1 /*
2  * Copyright (C) 2016 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef C2BUFFER_H_
18 #define C2BUFFER_H_
19 
20 #include <C2.h>
21 #include <C2BufferBase.h>
22 #include <C2Param.h> // for C2Info
23 
24 #include <memory>
25 #include <vector>
26 
27 #ifdef __ANDROID__
28 #include <android-C2Buffer.h>
29 #else
30 
31 typedef void* C2Handle;
32 
33 #endif
34 
35 /// \defgroup buffer Buffers
36 /// @{
37 
38 /// \defgroup buffer_sync Synchronization
39 /// @{
40 
41 /**
42  * Synchronization is accomplished using event and fence objects.
43  *
44  * These are cross-process extensions of promise/future infrastructure.
45  * Events are analogous to std::promise<void>, whereas fences are to std::shared_future<void>.
46  *
47  * Fences and events are shareable/copyable.
48  *
49  * Fences are used in two scenarios, and all copied instances refer to the same event.
50  * \todo do events need to be copyable or should they be unique?
51  *
52  * acquire sync fence object: signaled when it is safe for the component or client to access
53  * (the contents of) an object.
54  *
55  * release sync fence object: \todo
56  *
57  * Fences can be backed by hardware. Hardware fences are guaranteed to signal NO MATTER WHAT within
58  * a short (platform specific) amount of time; this guarantee is usually less than 15 msecs.
59  */
60 
61 /**
62  * Fence object used by components and the framework.
63  *
64  * Implements the waiting for an event, analogous to a 'future'.
65  *
66  * To be implemented by vendors if using HW fences.
67  */
68 class C2Fence {
69 public:
70     /**
71      * Waits for a fence to be signaled with a timeout.
72      *
73      * \todo a mechanism to cancel a wait - for now the only way to do this is to abandon the
74      * event, but fences are shared so canceling a wait will cancel all waits.
75      *
76      * \param timeoutNs           the maximum time to wait in nsecs
77      *
78      * \retval C2_OK            the fence has been signaled
79      * \retval C2_TIMED_OUT     the fence has not been signaled within the timeout
80      * \retval C2_BAD_STATE     the fence has been abandoned without being signaled (it will never
81      *                          be signaled)
82      * \retval C2_REFUSED       no permission to wait for the fence (unexpected - system)
83      * \retval C2_CORRUPTED     some unknown error prevented waiting for the fence (unexpected)
84      */
85     c2_status_t wait(c2_nsecs_t timeoutNs);
86 
87     /**
88      * Used to check if this fence is valid (if there is a chance for it to be signaled.)
89      * A fence becomes invalid if the controling event is destroyed without it signaling the fence.
90      *
91      * \return whether this fence is valid
92      */
93     bool valid() const;
94 
95     /**
96      * Used to check if this fence has been signaled (is ready).
97      *
98      * \return whether this fence has been signaled
99      */
100     bool ready() const;
101 
102     /**
103      * Returns a file descriptor that can be used to wait for this fence in a select system call.
104      * \note The returned file descriptor, if valid, must be closed by the caller.
105      *
106      * This can be used in e.g. poll() system calls. This file becomes readable (POLLIN) when the
107      * fence is signaled, and bad (POLLERR) if the fence is abandoned.
108      *
109      * \return a file descriptor representing this fence (with ownership), or -1 if the fence
110      * has already been signaled (\todo or abandoned).
111      *
112      * \todo this must be compatible with fences used by gralloc
113      */
114     int fd() const;
115 
116     /**
117      * Returns whether this fence is a hardware-backed fence.
118      * \return whether this is a hardware fence
119      */
120     bool isHW() const;
121 
122     /**
123      * Null-fence. A fence that has fired.
124      */
C2Fence()125     constexpr C2Fence() : mImpl(nullptr) { }
126 
127 private:
128     class Impl;
129     std::shared_ptr<Impl> mImpl;
130     C2Fence(std::shared_ptr<Impl> impl);
131     friend struct _C2FenceFactory;
132 };
133 
134 /**
135  * Event object used by components and the framework.
136  *
137  * Implements the signaling of an event, analogous to a 'promise'.
138  *
139  * Hardware backed events do not go through this object, and must be exposed directly as fences
140  * by vendors.
141  */
142 class C2Event {
143 public:
144     /**
145      * Returns a fence for this event.
146      */
147     C2Fence fence() const;
148 
149     /**
150      * Signals (all) associated fence(s).
151      * This has no effect no effect if the event was already signaled or abandoned.
152      *
153      * \retval C2_OK            the fence(s) were successfully signaled
154      * \retval C2_BAD_STATE     the fence(s) have already been abandoned or merged (caller error)
155      * \retval C2_DUPLICATE     the fence(s) have already been signaled (caller error)
156      * \retval C2_REFUSED       no permission to signal the fence (unexpected - system)
157      * \retval C2_CORRUPTED     some unknown error prevented signaling the fence(s) (unexpected)
158      */
159     c2_status_t fire();
160 
161     /**
162      * Trigger this event from the merging of the supplied fences. This means that it will be
163      * abandoned if any of these fences have been abandoned, and it will be fired if all of these
164      * fences have been signaled.
165      *
166      * \retval C2_OK            the merging was successfully done
167      * \retval C2_NO_MEMORY     not enough memory to perform the merging
168      * \retval C2_DUPLICATE     the fence have already been merged (caller error)
169      * \retval C2_BAD_STATE     the fence have already been signaled or abandoned (caller error)
170      * \retval C2_REFUSED       no permission to merge the fence (unexpected - system)
171      * \retval C2_CORRUPTED     some unknown error prevented merging the fence(s) (unexpected)
172      */
173     c2_status_t merge(std::vector<C2Fence> fences);
174 
175     /**
176      * Abandons the event and any associated fence(s).
177      * \note Call this to explicitly abandon an event before it is destructed to avoid a warning.
178      *
179      * This has no effect no effect if the event was already signaled or abandoned.
180      *
181      * \retval C2_OK            the fence(s) were successfully signaled
182      * \retval C2_BAD_STATE     the fence(s) have already been signaled or merged (caller error)
183      * \retval C2_DUPLICATE     the fence(s) have already been abandoned (caller error)
184      * \retval C2_REFUSED       no permission to abandon the fence (unexpected - system)
185      * \retval C2_CORRUPTED     some unknown error prevented signaling the fence(s) (unexpected)
186      */
187     c2_status_t abandon();
188 
189 private:
190     class Impl;
191     std::shared_ptr<Impl> mImpl;
192 };
193 
194 /// \addtogroup buf_internal Internal
195 /// @{
196 
197 /**
198  * Interface for objects that encapsulate an updatable status value.
199  */
200 struct _C2InnateStatus {
status_C2InnateStatus201     inline c2_status_t status() const { return mStatus; }
202 
203 protected:
_C2InnateStatus_C2InnateStatus204     _C2InnateStatus(c2_status_t status) : mStatus(status) { }
205 
206     c2_status_t mStatus; // this status is updatable by the object
207 };
208 
209 /// @}
210 
211 /**
212  * This is a utility template for objects protected by an acquire fence, so that errors during
213  * acquiring the object are propagated to the object itself.
214  */
215 template<typename T>
216 class C2Acquirable : public C2Fence {
217 public:
218     /**
219      * Acquires the object protected by an acquire fence. Any errors during the mapping will be
220      * passed to the object.
221      *
222      * \return acquired object potentially invalidated if waiting for the fence failed.
223      */
get()224     T get() {
225         // TODO:
226         // wait();
227         return mT;
228     }
229 
230 protected:
C2Acquirable(c2_status_t error,C2Fence fence,T t)231     C2Acquirable(c2_status_t error, C2Fence fence, T t) : C2Fence(fence), mInitialError(error), mT(t) { }
232 
233 private:
234     c2_status_t mInitialError;
235     T mT; // TODO: move instead of copy
236 };
237 
238 /// @}
239 
240 /// \defgroup linear Linear Data Blocks
241 /// @{
242 
243 /**************************************************************************************************
244   LINEAR ASPECTS, BLOCKS AND VIEWS
245 **************************************************************************************************/
246 
247 /**
248  * Basic segment math support.
249  */
250 struct C2Segment {
251     uint32_t offset;
252     uint32_t size;
253 
C2SegmentC2Segment254     inline constexpr C2Segment(uint32_t offset_, uint32_t size_)
255         : offset(offset_),
256           size(size_) {
257     }
258 
isEmptyC2Segment259     inline constexpr bool isEmpty() const {
260         return size == 0;
261     }
262 
isValidC2Segment263     inline constexpr bool isValid() const {
264         return offset <= ~size;
265     }
266 
267     inline constexpr operator bool() const {
268         return isValid() && !isEmpty();
269     }
270 
271     inline constexpr bool operator!() const {
272         return !bool(*this);
273     }
274 
275     C2_ALLOW_OVERFLOW
containsC2Segment276     inline constexpr bool contains(const C2Segment &other) const {
277         if (!isValid() || !other.isValid()) {
278             return false;
279         } else {
280             return offset <= other.offset
281                     && offset + size >= other.offset + other.size;
282         }
283     }
284 
285     inline constexpr bool operator==(const C2Segment &other) const {
286         if (!isValid()) {
287             return !other.isValid();
288         } else {
289             return offset == other.offset && size == other.size;
290         }
291     }
292 
293     inline constexpr bool operator!=(const C2Segment &other) const {
294         return !operator==(other);
295     }
296 
297     inline constexpr bool operator>=(const C2Segment &other) const {
298         return contains(other);
299     }
300 
301     inline constexpr bool operator>(const C2Segment &other) const {
302         return contains(other) && !operator==(other);
303     }
304 
305     inline constexpr bool operator<=(const C2Segment &other) const {
306         return other.contains(*this);
307     }
308 
309     inline constexpr bool operator<(const C2Segment &other) const {
310         return other.contains(*this) && !operator==(other);
311     }
312 
313     C2_ALLOW_OVERFLOW
endC2Segment314     inline constexpr uint32_t end() const {
315         return offset + size;
316     }
317 
318     C2_ALLOW_OVERFLOW
intersectC2Segment319     inline constexpr C2Segment intersect(const C2Segment &other) const {
320         return C2Segment(c2_max(offset, other.offset),
321                          c2_min(end(), other.end()) - c2_max(offset, other.offset));
322     }
323 
324     /** clamps end to offset if it overflows */
normalizeC2Segment325     inline constexpr C2Segment normalize() const {
326         return C2Segment(offset, c2_max(offset, end()) - offset);
327     }
328 
329     /** clamps end to max if it overflows */
saturateC2Segment330     inline constexpr C2Segment saturate() const {
331         return C2Segment(offset, c2_min(size, ~offset));
332     }
333 
334 };
335 
336 /**
337  * Common aspect for all objects that have a linear capacity.
