitation */
1300             gain_code = vo_round(L_shl(L_gain_code, Q_new));
1301 
1302             for (i = 0; i < L_SUBFR; i++)
1303             {
1304                 L_tmp = L_mult(code2[i], gain_code);
1305                 L_tmp = L_shl(L_tmp, 5);
1306                 L_tmp = L_add(L_tmp, L_mult(exc2[i], gain_pit));
1307                 L_tmp = L_shl(L_tmp, 1);
1308                 exc2[i] = voround(L_tmp);
1309             }
1310 
1311             corr_gain = synthesis(p_Aq, exc2, Q_new, &speech16k[i_subfr * 5 / 4], st);
1312             Parm_serial(corr_gain, 4, &prms);
1313         }
1314         p_A += (M + 1);
1315         p_Aq += (M + 1);
1316     }                                      /* end of subframe loop */
1317 
1318     /*--------------------------------------------------*
1319      * Update signal for next frame.                    *
1320      * -> save past of speech[], wsp[] and exc[].       *
1321      *--------------------------------------------------*/
1322     Copy(&old_speech[L_FRAME], st->old_speech, L_TOTAL - L_FRAME);
1323     Copy(&old_wsp[L_FRAME / OPL_DECIM], st->old_wsp, PIT_MAX / OPL_DECIM);
1324     Copy(&old_exc[L_FRAME], st->old_exc, PIT_MAX + L_INTERPOL);
1325     return;
1326 }
1327 
1328 /*-----------------------------------------------------*
1329 * Function synthesis()                                *
1330 *                                                     *
1331 * Synthesis of signal at 16kHz with HF extension.     *
1332 *                                                     *
1333 *-----------------------------------------------------*/
1334 
synthesis(Word16 Aq[],Word16 exc[],Word16 Q_new,Word16 synth16k[],Coder_State * st)1335 static Word16 synthesis(
1336         Word16 Aq[],                          /* A(z)  : quantized Az               */
1337         Word16 exc[],                         /* (i)   : excitation at 12kHz        */
1338         Word16 Q_new,                         /* (i)   : scaling performed on exc   */
1339         Word16 synth16k[],                    /* (o)   : 16kHz synthesis signal     */
1340         Coder_State * st                      /* (i/o) : State structure            */
1341         )
1342 {
1343     Word16 fac, tmp, exp;
1344     Word16 ener, exp_ener;
1345     Word32 L_tmp, i;
1346 
1347     Word16 synth_hi[M + L_SUBFR], synth_lo[M + L_SUBFR];
1348     Word16 synth[L_SUBFR];
1349     Word16 HF[L_SUBFR16k];                 /* High Frequency vector      */
1350     Word16 Ap[M + 1];
1351 
1352     Word16 HF_SP[L_SUBFR16k];              /* High Frequency vector (from original signal) */
1353 
1354     Word16 HP_est_gain, HP_calc_gain, HP_corr_gain;
1355     Word16 dist_min, dist;
1356     Word16 HP_gain_ind = 0;
1357     Word16 gain1, gain2;
1358     Word16 weight1, weight2;
1359 
1360     /*------------------------------------------------------------*
1361      * speech synthesis                                           *
1362      * ~~~~~~~~~~~~~~~~                                           *
1363      * - Find synthesis speech corresponding to exc2[].           *
1364      * - Perform fixed deemphasis and hp 50hz filtering.          *
1365      * - Oversampling from 12.8kHz to 16kHz.                      *
1366      *------------------------------------------------------------*/
1367     Copy(st->mem_syn_hi, synth_hi, M);
1368     Copy(st->mem_syn_lo, synth_lo, M);
1369 
1370 #ifdef ASM_OPT                 /* asm optimization branch */
1371     Syn_filt_32_asm(Aq, M, exc, Q_new, synth_hi + M, synth_lo + M, L_SUBFR);
1372 #else
1373     Syn_filt_32(Aq, M, exc, Q_new, synth_hi + M, synth_lo + M, L_SUBFR);