338  */
339 class _C2LinearCapacityAspect {
340 /// \name Linear capacity interface
341 /// @{
342 public:
capacity()343     inline constexpr uint32_t capacity() const { return mCapacity; }
344 
C2Segment()345     inline constexpr operator C2Segment() const {
346         return C2Segment(0, mCapacity);
347     }
348 
349 protected:
350 
351 #if UINTPTR_MAX == 0xffffffff
352     static_assert(sizeof(size_t) == sizeof(uint32_t), "size_t is too big");
353 #else
354     static_assert(sizeof(size_t) > sizeof(uint32_t), "size_t is too small");
355     // explicitly disable construction from size_t
356     inline explicit _C2LinearCapacityAspect(size_t capacity) = delete;
357 #endif
358 
_C2LinearCapacityAspect(uint32_t capacity)359     inline explicit constexpr _C2LinearCapacityAspect(uint32_t capacity)
360       : mCapacity(capacity) { }
361 
_C2LinearCapacityAspect(const _C2LinearCapacityAspect * parent)362     inline explicit constexpr _C2LinearCapacityAspect(const _C2LinearCapacityAspect *parent)
363         : mCapacity(parent == nullptr ? 0 : parent->capacity()) { }
364 
365 private:
366     uint32_t mCapacity;
367 /// @}
368 };
369 
370 /**
371  * Aspect for objects that have a linear range inside a linear capacity.
372  *
373  * This class is copiable.
374  */
375 class _C2LinearRangeAspect : public _C2LinearCapacityAspect {
376 /// \name Linear range interface
377 /// @{
378 public:
offset()379     inline constexpr uint32_t offset() const { return mOffset; }
endOffset()380     inline constexpr uint32_t endOffset() const { return mOffset + mSize; }
size()381     inline constexpr uint32_t size() const { return mSize; }
382 
C2Segment()383     inline constexpr operator C2Segment() const {
384         return C2Segment(mOffset, mSize);
385     }
386 
387 private:
388     // subrange of capacity [0, capacity] & [size, size + offset]
_C2LinearRangeAspect(uint32_t capacity_,size_t offset,size_t size)389     inline constexpr _C2LinearRangeAspect(uint32_t capacity_, size_t offset, size_t size)
390         : _C2LinearCapacityAspect(capacity_),
391           mOffset(c2_min(offset, capacity())),
392           mSize(c2_min(size, capacity() - mOffset)) {
393     }
394 
395 protected:
396     // copy constructor (no error check)
_C2LinearRangeAspect(const _C2LinearRangeAspect & other)397     inline constexpr _C2LinearRangeAspect(const _C2LinearRangeAspect &other)
398         : _C2LinearCapacityAspect(other.capacity()),
399           mOffset(other.offset()),
400           mSize(other.size()) {
401     }
402 
403     // parent capacity range [0, capacity]
_C2LinearRangeAspect(const _C2LinearCapacityAspect * parent)404     inline constexpr explicit _C2LinearRangeAspect(const _C2LinearCapacityAspect *parent)
405         : _C2LinearCapacityAspect(parent),
406           mOffset(0),
407           mSize(capacity()) {
408     }
409 
410     // subrange of parent capacity [0, capacity] & [size, size + offset]
_C2LinearRangeAspect(const _C2LinearCapacityAspect * parent,size_t offset,size_t size)411     inline constexpr _C2LinearRangeAspect(const _C2LinearCapacityAspect *parent, size_t offset, size_t size)
412         : _C2LinearCapacityAspect(parent),
413           mOffset(c2_min(offset, capacity())),
414           mSize(c2_min(size, capacity() - mOffset)) {
415     }
416 
417     // subsection of the parent's and [offset, offset + size] ranges
_C2LinearRangeAspect(const _C2LinearRangeAspect * parent,size_t offset,size_t size)418     inline constexpr _C2LinearRangeAspect(const _C2LinearRangeAspect *parent, size_t offset, size_t size)
419         : _C2LinearCapacityAspect(parent),
420           mOffset(c2_min(c2_max(offset, parent == nullptr ? 0 : parent->offset()), capacity())),
421           mSize(std::min(c2_min(size, parent == nullptr ? 0 : parent->size()), capacity() - mOffset)) {
422     }
423 
424 public:
childRange(size_t offset,size_t size)425     inline constexpr _C2LinearRangeAspect childRange(size_t offset, size_t size) const {
426         return _C2LinearRangeAspect(
427             mSize,
428             c2_min(c2_max(offset, mOffset), capacity()) - mOffset,
429             c2_min(c2_min(size, mSize), capacity() - c2_min(c2_max(offset, mOffset), capacity())));
430     }
431 
432     friend class _C2EditableLinearRangeAspect;
433     // invariants 0 <= mOffset <= mOffset + mSize <= capacity()
434     uint32_t mOffset;
435     uint32_t mSize;
436 /// @}
437 };
438 
439 /**
440  * Utility class for safe range calculations using size_t-s.
441  */
442 class C2LinearRange : public _C2LinearRangeAspect {
443 public:
C2LinearRange(const _C2LinearCapacityAspect & parent,size_t offset,size_t size)444     inline constexpr C2LinearRange(const _C2LinearCapacityAspect &parent, size_t offset, size_t size)
445         : _C2LinearRangeAspect(&parent, offset, size) { }
446 
C2LinearRange(const _C2LinearRangeAspect & parent,size_t offset,size_t size)447     inline constexpr C2LinearRange(const _C2LinearRangeAspect &parent, size_t offset, size_t size)
448         : _C2LinearRangeAspect(&parent, offset, size) { }
449 
intersect(size_t offset,size_t size)450     inline constexpr C2LinearRange intersect(size_t offset, size_t size) const {
451         return C2LinearRange(*this, offset, size);
452     }
453 };
454 
455 /**
456  * Utility class for simple and safe capacity and range construction.
457  */
458 class C2LinearCapacity : public _C2LinearCapacityAspect {
459 public:
C2LinearCapacity(size_t capacity)460     inline constexpr explicit C2LinearCapacity(size_t capacity)
461         : _C2LinearCapacityAspect(c2_min(capacity, std::numeric_limits<uint32_t>::max())) { }
462 
range(size_t offset,size_t size)463     inline constexpr C2LinearRange range(size_t offset, size_t size) const {
464         return C2LinearRange(*this, offset, size);
465     }
466 };
467 
468 /**
469  * Aspect for objects that have an editable linear range.
470  *
471  * This class is copiable.
472  */
473 class _C2EditableLinearRangeAspect : public _C2LinearRangeAspect {
474     using _C2LinearRangeAspect::_C2LinearRangeAspect;
475 
476 public:
477 /// \name Editable linear range interface
478 /// @{
479 
480     /**
481      * Sets the offset to |offset|, while trying to keep the end of the buffer unchanged (e.g.
482      * size will grow if offset is decreased, and may shrink if offset is increased.) Returns
483      * true if successful, which is equivalent to if 0 <= |offset| <= capacity().
484      *
485      * Note: setting offset and size will yield different result depending on the order of the
486      * operations. Always set offset first to ensure proper size.
487      */
setOffset(uint32_t offset)488     inline bool setOffset(uint32_t offset) {
489         if (offset > capacity()) {
490             return false;
491         }
492 
493         if (offset > mOffset + mSize) {
494             mSize = 0;
495         } else {
496             mSize = mOffset + mSize - offset;
497         }
498         mOffset = offset;
499         return true;
500     }
501 
502     /**
503      * Sets the size to |size|. Returns true if successful, which is equivalent to
504      * if 0 <= |size| <= capacity() - offset().
505      *
506      * Note: setting offset and size will yield different result depending on the order of the
507      * operations. Always set offset first to ensure proper size.
508      */
setSize(uint32_t size)509     inline bool setSize(uint32_t size) {
510         if (size > capacity() - mOffset) {
511             return false;
512         } else {
513             mSize = size;
514             return true;
515         }
516     }
517 
518     /**
519      * Sets the offset to |offset| with best effort. Same as setOffset() except that offset will
520      * be clamped to the buffer capacity.
521      *
522      * Note: setting offset and size (even using best effort) will yield different result depending
523      * on the order of the operations. Always set offset first to ensure proper size.
524      */
setOffset_be(uint32_t offset)525     inline void setOffset_be(uint32_t offset) {
526         (void)setOffset(c2_min(offset, capacity()));
527     }
528 
529     /**
530      * Sets the size to |size| with best effort. Same as setSize() except that the selected region
531      * will be clamped to the buffer capacity (e.g. size is clamped to [0, capacity() - offset()]).
532      *
533      * Note: setting offset and size (even using best effort) will yield different result depending
534      * on the order of the operations. Always set offset first to ensure proper size.
535      */
setSize_be(uint32_t size)536     inline void setSize_be(uint32_t size) {
537         mSize = c2_min(size, capacity() - mOffset);
538     }
539 /// @}
540 };
541 
542 /**************************************************************************************************
543   ALLOCATIONS
544 **************************************************************************************************/
545 
546 /// \ingroup allocator Allocation and memory placement
547 /// @{
548 
549 class C2LinearAllocation;
550 class C2GraphicAllocation;
551 
552 /**
553  *  Allocators are used by the framework to allocate memory (allocations) for buffers. They can
554  *  support either 1D or 2D allocations.
555  *
556  *  \note In theory they could support both, but in practice, we will use only one or the other.
557  *
558  *  Never constructed on stack.
559  *
560  *  Allocators are provided by vendors.
561  */
562 class C2Allocator {
563 public:
564     /**
565      * Allocator ID type.
566      */
567     typedef uint32_t id_t;
568     enum : id_t {
569         BAD_ID = 0xBADD, // invalid allocator ID
570     };
571 
572     /**
573      * Allocation types. This is a bitmask and is used in C2Allocator::Info
574      * to list the supported allocation types of an allocator.
575      */
576     enum type_t : uint32_t {
577         LINEAR  = 1 << 0, //
578         GRAPHIC = 1 << 1,
579     };
580 
581     /**
582      * Information about an allocator.
583      *
584      * Allocators don't have a query API so all queriable information is stored here.
585      */
586     struct Traits {
587         C2String name;              ///< allocator name
588         id_t id;                    ///< allocator ID
589         type_t supportedTypes;      ///< supported allocation types
590         C2MemoryUsage minimumUsage; ///< usage that is minimally required for allocations
591         C2MemoryUsage maximumUsage; ///< usage that is maximally allowed for allocations
592     };
593 
594     /**
595      * Returns the unique name of this allocator.
596      *
597      * This method MUST be "non-blocking" and return within 1ms.
598      *
599      * \return the name of this allocator.
600      * \retval an empty string if there was not enough memory to allocate the actual name.
601      */
602     virtual C2String getName() const = 0;
603 
604     /**
605      * Returns a unique ID for this allocator. This ID is used to get this allocator from the
606      * allocator store, and to identify this allocator across all processes.
607      *
608      * This method MUST be "non-blocking" and return within 1ms.
609      *
610      * \return a unique ID for this allocator.
611      */
612     virtual id_t getId() const = 0;
613 
614     /**
615      * Returns the allocator traits.
616      *
617      * This method MUST be "non-blocking" and return within 1ms.