1374 #endif
1375 
1376     Copy(synth_hi + L_SUBFR, st->mem_syn_hi, M);
1377     Copy(synth_lo + L_SUBFR, st->mem_syn_lo, M);
1378 
1379 #ifdef ASM_OPT                 /* asm optimization branch */
1380     Deemph_32_asm(synth_hi + M, synth_lo + M, synth, &(st->mem_deemph));
1381 #else
1382     Deemph_32(synth_hi + M, synth_lo + M, synth, PREEMPH_FAC, L_SUBFR, &(st->mem_deemph));
1383 #endif
1384 
1385     HP50_12k8(synth, L_SUBFR, st->mem_sig_out);
1386 
1387     /* Original speech signal as reference for high band gain quantisation */
1388     for (i = 0; i < L_SUBFR16k; i++)
1389     {
1390         HF_SP[i] = synth16k[i];
1391     }
1392 
1393     /*------------------------------------------------------*
1394      * HF noise synthesis                                   *
1395      * ~~~~~~~~~~~~~~~~~~                                   *
1396      * - Generate HF noise between 5.5 and 7.5 kHz.         *
1397      * - Set energy of noise according to synthesis tilt.   *
1398      *     tilt > 0.8 ==> - 14 dB (voiced)                  *
1399      *     tilt   0.5 ==> - 6 dB  (voiced or noise)         *
1400      *     tilt < 0.0 ==>   0 dB  (noise)                   *
1401      *------------------------------------------------------*/
1402     /* generate white noise vector */
1403     for (i = 0; i < L_SUBFR16k; i++)
1404     {
1405         HF[i] = Random(&(st->seed2))>>3;
1406     }
1407     /* energy of excitation */
1408 #ifdef ASM_OPT                    /* asm optimization branch */
1409     Scale_sig_opt(exc, L_SUBFR, -3);
1410     Q_new = Q_new - 3;
1411     ener = extract_h(Dot_product12_asm(exc, exc, L_SUBFR, &exp_ener));
1412 #else
1413     Scale_sig(exc, L_SUBFR, -3);
1414     Q_new = Q_new - 3;
1415     ener = extract_h(Dot_product12(exc, exc, L_SUBFR, &exp_ener));
1416 #endif
1417 
1418     exp_ener = exp_ener - (Q_new + Q_new);
1419     /* set energy of white noise to energy of excitation */
1420 #ifdef ASM_OPT              /* asm optimization branch */
1421     tmp = extract_h(Dot_product12_asm(HF, HF, L_SUBFR16k, &exp));
1422 #else
1423     tmp = extract_h(Dot_product12(HF, HF, L_SUBFR16k, &exp));
1424 #endif
1425 
1426     if(tmp > ener)
1427     {
1428         tmp = (tmp >> 1);                 /* Be sure tmp < ener */
1429         exp = (exp + 1);
1430     }
1431     L_tmp = L_deposit_h(div_s(tmp, ener)); /* result is normalized */
1432     exp = (exp - exp_ener);
1433     Isqrt_n(&L_tmp, &exp);
1434     L_tmp = L_shl(L_tmp, (exp + 1));       /* L_tmp x 2, L_tmp in Q31 */
1435     tmp = extract_h(L_tmp);                /* tmp = 2 x sqrt(ener_exc/ener_hf) */
1436 
1437     for (i = 0; i < L_SUBFR16k; i++)
1438     {
1439         HF[i] = vo_mult(HF[i], tmp);
1440     }
1441 
1442     /* find tilt of synthesis speech (tilt: 1=voiced, -1=unvoiced) */
1443     HP400_12k8(synth, L_SUBFR, st->mem_hp400);
1444 
1445     L_tmp = 1L;
1446     for (i = 0; i < L_SUBFR; i++)
1447         L_tmp += (synth[i] * synth[i])<<1;
1448 
1449     exp = norm_l(L_tmp);
1450     ener = extract_h(L_tmp << exp);   /* ener = r[0] */
1451 
1452     L_tmp = 1L;
1453     for (i = 1; i < L_SUBFR; i++)
1454         L_tmp +=(synth[i] * synth[i - 1])<<1;
1455 
1456     tmp = extract_h(L_tmp << exp);    /* tmp = r[1] */
1457 
1458     if (tmp > 0)
1459     {
1460         fac = div_s(tmp, ener);
1461     } else
1462     {
1463         fac = 0;
1464     }
1465 
1466     /* modify energy of white noise according to synthesis tilt */
1467     gain1 = 32767 - fac;
1468     gain2 = vo_mult(gain1, 20480);
1469     gain2 = shl(gain2, 1);
1470 
1471     if (st->vad_hist > 0)
1472     {