618      *
619      * Allocators don't have a full-fledged query API, only this method.
620      *
621      * \return allocator information
622      */
623     virtual std::shared_ptr<const Traits> getTraits() const = 0;
624 
625     /**
626      * Allocates a 1D allocation of given |capacity| and |usage|. If successful, the allocation is
627      * stored in |allocation|. Otherwise, |allocation| is set to 'nullptr'.
628      *
629      * \param capacity      the size of requested allocation (the allocation could be slightly
630      *                      larger, e.g. to account for any system-required alignment)
631      * \param usage         the memory usage info for the requested allocation. \note that the
632      *                      returned allocation may be later used/mapped with different usage.
633      *                      The allocator should layout the buffer to be optimized for this usage,
634      *                      but must support any usage. One exception: protected buffers can
635      *                      only be used in a protected scenario.
636      * \param allocation    pointer to where the allocation shall be stored on success. nullptr
637      *                      will be stored here on failure
638      *
639      * \retval C2_OK        the allocation was successful
640      * \retval C2_NO_MEMORY not enough memory to complete the allocation
641      * \retval C2_TIMED_OUT the allocation timed out
642      * \retval C2_REFUSED   no permission to complete the allocation
643      * \retval C2_BAD_VALUE capacity or usage are not supported (invalid) (caller error)
644      * \retval C2_OMITTED   this allocator does not support 1D allocations
645      * \retval C2_CORRUPTED some unknown, unrecoverable error occured during allocation (unexpected)
646      */
newLinearAllocation(uint32_t capacity __unused,C2MemoryUsage usage __unused,std::shared_ptr<C2LinearAllocation> * allocation)647     virtual c2_status_t newLinearAllocation(
648             uint32_t capacity __unused, C2MemoryUsage usage __unused,
649             std::shared_ptr<C2LinearAllocation> *allocation /* nonnull */) {
650         *allocation = nullptr;
651         return C2_OMITTED;
652     }
653 
654     /**
655      * (Re)creates a 1D allocation from a native |handle|. If successful, the allocation is stored
656      * in |allocation|. Otherwise, |allocation| is set to 'nullptr'.
657      *
658      * \param handle      the handle for the existing allocation. On success, the allocation will
659      *                    take ownership of |handle|.
660      * \param allocation  pointer to where the allocation shall be stored on success. nullptr
661      *                    will be stored here on failure
662      *
663      * \retval C2_OK        the allocation was recreated successfully
664      * \retval C2_NO_MEMORY not enough memory to recreate the allocation
665      * \retval C2_TIMED_OUT the recreation timed out (unexpected)
666      * \retval C2_REFUSED   no permission to recreate the allocation
667      * \retval C2_BAD_VALUE invalid handle (caller error)
668      * \retval C2_OMITTED   this allocator does not support 1D allocations
669      * \retval C2_CORRUPTED some unknown, unrecoverable error occured during allocation (unexpected)
670      */
priorLinearAllocation(const C2Handle * handle __unused,std::shared_ptr<C2LinearAllocation> * allocation)671     virtual c2_status_t priorLinearAllocation(
672             const C2Handle *handle __unused,
673             std::shared_ptr<C2LinearAllocation> *allocation /* nonnull */) {
674         *allocation = nullptr;
675         return C2_OMITTED;
676     }
677 
678     /**
679      * Allocates a 2D allocation of given |width|, |height|, |format| and |usage|. If successful,
680      * the allocation is stored in |allocation|. Otherwise, |allocation| is set to 'nullptr'.
681      *
682      * \param width         the width of requested allocation (the allocation could be slightly
683      *                      larger, e.g. to account for any system-required alignment)
684      * \param height        the height of requested allocation (the allocation could be slightly
685      *                      larger, e.g. to account for any system-required alignment)
686      * \param format        the pixel format of requested allocation. This could be a vendor
687      *                      specific format.
688      * \param usage         the memory usage info for the requested allocation. \note that the
689      *                      returned allocation may be later used/mapped with different usage.
690      *                      The allocator should layout the buffer to be optimized for this usage,
691      *                      but must support any usage. One exception: protected buffers can
692      *                      only be used in a protected scenario.
693      * \param allocation    pointer to where the allocation shall be stored on success. nullptr
694      *                      will be stored here on failure
695      *
696      * \retval C2_OK        the allocation was successful
697      * \retval C2_NO_MEMORY not enough memory to complete the allocation
698      * \retval C2_TIMED_OUT the allocation timed out
699      * \retval C2_REFUSED   no permission to complete the allocation
700      * \retval C2_BAD_VALUE width, height, format or usage are not supported (invalid) (caller error)
701      * \retval C2_OMITTED   this allocator does not support 2D allocations
702      * \retval C2_CORRUPTED some unknown, unrecoverable error occured during allocation (unexpected)
703      */
newGraphicAllocation(uint32_t width __unused,uint32_t height __unused,uint32_t format __unused,C2MemoryUsage usage __unused,std::shared_ptr<C2GraphicAllocation> * allocation)704     virtual c2_status_t newGraphicAllocation(
705             uint32_t width __unused, uint32_t height __unused, uint32_t format __unused,
706             C2MemoryUsage usage __unused,
707             std::shared_ptr<C2GraphicAllocation> *allocation /* nonnull */) {
708         *allocation = nullptr;
709         return C2_OMITTED;
710     }
711 
712     /**
713      * (Re)creates a 2D allocation from a native handle.  If successful, the allocation is stored
714      * in |allocation|. Otherwise, |allocation| is set to 'nullptr'.
715      *
716      * \param handle      the handle for the existing allocation. On success, the allocation will
717      *                    take ownership of |handle|.
718      * \param allocation  pointer to where the allocation shall be stored on success. nullptr
719      *                    will be stored here on failure
720      *
721      * \retval C2_OK        the allocation was recreated successfully
722      * \retval C2_NO_MEMORY not enough memory to recreate the allocation
723      * \retval C2_TIMED_OUT the recreation timed out (unexpected)
724      * \retval C2_REFUSED   no permission to recreate the allocation
725      * \retval C2_BAD_VALUE invalid handle (caller error)
726      * \retval C2_OMITTED   this allocator does not support 2D allocations
727      * \retval C2_CORRUPTED some unknown, unrecoverable error occured during recreation (unexpected)
728      */
priorGraphicAllocation(const C2Handle * handle __unused,std::shared_ptr<C2GraphicAllocation> * allocation)729     virtual c2_status_t priorGraphicAllocation(
730             const C2Handle *handle __unused,
731             std::shared_ptr<C2GraphicAllocation> *allocation /* nonnull */) {
732         *allocation = nullptr;
733         return C2_OMITTED;
734     }
735 
736     virtual ~C2Allocator() = default;
737 protected:
738     C2Allocator() = default;
739 };
740 
741 /**
742  * \ingroup linear allocator
743  * 1D allocation interface.
744  */
745 class C2LinearAllocation : public _C2LinearCapacityAspect {
746 public:
747     /**
748      * Maps a portion of an allocation starting from |offset| with |size| into local process memory.
749      * Stores the starting address into |addr|, or NULL if the operation was unsuccessful.
750      * |fence| will contain an acquire sync fence object. If it is already
751      * safe to access the buffer contents, then it will contain an empty (already fired) fence.
752      *
753      * \param offset        starting position of the portion to be mapped (this does not have to
754      *                      be page aligned)
755      * \param size          size of the portion to be mapped (this does not have to be page
756      *                      aligned)
757      * \param usage         the desired usage. \todo this must be kSoftwareRead and/or
758      *                      kSoftwareWrite.
759      * \param fence         a pointer to a fence object if an async mapping is requested. If
760      *                      not-null, and acquire fence will be stored here on success, or empty
761      *                      fence on failure. If null, the mapping will be synchronous.
762      * \param addr          a pointer to where the starting address of the mapped portion will be
763      *                      stored. On failure, nullptr will be stored here.
764      *
765      * \todo Only one portion can be mapped at the same time - this is true for gralloc, but there
766      *       is no need for this for 1D buffers.
767      * \todo Do we need to support sync operation as we could just wait for the fence?
768      *
769      * \retval C2_OK        the operation was successful
770      * \retval C2_REFUSED   no permission to map the portion
771      * \retval C2_TIMED_OUT the operation timed out
772      * \retval C2_DUPLICATE if the allocation is already mapped.
773      * \retval C2_NO_MEMORY not enough memory to complete the operation
774      * \retval C2_BAD_VALUE the parameters (offset/size) are invalid or outside the allocation, or
775      *                      the usage flags are invalid (caller error)
776      * \retval C2_CORRUPTED some unknown error prevented the operation from completing (unexpected)
777      */
778     virtual c2_status_t map(
779             size_t offset, size_t size, C2MemoryUsage usage, C2Fence *fence /* nullable */,
780             void **addr /* nonnull */) = 0;
781 
782     /**
783      * Unmaps a portion of an allocation at |addr| with |size|. These must be parameters previously
784      * passed to and returned by |map|; otherwise, this operation is a no-op.
785      *
786      * \param addr          starting address of the mapped region
787      * \param size          size of the mapped region
788      * \param fence         a pointer to a fence object if an async unmapping is requested. If
789      *                      not-null, a release fence will be stored here on success, or empty fence
790      *                      on failure. This fence signals when the original allocation contains
791      *                      all changes that happened to the mapped region. If null, the unmapping
792      *                      will be synchronous.
793      *
794      * \retval C2_OK        the operation was successful
795      * \retval C2_TIMED_OUT the operation timed out
796      * \retval C2_NOT_FOUND if the allocation was not mapped previously.
797      * \retval C2_BAD_VALUE the parameters (addr/size) do not correspond to previously mapped
798      *                      regions (caller error)
799      * \retval C2_CORRUPTED some unknown error prevented the operation from completing (unexpected)
800      * \retval C2_REFUSED   no permission to unmap the portion (unexpected - system)
801      */
802     virtual c2_status_t unmap(void *addr, size_t size, C2Fence *fence /* nullable */) = 0;
803 
804     /**
805      * Returns the allocator ID for this allocation. This is useful to put the handle into context.
806      */
807     virtual C2Allocator::id_t getAllocatorId() const = 0;
808 
809     /**
810      * Returns a pointer to the allocation handle.
811      */
812     virtual const C2Handle *handle() const = 0;
813 
814     /**
815      * Returns true if this is the same allocation as |other|.
816      */
817     virtual bool equals(const std::shared_ptr<C2LinearAllocation> &other) const = 0;
818 
819 protected:
820     // \todo should we limit allocation directly?
C2LinearAllocation(size_t capacity)821     C2LinearAllocation(size_t capacity) : _C2LinearCapacityAspect(c2_min(capacity, UINT32_MAX)) {}
822     virtual ~C2LinearAllocation() = default;
823 };
824 
825 class C2CircularBlock;
826 class C2LinearBlock;
827 class C2GraphicBlock;
828 
829 /**
830  *  Block pools are used by components to obtain output buffers in an efficient way. They can
831  *  support either linear (1D), circular (1D) or graphic (2D) blocks.