1473         weight1 = 0;
1474         weight2 = 32767;
1475     } else
1476     {
1477         weight1 = 32767;
1478         weight2 = 0;
1479     }
1480     tmp = vo_mult(weight1, gain1);
1481     tmp = add1(tmp, vo_mult(weight2, gain2));
1482 
1483     if (tmp != 0)
1484     {
1485         tmp = (tmp + 1);
1486     }
1487     HP_est_gain = tmp;
1488 
1489     if(HP_est_gain < 3277)
1490     {
1491         HP_est_gain = 3277;                /* 0.1 in Q15 */
1492     }
1493     /* synthesis of noise: 4.8kHz..5.6kHz --> 6kHz..7kHz */
1494     Weight_a(Aq, Ap, 19661, M);            /* fac=0.6 */
1495 
1496 #ifdef ASM_OPT                /* asm optimization branch */
1497     Syn_filt_asm(Ap, HF, HF, st->mem_syn_hf);
1498     /* noise High Pass filtering (1ms of delay) */
1499     Filt_6k_7k_asm(HF, L_SUBFR16k, st->mem_hf);
1500     /* filtering of the original signal */
1501     Filt_6k_7k_asm(HF_SP, L_SUBFR16k, st->mem_hf2);
1502 
1503     /* check the gain difference */
1504     Scale_sig_opt(HF_SP, L_SUBFR16k, -1);
1505     ener = extract_h(Dot_product12_asm(HF_SP, HF_SP, L_SUBFR16k, &exp_ener));
1506     /* set energy of white noise to energy of excitation */
1507     tmp = extract_h(Dot_product12_asm(HF, HF, L_SUBFR16k, &exp));
1508 #else
1509     Syn_filt(Ap, HF, HF, L_SUBFR16k, st->mem_syn_hf, 1);
1510     /* noise High Pass filtering (1ms of delay) */
1511     Filt_6k_7k(HF, L_SUBFR16k, st->mem_hf);
1512     /* filtering of the original signal */
1513     Filt_6k_7k(HF_SP, L_SUBFR16k, st->mem_hf2);
1514     /* check the gain difference */
1515     Scale_sig(HF_SP, L_SUBFR16k, -1);
1516     ener = extract_h(Dot_product12(HF_SP, HF_SP, L_SUBFR16k, &exp_ener));
1517     /* set energy of white noise to energy of excitation */
1518     tmp = extract_h(Dot_product12(HF, HF, L_SUBFR16k, &exp));
1519 #endif
1520 
1521     if (tmp > ener)
1522     {
1523         tmp = (tmp >> 1);                 /* Be sure tmp < ener */
1524         exp = (exp + 1);
1525     }
1526     L_tmp = L_deposit_h(div_s(tmp, ener)); /* result is normalized */
1527     exp = vo_sub(exp, exp_ener);
1528     Isqrt_n(&L_tmp, &exp);
1529     L_tmp = L_shl(L_tmp, exp);             /* L_tmp, L_tmp in Q31 */
1530     HP_calc_gain = extract_h(L_tmp);       /* tmp = sqrt(ener_input/ener_hf) */
1531 
1532     /* st->gain_alpha *= st->dtx_encSt->dtxHangoverCount/7 */
1533     L_tmp = (vo_L_mult(st->dtx_encSt->dtxHangoverCount, 4681) << 15);
1534     st->gain_alpha = vo_mult(st->gain_alpha, extract_h(L_tmp));
1535 
1536     if(st->dtx_encSt->dtxHangoverCount > 6)
1537         st->gain_alpha = 32767;
1538     HP_est_gain = HP_est_gain >> 1;     /* From Q15 to Q14 */
1539     HP_corr_gain = add1(vo_mult(HP_calc_gain, st->gain_alpha), vo_mult((32767 - st->gain_alpha), HP_est_gain));
1540 
1541     /* Quantise the correction gain */
1542     dist_min = 32767;
1543     for (i = 0; i < 16; i++)
1544     {
1545         dist = vo_mult((HP_corr_gain - HP_gain[i]), (HP_corr_gain - HP_gain[i]));
1546         if (dist_min > dist)
1547         {
1548             dist_min = dist;
1549             HP_gain_ind = i;
1550         }
1551     }
1552     HP_corr_gain = HP_gain[HP_gain_ind];
1553     /* return the quantised gain index when using the highest mode, otherwise zero */
1554     return (HP_gain_ind);
1555 }
1556 
1557 /*************************************************
1558 *
1559 * Breif: Codec main function
1560 *
1561 **************************************************/
1562 
AMR_Enc_Encode(HAMRENC hCodec)1563 int AMR_Enc_Encode(HAMRENC hCodec)
1564 {
1565     Word32 i;
1566     Coder_State *gData = (Coder_State*)hCodec;
1567     Word16 *signal;
1568     Word16 packed_size = 0;
1569     Word16 prms[NB_BITS_MAX];
1570     Word16 coding_mode = 0, nb_bits, allow_dtx, mode, reset_flag;
1571     mode = gData->mode;
1572     coding_mode = gData->mode;
1573     nb_bits = nb_of_bits[mode];
1574     signal = (Word16 *)gData->inputStream;
1575     allow_dtx = gData->allow_dtx;
1576 
1577     /* check for homing frame */
1578     reset_flag = encoder_homing_frame_test(signal);
1579 
1580     for (i = 0; i < L_FRAME16k; i++)   /* Delete the 2 LSBs (14-bit input) */
1581     {
1582         *(signal + i) = (Word16) (*(signal + i) & 0xfffC);
1583     }
1584 
1585     coder(&coding_mode, signal, prms, &nb_bits, gData, allow_dtx);
1586     packed_size = PackBits(prms, coding_mode, mode, gData);
1587     if (reset_flag != 0)
1588     {
1589         Reset_encoder(gData, 1);
1590     }
1591     return packed_size;
1592 }
1593 
1594 /***************************************************************************
1595 *
1596 *Brief: Codec API function --- Initialize the codec and return a codec handle
1597 *
1598 ***************************************************************************/
1599 
voAMRWB_Init(VO_HANDLE * phCodec,VO_AUDIO_CODINGTYPE vType,VO_CODEC_INIT_USERDATA * pUserData)1600 VO_U32 VO_API voAMRWB_Init(VO_HANDLE * phCodec,                   /* o: the audio codec handle */
1601                            VO_AUDIO_CODINGTYPE vType,             /* i: Codec Type ID */
1602                            VO_CODEC_INIT_USERDATA * pUserData     /* i: init Parameters */
1603                            )
1604 {
1605     Coder_State *st;
1606     FrameStream *stream;
1607 #ifdef USE_DEAULT_MEM
1608     VO_MEM_OPERATOR voMemoprator;
1609 #endif
1610     VO_MEM_OPERATOR *pMemOP;
1611         UNUSED(vType);
1612 
1613     int interMem = 0;
1614 
1615     if(pUserData == NULL || pUserData->memflag != VO_IMF_USERMEMOPERATOR || pUserData->memData == NULL )
1616     {
1617 #ifdef USE_DEAULT_MEM
1618         voMemoprator.Alloc = cmnMemAlloc;
1619         voMemoprator.Copy = cmnMemCopy;
1620         voMemoprator.Free = cmnMemFree;
1621         voMemoprator.Set = cmnMemSet;
1622         voMemoprator.Check = cmnMemCheck;
1623         interMem = 1;
1624         pMemOP = &voMemoprator;
1625 #else
1626         *phCodec = NULL;
1627         return VO_ERR_INVALID_ARG;
1628 #endif
1629     }
1630     else
1631     {
1632         pMemOP = (VO_MEM_OPERATOR *)pUserData->memData;
1633     }
1634     /*-------------------------------------------------------------------------*
1635      * Memory allocation for coder state.                                      *
1636      *-------------------------------------------------------------------------*/
1637     if ((st = (Coder_State *)mem_malloc(pMemOP, sizeof(Coder_State), 32, VO_INDEX_ENC_AMRWB)) == NULL)
1638     {
1639         return VO_ERR_OUTOF_MEMORY;
1640     }
1641 
1642     st->vadSt = NULL;
1643     st->dtx_encSt = NULL;
1644     st->sid_update_counter = 3;
1645     st->sid_handover_debt = 0;
1646     st->prev_ft = TX_SPEECH;
1647     st->inputStream = NULL;
1648     st->inputSize = 0;
1649 
1650     /* Default setting */
1651     st->mode = VOAMRWB_MD2385;                        /* bit rate 23.85kbps */
1652     st->frameType = VOAMRWB_RFC3267;                  /* frame type: RFC3267 */
1653     st->allow_dtx = 0;                                /* disable DTX mode */
1654 
1655     st->outputStream = NULL;
1656     st->outputSize = 0;
1657 
1658     st->stream = (FrameStream *)mem_malloc(pMemOP, sizeof(FrameStream), 32, VO_INDEX_ENC_AMRWB);
1659     if(st->stream == NULL)
1660         return VO_ERR_OUTOF_MEMORY;