832  *
833  *  Block pools decouple the recycling of memory/allocations from the components. They are meant to
834  *  be an opaque service (there are no public APIs other than obtaining blocks) provided by the
835  *  platform. Block pools are also meant to decouple allocations from memory used by buffers. This
836  *  is accomplished by allowing pools to allot multiple memory 'blocks' on a single allocation. As
837  *  their name suggest, block pools maintain a pool of memory blocks. When a component asks for
838  *  a memory block, pools will try to return a free memory block already in the pool. If no such
839  *  block exists, they will allocate memory using the backing allocator and allot a block on that
840  *  allocation. When blocks are no longer used in the system, they are recycled back to the block
841  *  pool and are available as free blocks.
842  *
843  *  Never constructed on stack.
844  */
845 class C2BlockPool {
846 public:
847     /**
848      * Block pool ID type.
849      */
850     typedef uint64_t local_id_t;
851 
852     enum : local_id_t {
853         BASIC_LINEAR = 0,  ///< ID of basic (unoptimized) block pool for fetching 1D blocks
854         BASIC_GRAPHIC = 1, ///< ID of basic (unoptimized) block pool for fetching 2D blocks
855         PLATFORM_START = 0x10,
856     };
857 
858     /**
859      * Returns the ID for this block pool. This ID is used to get this block pool from the platform.
860      * It is only valid in the current process.
861      *
862      * This method MUST be "non-blocking" and return within 1ms.
863      *
864      * \return a local ID for this block pool.
865      */
866     virtual local_id_t getLocalId() const = 0;
867 
868     /**
869      * Returns the ID of the backing allocator of this block pool.
870      *
871      * This method MUST be "non-blocking" and return within 1ms.
872      *
873      * \return the ID of the backing allocator of this block pool.
874      */
875     virtual C2Allocator::id_t getAllocatorId() const = 0;
876 
877     /**
878      * Obtains a linear writeable block of given |capacity| and |usage|. If successful, the
879      * block is stored in |block|. Otherwise, |block| is set to 'nullptr'.
880      *
881      * \param capacity the size of requested block.
882      * \param usage    the memory usage info for the requested block. Returned blocks will be
883      *                 optimized for this usage, but may be used with any usage. One exception:
884      *                 protected blocks/buffers can only be used in a protected scenario.
885      * \param block    pointer to where the obtained block shall be stored on success. nullptr will
886      *                 be stored here on failure
887      *
888      * \retval C2_OK        the operation was successful
889      * \retval C2_NO_MEMORY not enough memory to complete any required allocation
890      * \retval C2_TIMED_OUT the operation timed out
891      * \retval C2_BLOCKING  the operation is blocked
892      * \retval C2_REFUSED   no permission to complete any required allocation
893      * \retval C2_BAD_VALUE capacity or usage are not supported (invalid) (caller error)
894      * \retval C2_OMITTED   this pool does not support linear blocks
895      * \retval C2_CORRUPTED some unknown, unrecoverable error occured during operation (unexpected)
896      */
fetchLinearBlock(uint32_t capacity __unused,C2MemoryUsage usage __unused,std::shared_ptr<C2LinearBlock> * block)897     virtual c2_status_t fetchLinearBlock(
898             uint32_t capacity __unused, C2MemoryUsage usage __unused,
899             std::shared_ptr<C2LinearBlock> *block /* nonnull */) {
900         *block = nullptr;
901         return C2_OMITTED;
902     }
903 
904     /**
905      * Obtains a circular writeable block of given |capacity| and |usage|. If successful, the
906      * block is stored in |block|. Otherwise, |block| is set to 'nullptr'.
907      *
908      * \param capacity the size of requested circular block. (note: the size of the obtained
909      *                 block could be slightly larger, e.g. to accommodate any system-required
910      *                 alignment)
911      * \param usage    the memory usage info for the requested block. Returned blocks will be
912      *                 optimized for this usage, but may be used with any usage. One exception:
913      *                 protected blocks/buffers can only be used in a protected scenario.
914      * \param block    pointer to where the obtained block shall be stored on success. nullptr
915      *                 will be stored here on failure
916      *
917      * \retval C2_OK        the operation was successful
918      * \retval C2_NO_MEMORY not enough memory to complete any required allocation
919      * \retval C2_TIMED_OUT the operation timed out
920      * \retval C2_BLOCKING  the operation is blocked
921      * \retval C2_REFUSED   no permission to complete any required allocation
922      * \retval C2_BAD_VALUE capacity or usage are not supported (invalid) (caller error)
923      * \retval C2_OMITTED   this pool does not support circular blocks
924      * \retval C2_CORRUPTED some unknown, unrecoverable error occured during operation (unexpected)
925      */
fetchCircularBlock(uint32_t capacity __unused,C2MemoryUsage usage __unused,std::shared_ptr<C2CircularBlock> * block)926     virtual c2_status_t fetchCircularBlock(
927             uint32_t capacity __unused, C2MemoryUsage usage __unused,
928             std::shared_ptr<C2CircularBlock> *block /* nonnull */) {
929         *block = nullptr;
930         return C2_OMITTED;
931     }
932 
933     /**
934      * Obtains a 2D graphic block of given |width|, |height|, |format| and |usage|. If successful,
935      * the block is stored in |block|. Otherwise, |block| is set to 'nullptr'.
936      *
937      * \param width  the width of requested block (the obtained block could be slightly larger, e.g.
938      *               to accommodate any system-required alignment)
939      * \param height the height of requested block (the obtained block could be slightly larger,
940      *               e.g. to accommodate any system-required alignment)
941      * \param format the pixel format of requested block. This could be a vendor specific format.
942      * \param usage  the memory usage info for the requested block. Returned blocks will be
943      *               optimized for this usage, but may be used with any usage. One exception:
944      *               protected blocks/buffers can only be used in a protected scenario.
945      * \param block  pointer to where the obtained block shall be stored on success. nullptr
946      *               will be stored here on failure
947      *
948      * \retval C2_OK        the operation was successful
949      * \retval C2_NO_MEMORY not enough memory to complete any required allocation
950      * \retval C2_TIMED_OUT the operation timed out
951      * \retval C2_BLOCKING  the operation is blocked
952      * \retval C2_REFUSED   no permission to complete any required allocation
953      * \retval C2_BAD_VALUE width, height, format or usage are not supported (invalid) (caller
954      *                      error)
955      * \retval C2_OMITTED   this pool does not support 2D blocks
956      * \retval C2_CORRUPTED some unknown, unrecoverable error occured during operation (unexpected)
957      */
fetchGraphicBlock(uint32_t width __unused,uint32_t height __unused,uint32_t format __unused,C2MemoryUsage usage __unused,std::shared_ptr<C2GraphicBlock> * block)958     virtual c2_status_t fetchGraphicBlock(
959             uint32_t width __unused, uint32_t height __unused, uint32_t format __unused,
960             C2MemoryUsage usage __unused,
961             std::shared_ptr<C2GraphicBlock> *block /* nonnull */) {
962         *block = nullptr;
963         return C2_OMITTED;
964     }
965 
966     virtual ~C2BlockPool() = default;
967 protected:
968     C2BlockPool() = default;
969 };
970 
971 /// @}
972 
973 // ================================================================================================
974 //  BLOCKS
975 // ================================================================================================
976 
977 /**
978  * Blocks are sections of allocations. They can be either 1D or 2D.
979  */
980 
981 class C2LinearAllocation;
982 
983 /**
984  * A 1D block.
985  *
986  * \note capacity() is not meaningful for users of blocks; instead size() is the capacity of the
987  * usable portion. Use and offset() and size() if accessing the block directly through its handle
988  * to represent the allotted range of the underlying allocation to this block.
989  */
990 class C2Block1D : public _C2LinearRangeAspect {
991 public:
992     /**
993      * Returns the underlying handle for this allocation.
994      *
995      * \note that the block and its block pool has shared ownership of the handle
996      *       and if all references to the block are released, the underlying block
997      *       allocation may get reused even if a client keeps a clone of this handle.
998      */
999     const C2Handle *handle() const;
1000 
1001     /**
1002      * Returns the allocator's ID that created the underlying allocation for this block. This
1003      * provides the context for understanding the handle.
1004      */
1005     C2Allocator::id_t getAllocatorId() const;
1006 
1007 protected:
1008     class Impl;
1009     /** construct a block. */
1010     C2Block1D(std::shared_ptr<Impl> impl, const _C2LinearRangeAspect &range);
1011 
1012     friend struct _C2BlockFactory;
1013     std::shared_ptr<Impl> mImpl;
1014 };
1015 
1016 /**
1017  * Read view provides read-only access for a linear memory segment.
1018  *
1019  * This class is copiable.
1020  */
1021 class C2ReadView : public _C2LinearCapacityAspect {
1022 public:
1023     /**
1024      * \return pointer to the start of the block or nullptr on error.
1025      *         This pointer is only valid during the lifetime of this view or until it is released.
1026      */
1027     const uint8_t *data() const;
1028 
1029     /**
1030      * Returns a portion of this view.
1031      *
1032      * \param offset  the start offset of the portion. \note This is clamped to the capacity of this
1033      *              view.
1034      * \param size    the size of the portion. \note This is clamped to the remaining data from offset.
1035      *
1036      * \return a read view containing a portion of this view
1037      */
1038     C2ReadView subView(size_t offset, size_t size) const;
1039 
1040     /**
1041      * \return error during the creation/mapping of this view.
1042      */
1043     c2_status_t error() const;
1044 
1045     /**
1046      * Releases this view. This sets error to C2_NO_INIT.
1047      */
1048     //void release();
1049 
1050 protected:
1051     class Impl;
1052     C2ReadView(std::shared_ptr<Impl> impl, uint32_t offset, uint32_t size);
1053     explicit C2ReadView(c2_status_t error);
1054 
1055 private:
1056     friend struct _C2BlockFactory;
1057     std::shared_ptr<Impl> mImpl;
1058     uint32_t mOffset; /**< offset into the linear block backing this read view */
1059 };
1060 
1061 /**
1062  * Write view provides read/write access for a linear memory segment.
1063  *
1064  * This class is copiable. \todo movable only?
1065  */
1066 class C2WriteView : public _C2EditableLinearRangeAspect {
1067 public:
1068     /**
1069      * Start of the block.
1070      *
1071      * \return pointer to the start of the block or nullptr on error.
1072      *         This pointer is only valid during the lifetime of this view or until it is released.
1073      */
1074     uint8_t *base();
1075 
1076     /**
1077      * \return pointer to the block at the current offset or nullptr on error.
1078      *         This pointer is only valid during the lifetime of this view or until it is released.
1079      */
1080     uint8_t *data();
1081 
1082     /**
1083      * \return error during the creation/mapping of this view.
1084      */
1085     c2_status_t error() const;
1086 
1087     /**
1088      * Releases this view. This sets error to C2_NO_INIT.