1661 
1662     st->stream->frame_ptr = (unsigned char *)mem_malloc(pMemOP, Frame_Maxsize, 32, VO_INDEX_ENC_AMRWB);
1663     if(st->stream->frame_ptr == NULL)
1664         return  VO_ERR_OUTOF_MEMORY;
1665 
1666     stream = st->stream;
1667     voAWB_InitFrameBuffer(stream);
1668 
1669     wb_vad_init(&(st->vadSt), pMemOP);
1670     dtx_enc_init(&(st->dtx_encSt), isf_init, pMemOP);
1671 
1672     Reset_encoder((void *) st, 1);
1673 
1674     if(interMem)
1675     {
1676         st->voMemoprator.Alloc = cmnMemAlloc;
1677         st->voMemoprator.Copy = cmnMemCopy;
1678         st->voMemoprator.Free = cmnMemFree;
1679         st->voMemoprator.Set = cmnMemSet;
1680         st->voMemoprator.Check = cmnMemCheck;
1681         pMemOP = &st->voMemoprator;
1682     }
1683 
1684     st->pvoMemop = pMemOP;
1685 
1686     *phCodec = (void *) st;
1687 
1688     return VO_ERR_NONE;
1689 }
1690 
1691 /**********************************************************************************
1692 *
1693 * Brief: Codec API function: Input PCM data
1694 *
1695 ***********************************************************************************/
1696 
voAMRWB_SetInputData(VO_HANDLE hCodec,VO_CODECBUFFER * pInput)1697 VO_U32 VO_API voAMRWB_SetInputData(
1698         VO_HANDLE hCodec,                   /* i/o: The codec handle which was created by Init function */
1699         VO_CODECBUFFER * pInput             /*   i: The input buffer parameter  */
1700         )
1701 {
1702     Coder_State  *gData;
1703     FrameStream  *stream;
1704 
1705     if(NULL == hCodec)
1706     {
1707         return VO_ERR_INVALID_ARG;
1708     }
1709 
1710     gData = (Coder_State *)hCodec;
1711     stream = gData->stream;
1712 
1713     if(NULL == pInput || NULL == pInput->Buffer)
1714     {
1715         return VO_ERR_INVALID_ARG;
1716     }
1717 
1718     stream->set_ptr    = pInput->Buffer;
1719     stream->set_len    = pInput->Length;
1720     stream->frame_ptr  = stream->frame_ptr_bk;
1721     stream->used_len   = 0;
1722 
1723     return VO_ERR_NONE;
1724 }
1725 
1726 /**************************************************************************************
1727 *
1728 * Brief: Codec API function: Get the compression audio data frame by frame
1729 *
1730 ***************************************************************************************/
1731 
voAMRWB_GetOutputData(VO_HANDLE hCodec,VO_CODECBUFFER * pOutput,VO_AUDIO_OUTPUTINFO * pAudioFormat)1732 VO_U32 VO_API voAMRWB_GetOutputData(
1733         VO_HANDLE hCodec,                    /* i: The Codec Handle which was created by Init function*/
1734         VO_CODECBUFFER * pOutput,            /* o: The output audio data */
1735         VO_AUDIO_OUTPUTINFO * pAudioFormat   /* o: The encoder module filled audio format and used the input size*/
1736         )
1737 {
1738     Coder_State* gData = (Coder_State*)hCodec;
1739     VO_MEM_OPERATOR  *pMemOP;
1740     FrameStream  *stream = (FrameStream *)gData->stream;
1741     pMemOP = (VO_MEM_OPERATOR  *)gData->pvoMemop;
1742 
1743     if(stream->framebuffer_len  < Frame_MaxByte)         /* check the work buffer len */
1744     {
1745         stream->frame_storelen = stream->framebuffer_len;
1746         if(stream->frame_storelen)
1747         {
1748             pMemOP->Copy(VO_INDEX_ENC_AMRWB, stream->frame_ptr_bk , stream->frame_ptr , stream->frame_storelen);
1749         }
1750         if(stream->set_len > 0)
1751         {
1752             voAWB_UpdateFrameBuffer(stream, pMemOP);
1753         }
1754         if(stream->framebuffer_len < Frame_MaxByte)
1755         {
1756             if(pAudioFormat)
1757                 pAudioFormat->InputUsed = stream->used_len;
1758             return VO_ERR_INPUT_BUFFER_SMALL;
1759         }
1760     }
1761 
1762     gData->inputStream = stream->frame_ptr;
1763     gData->outputStream = (unsigned short*)pOutput->Buffer;
1764 
1765     gData->outputSize = AMR_Enc_Encode(gData);         /* encoder main function */
1766 
1767     pOutput->Length = gData->outputSize;               /* get the output buffer length */
1768     stream->frame_ptr += 640;                          /* update the work buffer ptr */
1769     stream->framebuffer_len  -= 640;
1770 
1771     if(pAudioFormat)                                   /* return output audio information */
1772     {
1773         pAudioFormat->Format.Channels = 1;
1774         pAudioFormat->Format.SampleRate = 8000;
1775         pAudioFormat->Format.SampleBits = 16;
1776         pAudioFormat->InputUsed = stream->used_len;
1777     }
1778     return VO_ERR_NONE;
1779 }
1780 
1781 /*************************************************************************
1782 *
1783 * Brief: Codec API function---set the data by specified parameter ID
1784 *
1785 *************************************************************************/
1786 
1787 
voAMRWB_SetParam(VO_HANDLE hCodec,VO_S32 uParamID,VO_PTR pData)1788 VO_U32 VO_API voAMRWB_SetParam(
1789         VO_HANDLE hCodec,   /* i/o: The Codec Handle which was created by Init function */
1790         VO_S32 uParamID,    /*   i: The param ID */
1791         VO_PTR pData        /*   i: The param value depend on the ID */
1792         )
1793 {
1794     Coder_State* gData = (Coder_State*)hCodec;
1795     FrameStream *stream = (FrameStream *)(gData->stream);
1796     int *lValue = (int*)pData;
1797 
1798     switch(uParamID)
1799     {
1800         /* setting AMR-WB frame type*/
1801         case VO_PID_AMRWB_FRAMETYPE:
1802             if(*lValue < VOAMRWB_DEFAULT || *lValue > VOAMRWB_RFC3267)
1803                 return VO_ERR_WRONG_PARAM_ID;
1804             gData->frameType = *lValue;
1805             break;
1806         /* setting AMR-WB bit rate */
1807         case VO_PID_AMRWB_MODE:
1808             {
1809                 if(*lValue < VOAMRWB_MD66 || *lValue > VOAMRWB_MD2385)
1810                     return VO_ERR_WRONG_PARAM_ID;
1811                 gData->mode = *lValue;
1812             }
1813             break;
1814         /* enable or disable DTX mode */
1815         case VO_PID_AMRWB_DTX:
1816             gData->allow_dtx = (Word16)(*lValue);
1817             break;
1818 
1819         case VO_PID_COMMON_HEADDATA:
1820             break;
1821         /* flush the work buffer */
1822         case VO_PID_COMMON_FLUSH:
1823             stream->set_ptr = NULL;
1824             stream->frame_storelen = 0;
1825             stream->framebuffer_len = 0;
1826             stream->set_len = 0;
1827             break;
1828 
1829         default:
1830             return VO_ERR_WRONG_PARAM_ID;
1831     }
1832     return VO_ERR_NONE;
1833 }
1834 
1835 /**************************************************************************
1836 *
1837 *Brief: Codec API function---Get the data by specified parameter ID
1838 *
1839 ***************************************************************************/
1840 
voAMRWB_GetParam(VO_HANDLE hCodec,VO_S32 uParamID,VO_PTR pData)1841 VO_U32 VO_API voAMRWB_GetParam(
1842         VO_HANDLE hCodec,      /* i: The Codec Handle which was created by Init function */
1843         VO_S32 uParamID,       /* i: The param ID */
1844         VO_PTR pData           /* o: The param value depend on the ID */
1845         )
1846 {
1847     int    temp;