1089      */
1090     //void release();
1091 
1092 protected:
1093     class Impl;
1094     C2WriteView(std::shared_ptr<Impl> impl);
1095     explicit C2WriteView(c2_status_t error);
1096 
1097 private:
1098     friend struct _C2BlockFactory;
1099     std::shared_ptr<Impl> mImpl;
1100 };
1101 
1102 /**
1103  * A constant (read-only) linear block (portion of an allocation) with an acquire fence.
1104  * Blocks are unmapped when created, and can be mapped into a read view on demand.
1105  *
1106  * This class is copiable and contains a reference to the allocation that it is based on.
1107  */
1108 class C2ConstLinearBlock : public C2Block1D {
1109 public:
1110     /**
1111      * Maps this block into memory and returns a read view for it.
1112      *
1113      * \return a read view for this block.
1114      */
1115     C2Acquirable<C2ReadView> map() const;
1116 
1117     /**
1118      * Returns a portion of this block.
1119      *
1120      * \param offset  the start offset of the portion. \note This is clamped to the capacity of this
1121      *              block.
1122      * \param size    the size of the portion. \note This is clamped to the remaining data from offset.
1123      *
1124      * \return a constant linear block containing a portion of this block
1125      */
1126     C2ConstLinearBlock subBlock(size_t offset, size_t size) const;
1127 
1128     /**
1129      * Returns the acquire fence for this block.
1130      *
1131      * \return a fence that must be waited on before reading the block.
1132      */
fence()1133     C2Fence fence() const { return mFence; }
1134 
1135 protected:
1136     C2ConstLinearBlock(std::shared_ptr<Impl> impl, const _C2LinearRangeAspect &range, C2Fence mFence);
1137 
1138 private:
1139     friend struct _C2BlockFactory;
1140     C2Fence mFence;
1141 };
1142 
1143 /**
1144  * Linear block is a writeable 1D block. Once written, it can be shared in whole or in parts with
1145  * consumers/readers as read-only const linear block(s).
1146  */
1147 class C2LinearBlock : public C2Block1D {
1148 public:
1149     /**
1150      * Maps this block into memory and returns a write view for it.
1151      *
1152      * \return a write view for this block.
1153      */
1154     C2Acquirable<C2WriteView> map();
1155 
1156     /**
1157      * Creates a read-only const linear block for a portion of this block; optionally protected
1158      * by an acquire fence. There are two ways to use this:
1159      *
1160      * 1) share ready block after writing data into the block. In this case no fence shall be
1161      *    supplied, and the block shall not be modified after calling this method.
1162      * 2) share block metadata before actually (finishing) writing the data into the block. In
1163      *    this case a fence must be supplied that will be triggered when the data is written.
1164      *    The block shall be modified only until firing the event for the fence.
1165      */
1166     C2ConstLinearBlock share(size_t offset, size_t size, C2Fence fence);
1167 
1168 protected:
1169     C2LinearBlock(std::shared_ptr<Impl> impl, const _C2LinearRangeAspect &range);
1170 
1171     friend struct _C2BlockFactory;
1172 };
1173 
1174 /// @}
1175 
1176 /**************************************************************************************************
1177   CIRCULAR BLOCKS AND VIEWS
1178 **************************************************************************************************/
1179 
1180 /// \defgroup circular Circular buffer support
1181 /// @{
1182 
1183 /**
1184  * Circular blocks can be used to share data between a writer and a reader (and/or other consumers)-
1185  * in a memory-efficient way by reusing a section of memory. Circular blocks are a bit more complex
1186  * than single reader/single writer schemes to facilitate block-based consuming of data.
1187  *
1188  * They can operate in two modes:
1189  *
1190  * 1) one writer that creates blocks to be consumed (this model can be used by components)
1191  *
1192  * 2) one writer that writes continuously, and one reader that can creates blocks to be consumed
1193  *    by further recipients (this model is used by the framework, and cannot be used by components.)
1194  *
1195  * Circular blocks have four segments with running pointers:
1196  *  - reserved: data reserved and available for the writer
1197  *  - committed: data committed by the writer and available to the reader (if present)
1198  *  - used: data used by consumers (if present)
1199  *  - available: unused data available to be reserved
1200  */
1201 class C2CircularBlock : public C2Block1D {
1202     // TODO: add methods
1203 
1204 private:
1205     size_t mReserved __unused;   // end of reserved section
1206     size_t mCommitted __unused;  // end of committed section
1207     size_t mUsed __unused;       // end of used section
1208     size_t mFree __unused;       // end of free section
1209 };
1210 
1211 class _C2CircularBlockSegment : public _C2LinearCapacityAspect {
1212 public:
1213     /**
1214      * Returns the available size for this segment.
1215      *
1216      * \return currently available size for this segment
1217      */
1218     size_t available() const;
1219 
1220     /**
1221      * Reserve some space for this segment from its current start.
1222      *
1223      * \param size    desired space in bytes
1224      * \param fence   a pointer to an acquire fence. If non-null, the reservation is asynchronous and
1225      *              a fence will be stored here that will be signaled when the reservation is
1226      *              complete. If null, the reservation is synchronous.
1227      *
1228      * \retval C2_OK            the space was successfully reserved
1229      * \retval C2_NO_MEMORY     the space requested cannot be reserved
1230      * \retval C2_TIMED_OUT     the reservation timed out \todo when?
1231      * \retval C2_CORRUPTED     some unknown error prevented reserving space. (unexpected)
1232      */
1233     c2_status_t reserve(size_t size, C2Fence *fence /* nullable */);
1234 
1235     /**
1236      * Abandons a portion of this segment. This will move to the beginning of this segment.
1237      *
1238      * \note This methods is only allowed if this segment is producing blocks.
1239      *
1240      * \param size    number of bytes to abandon
1241      *
1242      * \retval C2_OK            the data was successfully abandoned
1243      * \retval C2_TIMED_OUT     the operation timed out (unexpected)
1244      * \retval C2_CORRUPTED     some unknown error prevented abandoning the data (unexpected)
1245      */
1246     c2_status_t abandon(size_t size);
1247 
1248     /**
1249      * Share a portion as block(s) with consumers (these are moved to the used section).
1250      *
1251      * \note This methods is only allowed if this segment is producing blocks.
1252      * \note Share does not move the beginning of the segment. (\todo add abandon/offset?)
1253      *
1254      * \param size    number of bytes to share
1255      * \param fence   fence to be used for the section
1256      * \param blocks  vector where the blocks of the section are appended to
1257      *
1258      * \retval C2_OK            the portion was successfully shared
1259      * \retval C2_NO_MEMORY     not enough memory to share the portion
1260      * \retval C2_TIMED_OUT     the operation timed out (unexpected)
1261      * \retval C2_CORRUPTED     some unknown error prevented sharing the data (unexpected)
1262      */
1263     c2_status_t share(size_t size, C2Fence fence, std::vector<C2ConstLinearBlock> &blocks);
1264 
1265     /**
1266      * Returns the beginning offset of this segment from the start of this circular block.
1267      *
1268      * @return beginning offset
1269      */
1270     size_t begin();
1271 
1272     /**
1273      * Returns the end offset of this segment from the start of this circular block.
1274      *
1275      * @return end offset
1276      */
1277     size_t end();
1278 };
1279 
1280 /**
1281  * A circular write-view is a dynamic mapped view for a segment of a circular block. Care must be
1282  * taken when using this view so that only the section owned by the segment is modified.
1283  */
1284 class C2CircularWriteView : public _C2LinearCapacityAspect {
1285 public:
1286     /**
1287      * Start of the circular block.
1288      * \note the segment does not own this pointer.
1289      *
1290      * \return pointer to the start of the circular block or nullptr on error.
1291      */
1292     uint8_t *base();
1293 
1294     /**
1295      * \return error during the creation/mapping of this view.
1296      */
1297     c2_status_t error() const;
1298 };
1299 
1300 /**
1301  * The writer of a circular buffer.
1302  *
1303  * Can commit data to a reader (not supported for components) OR share data blocks directly with a
1304  * consumer.
1305  *
1306  * If a component supports outputting data into circular buffers, it must allocate a circular
1307  * block and use a circular writer.
1308  */
1309 class C2CircularWriter : public _C2CircularBlockSegment {
1310 public:
1311     /**
1312      * Commits a portion of this segment to the next segment. This moves the beginning of the
1313      * segment.
1314      *
1315      * \param size    number of bytes to commit to the next segment
1316      * \param fence   fence used for the commit (the fence must signal before the data is committed)
1317      */
1318     c2_status_t commit(size_t size, C2Fence fence);
1319 
1320     /**
1321      * Maps this block into memory and returns a write view for it.
1322      *
1323      * \return a write view for this block.
1324      */
1325     C2Acquirable<C2CircularWriteView> map();
1326 };
1327 
1328 /// @}
1329 
1330 /// \defgroup graphic Graphic Data Blocks
1331 /// @{
1332 
1333 /**
1334  * C2Rect: rectangle type with non-negative coordinates.
1335  *
1336  * \note This struct has public fields without getters/setters. All methods are inline.
1337  */
1338 struct C2Rect {
1339 // public:
1340     uint32_t width;
1341     uint32_t height;
1342     uint32_t left;
1343     uint32_t top;
1344 
C2RectC2Rect1345     constexpr inline C2Rect()
1346         : C2Rect(0, 0, 0, 0) { }
1347 
C2RectC2Rect1348     constexpr inline C2Rect(uint32_t width_, uint32_t height_)
1349         : C2Rect(width_, height_, 0, 0) { }
1350 
atC2Rect1351     constexpr C2Rect inline at(uint32_t left_, uint32_t top_) const {
1352         return C2Rect(width, height, left_, top_);
1353     }
1354 
1355     // utility methods
1356 
isEmptyC2Rect1357     inline constexpr bool isEmpty() const {
1358         return width == 0 || height == 0;
1359     }
1360 
isValidC2Rect1361     inline constexpr bool isValid() const {
1362         return left <= ~width && top <= ~height;
1363     }
1364 
1365     inline constexpr operator bool() const {
1366         return isValid() && !isEmpty();
1367     }
1368 
1369     inline constexpr bool operator!() const {
1370         return !bool(*this);
1371     }
1372 
1373     C2_ALLOW_OVERFLOW
containsC2Rect1374     inline constexpr bool contains(const C2Rect &other) const {
1375         if (!isValid() || !other.isValid()) {
1376             return false;
1377         } else {
1378             return left <= other.left && top <= other.top
1379                     && left + width >= other.left + other.width
1380                     && top + height >= other.top + other.height;
1381         }
1382     }
1383 
1384     inline constexpr bool operator==(const C2Rect &other) const {
1385         if (!isValid()) {
1386             return !other.isValid();
1387         } else {
1388             return left == other.left && top == other.top
1389                     && width == other.width && height == other.height;
1390         }
1391     }
1392 
1393     inline constexpr bool operator!=(const C2Rect &other) const {
1394         return !operator==(other);
1395     }
1396 
1397     inline constexpr bool operator>=(const C2Rect &other) const {
1398         return contains(other);
1399     }
1400 
1401     inline constexpr bool operator>(const C2Rect &other) const {
1402         return contains(other) && !operator==(other);
1403     }
1404 
1405     inline constexpr bool operator<=(const C2Rect &other) const {
1406         return other.contains(*this);
1407     }
1408 
1409     inline constexpr bool operator<(const C2Rect &other) const {
1410         return other.contains(*this) && !operator==(other);
1411     }
1412 
1413     C2_ALLOW_OVERFLOW
rightC2Rect1414     inline constexpr uint32_t right() const {
1415         return left + width;
1416     }
1417 
1418     C2_ALLOW_OVERFLOW
bottomC2Rect1419     inline constexpr uint32_t bottom() const {
1420         return top + height;
1421     }
1422 
1423     C2_ALLOW_OVERFLOW
intersectC2Rect1424     inline constexpr C2Rect intersect(const C2Rect &other) const {
1425         return C2Rect(c2_min(right(), other.right()) - c2_max(left, other.left),
1426                       c2_min(bottom(), other.bottom()) - c2_max(top, other.top),
1427                       c2_max(left, other.left),
1428                       c2_max(top, other.top));
1429     }
1430 
1431     /** clamps right and bottom to top, left if they overflow */
normalizeC2Rect1432     inline constexpr C2Rect normalize() const {
1433         return C2Rect(c2_max(left, right()) - left, c2_max(top, bottom()) - top, left, top);
1434     }
1435 
1436 private:
1437     /// note: potentially unusual argument order
C2RectC2Rect1438     constexpr inline C2Rect(uint32_t width_, uint32_t height_, uint32_t left_, uint32_t top_)
1439         : width(width_),
1440           height(height_),
1441           left(left_),
1442           top(top_) { }
1443 };
1444 
1445 /**
1446  * Interface for objects that have a width and height (planar capacity).
1447  */
1448 class _C2PlanarCapacityAspect {
1449 /// \name Planar capacity interface
1450 /// @{
1451 public:
width()1452     inline constexpr uint32_t width() const { return _mWidth; }
height()1453     inline constexpr uint32_t height() const { return _mHeight; }
1454 
C2Rect()1455     inline constexpr operator C2Rect() const {
1456         return C2Rect(_mWidth, _mHeight);
1457     }
1458 
1459 protected:
_C2PlanarCapacityAspect(uint32_t width,uint32_t height)1460     inline constexpr _C2PlanarCapacityAspect(uint32_t width, uint32_t height)
1461       : _mWidth(width), _mHeight(height) { }
1462 
_C2PlanarCapacityAspect(const _C2PlanarCapacityAspect * parent)1463     inline explicit constexpr _C2PlanarCapacityAspect(const _C2PlanarCapacityAspect *parent)
1464         : _mWidth(parent == nullptr ? 0 : parent->width()),
1465           _mHeight(parent == nullptr ? 0 : parent->height()) { }
1466 
1467 private:
1468     uint32_t _mWidth;
1469     uint32_t _mHeight;
1470 /// @}
1471 };
1472 
1473 /**
1474  * C2PlaneInfo: information on the layout of a singe flexible plane.
1475  *
1476  * Public fields without getters/setters.
1477  */
1478 struct C2PlaneInfo {
1479 //public:
1480     enum channel_t : uint32_t {
1481         CHANNEL_Y,  ///< luma
1482         CHANNEL_R,  ///< red
1483         CHANNEL_G,  ///< green
1484         CHANNEL_B,  ///< blue
1485         CHANNEL_A,  ///< alpha
1486         CHANNEL_CR, ///< Cr
1487         CHANNEL_CB, ///< Cb
1488     } channel;
1489 
1490     int32_t colInc;       ///< column increment in bytes. may be negative
1491     int32_t rowInc;       ///< row increment in bytes. may be negative
1492 
1493     uint32_t colSampling; ///< subsampling compared to width (must be a power of 2)
1494     uint32_t rowSampling; ///< subsampling compared to height (must be a power of 2)
1495 
1496     uint32_t allocatedDepth; ///< size of each sample (must be a multiple of 8)
1497     uint32_t bitDepth;       ///< significant bits per sample
1498     /**
1499      * the right shift of the significant bits in the sample. E.g. if a 10-bit significant
1500      * value is laid out in a 16-bit allocation aligned to LSB (values 0-1023), rightShift
1501      * would be 0 as the 16-bit value read from the sample does not need to be right shifted
1502      * and can be used as is (after applying a 10-bit mask of 0x3FF).
1503      *
1504      * +--------+--------+
1505      * |      VV|VVVVVVVV|
1506      * +--------+--------+
1507      *  15     8 7      0
1508      *
1509      * If the value is laid out aligned to MSB, rightShift would be 6, as the value read
1510      * from the allocated sample must be right-shifted by 6 to get the actual sample value.
1511      *
1512      * +--------+--------+
1513      * |VVVVVVVV|VV      |
1514      * +--------+--------+
1515      *  15     8 7      0
1516      */
1517     uint32_t rightShift;
1518 
1519     enum endianness_t : uint32_t {
1520         NATIVE,
1521         LITTLE_END, // LITTLE_ENDIAN is reserved macro
1522         BIG_END,    // BIG_ENDIAN is a reserved macro
1523     } endianness; ///< endianness of the samples
1524 
1525     /**
1526      * The following two fields define the relation between multiple planes. If multiple planes are
1527      * interleaved, they share a root plane (whichever plane's start address is the lowest), and
1528      * |offset| is the offset of this plane inside the root plane (in bytes). |rootIx| is the index
1529      * of the root plane. If a plane is independent, rootIx is its index and offset is 0.
1530      */
1531     uint32_t rootIx; ///< index of the root plane
1532     uint32_t offset; ///< offset of this plane inside of the root plane
1533 
minOffsetC2PlaneInfo1534     inline constexpr ssize_t minOffset(uint32_t width, uint32_t height) const {
1535         ssize_t offs = 0;
1536         if (width > 0 && colInc < 0) {
1537             offs += colInc * (ssize_t)(width - 1);
1538         }
1539         if (height > 0 && rowInc < 0) {
1540             offs += rowInc * (ssize_t)(height - 1);
1541         }
1542         return offs;
1543     }
1544 
maxOffsetC2PlaneInfo1545     inline constexpr ssize_t maxOffset(uint32_t width, uint32_t height) const {
1546         ssize_t offs = (allocatedDepth + 7) >> 3;
1547         if (width > 0 && colInc > 0) {
1548             offs += colInc * (ssize_t)(width - 1);
1549         }
1550         if (height > 0 && rowInc > 0) {
1551             offs += rowInc * (ssize_t)(height - 1);
1552         }
1553         return offs;
1554     }
1555 } C2_PACK;
1556 
1557 struct C2PlanarLayout {
1558 //public:
1559     enum type_t : uint32_t {
1560         TYPE_UNKNOWN = 0,
1561         TYPE_YUV = 0x100,   ///< YUV image with 3 planes
1562         TYPE_YUVA,          ///< YUVA image with 4 planes
1563         TYPE_RGB,           ///< RGB image with 3 planes
1564         TYPE_RGBA,          ///< RBGA image with 4 planes
1565     };
1566 
1567     type_t type;                    // image type
1568     uint32_t numPlanes;             // number of component planes
1569     uint32_t rootPlanes;            // number of layout planes (root planes)
1570 
1571     enum plane_index_t : uint32_t {
1572         PLANE_Y = 0,
1573         PLANE_U = 1,
1574         PLANE_V = 2,
1575         PLANE_R = 0,
1576         PLANE_G = 1,
1577         PLANE_B = 2,
1578         PLANE_A = 3,
1579         MAX_NUM_PLANES = 4,
1580     };
1581 
1582     C2PlaneInfo planes[MAX_NUM_PLANES];
1583 };
1584 
1585 /**
1586  * Aspect for objects that have a planar section (crop rectangle).
1587  *
1588  * This class is copiable.
1589  */
1590 class _C2PlanarSectionAspect : public _C2PlanarCapacityAspect {
1591 /// \name Planar section interface
1592 /// @{
1593 private:
_C2PlanarSectionAspect(uint32_t width,uint32_t height,const C2Rect & crop)1594     inline constexpr _C2PlanarSectionAspect(uint32_t width, uint32_t height, const C2Rect &crop)
1595         : _C2PlanarCapacityAspect(width, height),
1596           mCrop(C2Rect(std::min(width - std::min(crop.left, width), crop.width),
1597                        std::min(height - std::min(crop.top, height), crop.height)).at(
1598                                std::min(crop.left, width),
1599                                std::min(crop.height, height))) {
1600     }
1601 
1602 public:
1603     // crop can be an empty rect, does not have to line up with subsampling
1604     // NOTE: we do not support floating-point crop
crop()1605     inline constexpr C2Rect crop() const { return mCrop; }
1606 
1607     /**
1608      * Returns a child planar section for |crop|, where the capacity represents this section.
1609      */
childSection(const C2Rect & crop)1610     inline constexpr _C2PlanarSectionAspect childSection(const C2Rect &crop) const {
1611         return _C2PlanarSectionAspect(
1612                 mCrop.width, mCrop.height,
1613                 // crop and translate |crop| rect
1614                 C2Rect(c2_min(mCrop.right() - c2_clamp(mCrop.left, crop.left, mCrop.right()),
1615                               crop.width),
1616                        c2_min(mCrop.bottom() - c2_clamp(mCrop.top, crop.top, mCrop.bottom()),
1617                               crop.height))
1618                 .at(c2_clamp(mCrop.left, crop.left, mCrop.right()) - mCrop.left,
1619                     c2_clamp(mCrop.top, crop.top, mCrop.bottom()) - mCrop.top));
1620     }
1621 
1622 protected:
_C2PlanarSectionAspect(const _C2PlanarCapacityAspect * parent)1623     inline constexpr _C2PlanarSectionAspect(const _C2PlanarCapacityAspect *parent)
1624         : _C2PlanarCapacityAspect(parent), mCrop(width(), height()) {}
1625 
_C2PlanarSectionAspect(const _C2PlanarCapacityAspect * parent,const C2Rect & crop)1626     inline constexpr _C2PlanarSectionAspect(const _C2PlanarCapacityAspect *parent, const C2Rect &crop)
1627         : _C2PlanarCapacityAspect(parent),
1628           mCrop(parent == nullptr ? C2Rect() : ((C2Rect)*parent).intersect(crop).normalize()) { }
1629 
_C2PlanarSectionAspect(const _C2PlanarSectionAspect * parent,const C2Rect & crop)1630     inline constexpr _C2PlanarSectionAspect(const _C2PlanarSectionAspect *parent, const C2Rect &crop)
1631         : _C2PlanarCapacityAspect(parent),
1632           mCrop(parent == nullptr ? C2Rect() : parent->crop().intersect(crop).normalize()) { }
1633 
1634 private:
1635     friend class _C2EditablePlanarSectionAspect;
1636     C2Rect mCrop;
1637 /// @}
1638 };
1639 
1640 /**
1641  * Aspect for objects that have an editable planar section (crop rectangle).