1848     Coder_State* gData = (Coder_State*)hCodec;
1849 
1850     if (gData==NULL)
1851         return VO_ERR_INVALID_ARG;
1852     switch(uParamID)
1853     {
1854         /* output audio format */
1855         case VO_PID_AMRWB_FORMAT:
1856             {
1857                 VO_AUDIO_FORMAT* fmt = (VO_AUDIO_FORMAT*)pData;
1858                 fmt->Channels   = 1;
1859                 fmt->SampleRate = 16000;
1860                 fmt->SampleBits = 16;
1861                 break;
1862             }
1863         /* output audio channel number */
1864         case VO_PID_AMRWB_CHANNELS:
1865             temp = 1;
1866             pData = (void *)(&temp);
1867             break;
1868         /* output audio sample rate */
1869         case VO_PID_AMRWB_SAMPLERATE:
1870             temp = 16000;
1871             pData = (void *)(&temp);
1872             break;
1873         /* output audio frame type */
1874         case VO_PID_AMRWB_FRAMETYPE:
1875             temp = gData->frameType;
1876             pData = (void *)(&temp);
1877             break;
1878         /* output audio bit rate */
1879         case VO_PID_AMRWB_MODE:
1880             temp = gData->mode;
1881             pData = (void *)(&temp);
1882             break;
1883         default:
1884             return VO_ERR_WRONG_PARAM_ID;
1885     }
1886 
1887     return VO_ERR_NONE;
1888 }
1889 
1890 /***********************************************************************************
1891 *
1892 * Brief: Codec API function---Release the codec after all encoder operations are done
1893 *
1894 *************************************************************************************/
1895 
voAMRWB_Uninit(VO_HANDLE hCodec)1896 VO_U32 VO_API voAMRWB_Uninit(VO_HANDLE hCodec           /* i/o: Codec handle pointer */
1897                              )
1898 {
1899     Coder_State* gData = (Coder_State*)hCodec;
1900     VO_MEM_OPERATOR *pMemOP;
1901     pMemOP = gData->pvoMemop;
1902 
1903     if(hCodec)
1904     {
1905         if(gData->stream)
1906         {
1907             if(gData->stream->frame_ptr_bk)
1908             {
1909                 mem_free(pMemOP, gData->stream->frame_ptr_bk, VO_INDEX_ENC_AMRWB);
1910                 gData->stream->frame_ptr_bk = NULL;
1911             }
1912             mem_free(pMemOP, gData->stream, VO_INDEX_ENC_AMRWB);
1913             gData->stream = NULL;
1914         }
1915         wb_vad_exit(&(((Coder_State *) gData)->vadSt), pMemOP);
1916         dtx_enc_exit(&(((Coder_State *) gData)->dtx_encSt), pMemOP);
1917 
1918         mem_free(pMemOP, hCodec, VO_INDEX_ENC_AMRWB);
1919         hCodec = NULL;
1920     }
1921 
1922     return VO_ERR_NONE;
1923 }
1924 
1925 /********************************************************************************
1926 *
1927 * Brief: voGetAMRWBEncAPI gets the API handle of the codec
1928 *
1929 ********************************************************************************/
1930 
voGetAMRWBEncAPI(VO_AUDIO_CODECAPI * pEncHandle)1931 VO_S32 VO_API voGetAMRWBEncAPI(
1932                                VO_AUDIO_CODECAPI * pEncHandle      /* i/o: Codec handle pointer */
1933                                )
1934 {
1935     if(NULL == pEncHandle)
1936         return VO_ERR_INVALID_ARG;
1937     pEncHandle->Init = voAMRWB_Init;
1938     pEncHandle->SetInputData = voAMRWB_SetInputData;
1939     pEncHandle->GetOutputData = voAMRWB_GetOutputData;
1940     pEncHandle->SetParam = voAMRWB_SetParam;
1941     pEncHandle->GetParam = voAMRWB_GetParam;
1942     pEncHandle->Uninit = voAMRWB_Uninit;
1943 
1944     return VO_ERR_NONE;
1945 }
1946 
1947 #ifdef __cplusplus
1948 }
1949 #endif
1950