1642  *
1643  * This class is copiable.
1644  */
1645 class _C2EditablePlanarSectionAspect : public _C2PlanarSectionAspect {
1646 /// \name Planar section interface
1647 /// @{
1648     using _C2PlanarSectionAspect::_C2PlanarSectionAspect;
1649 
1650 public:
1651     // crop can be an empty rect, does not have to line up with subsampling
1652     // NOTE: we do not support floating-point crop
crop()1653     inline constexpr C2Rect crop() const { return mCrop; }
1654 
1655     /**
1656      *  Sets crop to crop intersected with [(0,0) .. (width, height)]
1657      */
setCrop_be(const C2Rect & crop)1658     inline void setCrop_be(const C2Rect &crop) {
1659         mCrop.left = std::min(width(), crop.left);
1660         mCrop.top = std::min(height(), crop.top);
1661         // It's guaranteed that mCrop.left <= width() && mCrop.top <= height()
1662         mCrop.width = std::min(width() - mCrop.left, crop.width);
1663         mCrop.height = std::min(height() - mCrop.top, crop.height);
1664     }
1665 
1666     /**
1667      * If crop is within the dimensions of this object, it sets crop to it.
1668      *
1669      * \return true iff crop is within the dimensions of this object
1670      */
setCrop(const C2Rect & crop)1671     inline bool setCrop(const C2Rect &crop) {
1672         if (width() < crop.width || height() < crop.height
1673                 || width() - crop.width < crop.left || height() - crop.height < crop.top) {
1674             return false;
1675         }
1676         mCrop = crop;
1677         return true;
1678     }
1679 /// @}
1680 };
1681 
1682 /**
1683  * Utility class for safe range calculations using size_t-s.
1684  */
1685 class C2PlanarSection : public _C2PlanarSectionAspect {
1686 public:
C2PlanarSection(const _C2PlanarCapacityAspect & parent,const C2Rect & crop)1687     inline constexpr C2PlanarSection(const _C2PlanarCapacityAspect &parent, const C2Rect &crop)
1688         : _C2PlanarSectionAspect(&parent, crop) { }
1689 
C2PlanarSection(const _C2PlanarSectionAspect & parent,const C2Rect & crop)1690     inline constexpr C2PlanarSection(const _C2PlanarSectionAspect &parent, const C2Rect &crop)
1691         : _C2PlanarSectionAspect(&parent, crop) { }
1692 
intersect(const C2Rect & crop)1693     inline constexpr C2PlanarSection intersect(const C2Rect &crop) const {
1694         return C2PlanarSection(*this, crop);
1695     }
1696 };
1697 
1698 /**
1699  * Utility class for simple and safe planar capacity and section construction.
1700  */
1701 class C2PlanarCapacity : public _C2PlanarCapacityAspect {
1702 public:
C2PlanarCapacity(size_t width,size_t height)1703     inline constexpr explicit C2PlanarCapacity(size_t width, size_t height)
1704         : _C2PlanarCapacityAspect(c2_min(width, std::numeric_limits<uint32_t>::max()),
1705                                   c2_min(height, std::numeric_limits<uint32_t>::max())) { }
1706 
section(const C2Rect & crop)1707     inline constexpr C2PlanarSection section(const C2Rect &crop) const {
1708         return C2PlanarSection(*this, crop);
1709     }
1710 };
1711 
1712 
1713 /**
1714  * \ingroup graphic allocator
1715  * 2D allocation interface.
1716  */
1717 class C2GraphicAllocation : public _C2PlanarCapacityAspect {
1718 public:
1719     /**
1720      * Maps a rectangular section (as defined by |rect|) of a 2D allocation into local process
1721      * memory for flexible access. On success, it fills out |layout| with the plane specifications
1722      * and fills the |addr| array with pointers to the first byte of the top-left pixel of each
1723      * plane used. Otherwise, it leaves |layout| and |addr| untouched. |fence| will contain
1724      * an acquire sync fence object. If it is already safe to access the
1725      * buffer contents, then it will be an empty (already fired) fence.
1726      *
1727      * Safe regions for the pointer addresses returned can be gotten via C2LayoutInfo.minOffset()/
1728      * maxOffset().
1729      *
1730      * \param rect          section to be mapped (this does not have to be aligned)
1731      * \param usage         the desired usage. \todo this must be kSoftwareRead and/or
1732      *                      kSoftwareWrite.
1733      * \param fence         a pointer to a fence object if an async mapping is requested. If
1734      *                      not-null, and acquire fence will be stored here on success, or empty
1735      *                      fence on failure. If null, the mapping will be synchronous.
1736      * \param layout        a pointer to where the mapped planes' descriptors will be
1737      *                      stored. On failure, nullptr will be stored here.
1738      * \param addr          pointer to an array with at least C2PlanarLayout::MAX_NUM_PLANES
1739      *                      elements. Only layout.numPlanes elements will be modified on success.
1740      *
1741      * \retval C2_OK        the operation was successful
1742      * \retval C2_REFUSED   no permission to map the section
1743      * \retval C2_DUPLICATE there is already a mapped region and this allocation cannot support
1744      *                      multi-mapping (caller error)
1745      * \retval C2_TIMED_OUT the operation timed out
1746      * \retval C2_NO_MEMORY not enough memory to complete the operation
1747      * \retval C2_BAD_VALUE the parameters (rect) are invalid or outside the allocation, or the
1748      *                      usage flags are invalid (caller error)
1749      * \retval C2_CORRUPTED some unknown error prevented the operation from completing (unexpected)
1750 
1751      */
1752     virtual c2_status_t map(
1753             C2Rect rect, C2MemoryUsage usage, C2Fence *fence,
1754             C2PlanarLayout *layout /* nonnull */, uint8_t **addr /* nonnull */) = 0;
1755 
1756     /**
1757      * Unmaps a section of an allocation at |addr| with |rect|. These must be parameters previously
1758      * passed to and returned by |map|; otherwise, this operation is a no-op.
1759      *
1760      * \param addr          pointer to an array with at least C2PlanarLayout::MAX_NUM_PLANES
1761      *                      elements containing the starting addresses of the mapped layers
1762      * \param rect          boundaries of the mapped section
1763      * \param fence         a pointer to a fence object if an async unmapping is requested. If
1764      *                      not-null, a release fence will be stored here on success, or empty fence
1765      *                      on failure. This fence signals when the original allocation contains
1766      *                      all changes that happened to the mapped section. If null, the unmapping
1767      *                      will be synchronous.
1768      *
1769      * \retval C2_OK        the operation was successful
1770      * \retval C2_TIMED_OUT the operation timed out
1771      * \retval C2_NOT_FOUND there is no such mapped region (caller error)
1772      * \retval C2_CORRUPTED some unknown error prevented the operation from completing (unexpected)
1773      * \retval C2_REFUSED   no permission to unmap the section (unexpected - system)
1774      */
1775     virtual c2_status_t unmap(
1776             uint8_t **addr /* nonnull */, C2Rect rect, C2Fence *fence /* nullable */) = 0;
1777 
1778     /**
1779      * Returns the allocator ID for this allocation. This is useful to put the handle into context.
1780      */
1781     virtual C2Allocator::id_t getAllocatorId() const = 0;
1782 
1783     /**
1784      * Returns a pointer to the allocation handle.
1785      */
1786     virtual const C2Handle *handle() const = 0;
1787 
1788     /**
1789      * Returns true if this is the same allocation as |other|.
1790      */
1791     virtual bool equals(const std::shared_ptr<const C2GraphicAllocation> &other) const = 0;
1792 
1793 protected:
1794     using _C2PlanarCapacityAspect::_C2PlanarCapacityAspect;
1795     virtual ~C2GraphicAllocation() = default;
1796 };
1797 
1798 class C2GraphicAllocation;
1799 
1800 /**
1801  * A 2D block.
1802  *
1803  * \note width()/height() is not meaningful for users of blocks; instead, crop().width() and
1804  * crop().height() is the capacity of the usable portion. Use and crop() if accessing the block
1805  * directly through its handle to represent the allotted region of the underlying allocation to this
1806  * block.
1807  */
1808 class C2Block2D : public _C2PlanarSectionAspect {
1809 public:
1810     /**
1811      * Returns the underlying handle for this allocation.
1812      *
1813      * \note that the block and its block pool has shared ownership of the handle
1814      *       and if all references to the block are released, the underlying block
1815      *       allocation may get reused even if a client keeps a clone of this handle.
1816      */
1817     const C2Handle *handle() const;
1818 
1819     /**
1820      * Returns the allocator's ID that created the underlying allocation for this block. This
1821      * provides the context for understanding the handle.
1822      */
1823     C2Allocator::id_t getAllocatorId() const;
1824 
1825 protected:
1826     class Impl;
1827     C2Block2D(std::shared_ptr<Impl> impl, const _C2PlanarSectionAspect &section);
1828 
1829     friend struct _C2BlockFactory;
1830     std::shared_ptr<Impl> mImpl;
1831 };
1832 
1833 /**
1834  * Graphic view provides read or read-write access for a graphic block.
1835  *
1836  * This class is copiable.
1837  *
1838  * \note Due to the subsampling of graphic buffers, a read view must still contain a crop rectangle
1839  * to ensure subsampling is followed. This results in nearly identical interface between read and
1840  * write views, so C2GraphicView can encompass both of them.
1841  */
1842 class C2GraphicView : public _C2EditablePlanarSectionAspect {
1843 public:
1844     /**
1845      * \return array of pointers (of layout().numPlanes elements) to the start of the planes or
1846      * nullptr on error. Regardless of crop rect, they always point to the top-left corner of each
1847      * plane. Access outside of the crop rect results in an undefined behavior.
1848      */
1849     const uint8_t *const *data() const;
1850 
1851     /**
1852      * \return array of pointers (of layout().numPlanes elements) to the start of the planes or
1853      * nullptr on error. Regardless of crop rect, they always point to the top-left corner of each
1854      * plane. Access outside of the crop rect results in an undefined behavior.
1855      */
1856     uint8_t *const *data();
1857 
1858     /**
1859      * \return layout of the graphic block to interpret the returned data.
1860      */
1861     const C2PlanarLayout layout() const;
1862 
1863     /**
1864      * Returns a section of this view.
1865      *
1866      * \param rect    the dimension of the section. \note This is clamped to the crop of this view.
1867      *
1868      * \return a read view containing the requested section of this view
1869      */
1870     const C2GraphicView subView(const C2Rect &rect) const;
1871     C2GraphicView subView(const C2Rect &rect);
1872 
1873     /**
1874      * \return error during the creation/mapping of this view.
1875      */
1876     c2_status_t error() const;
1877 
1878 protected:
1879     class Impl;
1880     C2GraphicView(std::shared_ptr<Impl> impl, const _C2PlanarSectionAspect &section);
1881     explicit C2GraphicView(c2_status_t error);
1882 
1883 private:
1884     friend struct _C2BlockFactory;
1885     std::shared_ptr<Impl> mImpl;
1886 };
1887 
1888 /**
1889  * A constant (read-only) graphic block (portion of an allocation) with an acquire fence.
1890  * Blocks are unmapped when created, and can be mapped into a read view on demand.
1891  *
1892  * This class is copiable and contains a reference to the allocation that it is based on.
1893  */
1894 class C2ConstGraphicBlock : public C2Block2D {
1895 public:
1896     /**
1897      * Maps this block into memory and returns a read view for it.
1898      *
1899      * \return a read view for this block.
1900      */
1901     C2Acquirable<const C2GraphicView> map() const;
1902 
1903     /**
1904      * Returns a section of this block.
1905      *
1906      * \param rect    the coordinates of the section. \note This is clamped to the crop rectangle of
1907      *              this block.
1908      *
1909      * \return a constant graphic block containing a portion of this block
1910      */
1911     C2ConstGraphicBlock subBlock(const C2Rect &rect) const;
1912 
1913     /**
1914      * Returns the acquire fence for this block.
1915      *
1916      * \return a fence that must be waited on before reading the block.
1917      */
fence()1918     C2Fence fence() const { return mFence; }
1919 
1920 protected:
1921     C2ConstGraphicBlock(
1922             std::shared_ptr<Impl> impl, const _C2PlanarSectionAspect &section, C2Fence fence);
1923 
1924 private:
1925     friend struct _C2BlockFactory;
1926     C2Fence mFence;
1927 };
1928 
1929 /**
1930  * Graphic block is a writeable 2D block. Once written, it can be shared in whole or in part with
1931  * consumers/readers as read-only const graphic block.
1932  */
1933 class C2GraphicBlock : public C2Block2D {
1934 public:
1935     /**
1936      * Maps this block into memory and returns a write view for it.
1937      *
1938      * \return a write view for this block.
1939      */
1940     C2Acquirable<C2GraphicView> map();
1941 
1942     /**
1943      * Creates a read-only const linear block for a portion of this block; optionally protected
1944      * by an acquire fence. There are two ways to use this:
1945      *
1946      * 1) share ready block after writing data into the block. In this case no fence shall be
1947      *    supplied, and the block shall not be modified after calling this method.
1948      * 2) share block metadata before actually (finishing) writing the data into the block. In
1949      *    this case a fence must be supplied that will be triggered when the data is written.
1950      *    The block shall be modified only until firing the event for the fence.
1951      */
1952     C2ConstGraphicBlock share(const C2Rect &crop, C2Fence fence);
1953 
1954 protected:
1955     C2GraphicBlock(std::shared_ptr<Impl> impl, const _C2PlanarSectionAspect &section);
1956 
1957     friend struct _C2BlockFactory;
1958 };
1959 
1960 /// @}
1961 
1962 /// \defgroup buffer_onj Buffer objects
1963 /// @{
1964 
1965 // ================================================================================================
1966 //  BUFFERS
1967 // ================================================================================================
1968 
1969 /// \todo: Do we still need this?
1970 ///
1971 // There are 2 kinds of buffers: linear or graphic. Linear buffers can contain a single block, or
1972 // a list of blocks (LINEAR_CHUNKS). Support for list of blocks is optional, and can allow consuming
1973 // data from circular buffers or scattered data sources without extra memcpy. Currently, list of
1974 // graphic blocks is not supported.
1975 
1976 class C2LinearBuffer;   // read-write buffer
1977 class C2GraphicBuffer;  // read-write buffer
1978 class C2LinearChunksBuffer;
1979 
1980 /**
1981  * C2BufferData: the main, non-meta data of a buffer. A buffer can contain either linear blocks
1982  * or graphic blocks, and can contain either a single block or multiple blocks. This is determined
1983  * by its type.
1984  */
1985 class C2BufferData {
1986 public:
1987     /**
1988      *  The type of buffer data.
1989      */
1990     enum type_t : uint32_t {
1991         INVALID,            ///< invalid buffer type. Do not use.
1992         LINEAR,             ///< the buffer contains a single linear block
1993         LINEAR_CHUNKS,      ///< the buffer contains one or more linear blocks
1994         GRAPHIC,            ///< the buffer contains a single graphic block
1995         GRAPHIC_CHUNKS,     ///< the buffer contains one of more graphic blocks
1996     };
1997 
1998     /**
1999      * Gets the type of this buffer (data).
2000      * \return the type of this buffer data.
2001      */
2002     type_t type() const;
2003 
2004     /**
2005      * Gets the linear blocks of this buffer.
2006      * \return a constant list of const linear blocks of this buffer.
2007      * \retval empty list if this buffer does not contain linear block(s).
2008      */
2009     const std::vector<C2ConstLinearBlock> linearBlocks() const;
2010 
2011     /**
2012      * Gets the graphic blocks of this buffer.
2013      * \return a constant list of const graphic blocks of this buffer.
2014      * \retval empty list if this buffer does not contain graphic block(s).
2015      */
2016     const std::vector<C2ConstGraphicBlock> graphicBlocks() const;
2017 
2018 private:
2019     class Impl;
2020     std::shared_ptr<Impl> mImpl;
2021 
2022 protected:
2023     // no public constructor
2024     explicit C2BufferData(const std::vector<C2ConstLinearBlock> &blocks);
2025     explicit C2BufferData(const std::vector<C2ConstGraphicBlock> &blocks);
2026 };
2027 
2028 /**
2029  * C2Buffer: buffer base class. These are always used as shared_ptrs. Though the underlying buffer
2030  * objects (native buffers, ion buffers, or dmabufs) are reference-counted by the system,
2031  * C2Buffers hold only a single reference.
2032  *
2033  * These objects cannot be used on the stack.
2034  */
2035 class C2Buffer {
2036 public:
2037     /**
2038      * Gets the buffer's data.
2039      *
2040      * \return the buffer's data.
2041      */
2042     const C2BufferData data() const;
2043 
2044     ///@name Pre-destroy notification handling
2045     ///@{
2046 
2047     /**
2048      * Register for notification just prior to the destruction of this object.
2049      */
2050     typedef void (*OnDestroyNotify) (const C2Buffer *buf, void *arg);
2051 
2052     /**
2053      * Registers for a pre-destroy notification. This is called just prior to the destruction of
2054      * this buffer (when this buffer is no longer valid.)
2055      *
2056      * \param onDestroyNotify   the notification callback
2057      * \param arg               an arbitrary parameter passed to the callback
2058      *
2059      * \retval C2_OK        the registration was successful.
2060      * \retval C2_DUPLICATE a notification was already registered for this callback and argument
2061      * \retval C2_NO_MEMORY not enough memory to register for this callback
2062      * \retval C2_CORRUPTED an unknown error prevented the registration (unexpected)
2063      */
2064     c2_status_t registerOnDestroyNotify(OnDestroyNotify onDestroyNotify, void *arg = nullptr);
2065 
2066     /**
2067      * Unregisters a previously registered pre-destroy notification.
2068      *
2069      * \param onDestroyNotify   the notification callback
2070      * \param arg               an arbitrary parameter passed to the callback
2071      *
2072      * \retval C2_OK        the unregistration was successful.
2073      * \retval C2_NOT_FOUND the notification was not found
2074      * \retval C2_CORRUPTED an unknown error prevented the registration (unexpected)
2075      */
2076     c2_status_t unregisterOnDestroyNotify(OnDestroyNotify onDestroyNotify, void *arg = nullptr);
2077 
2078     ///@}
2079 
2080     virtual ~C2Buffer() = default;
2081 
2082     ///@name Buffer-specific arbitrary metadata handling
2083     ///@{
2084 
2085     /**
2086      * Gets the list of metadata associated with this buffer.
2087      *
2088      * \return a constant list of info objects associated with this buffer.
2089      */
2090     const std::vector<std::shared_ptr<const C2Info>> info() const;
2091 
2092     /**
2093      * Attaches (or updates) an (existing) metadata for this buffer.
2094      * If the metadata is stream specific, the stream information will be reset.
2095      *
2096      * \param info Metadata to update
2097      *
2098      * \retval C2_OK        the metadata was successfully attached/updated.
2099      * \retval C2_NO_MEMORY not enough memory to attach the metadata (this return value is not
2100      *                      used if the same kind of metadata is already attached to the buffer).
2101      */
2102     c2_status_t setInfo(const std::shared_ptr<C2Info> &info);
2103 
2104     /**
2105      * Checks if there is a certain type of metadata attached to this buffer.
2106      *
2107      * \param index the parameter type of the metadata
2108      *
2109      * \return true iff there is a metadata with the parameter type attached to this buffer.
2110      */
2111     bool hasInfo(C2Param::Type index) const;
2112 
2113     /**
2114      * Checks if there is a certain type of metadata attached to this buffer, and returns a
2115      * shared pointer to it if there is. Returns an empty shared pointer object (nullptr) if there
2116      * is not.
2117      *
2118      * \param index the parameter type of the metadata
2119      *
2120      * \return shared pointer to the metadata.
2121      */
2122     std::shared_ptr<const C2Info> getInfo(C2Param::Type index) const;
2123 
2124     /**
2125      * Removes a metadata from the buffer.
2126      */
2127     std::shared_ptr<C2Info> removeInfo(C2Param::Type index);
2128     ///@}
2129 
2130     /**
2131      * Creates a buffer containing a single linear block.
2132      *
2133      * \param block the content of the buffer.
2134      *
2135      * \return shared pointer to the created buffer.
2136      */
2137     static std::shared_ptr<C2Buffer> CreateLinearBuffer(const C2ConstLinearBlock &block);
2138 
2139     /**
2140      * Creates a buffer containing a single graphic block.
2141      *
2142      * \param block the content of the buffer.
2143      *
2144      * \return shared pointer to the created buffer.
2145      */
2146     static std::shared_ptr<C2Buffer> CreateGraphicBuffer(const C2ConstGraphicBlock &block);
2147 
2148 protected:
2149     // no public constructor
2150     explicit C2Buffer(const std::vector<C2ConstLinearBlock> &blocks);
2151     explicit C2Buffer(const std::vector<C2ConstGraphicBlock> &blocks);
2152 
2153 private:
2154     class Impl;
2155     std::shared_ptr<Impl> mImpl;
2156 };
2157 
2158 /**
2159  * An extension of C2Info objects that can contain arbitrary buffer data.
2160  *
2161  * \note This object is not describable and contains opaque data.
2162  */
2163 class C2InfoBuffer {
2164 public:
2165     /**
2166      * Gets the index of this info object.
2167      *
2168      * \return the parameter index.
2169      */
2170     const C2Param::Index index() const;
2171 
2172     /**
2173      * Gets the buffer's data.
2174      *
2175      * \return the buffer's data.
2176      */
2177     const C2BufferData data() const;
2178 };
2179 
2180 /// @}
2181 
2182 /// @}
2183 
2184 #endif  // C2BUFFER_H_
2185