1 /* Copyright 2014 The Android Open Source Project
2  *
3  * Redistribution and use in source and binary forms, with or without
4  * modification, are permitted provided that the following conditions
5  * are met:
6  * 1. Redistributions of source code must retain the above copyright
7  *    notice, this list of conditions and the following disclaimer.
8  * 2. Redistributions in binary form must reproduce the above copyright
9  *    notice, this list of conditions and the following disclaimer in the
10  *    documentation and/or other materials provided with the distribution.
11  *
12  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
13  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
14  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
15  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY
16  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
17  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
18  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
19  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
20  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
21  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
22 
23 #define LOG_TAG "keystore-engine"
24 
25 #include <pthread.h>
26 #include <sys/socket.h>
27 #include <stdarg.h>
28 #include <string.h>
29 #include <unistd.h>
30 
31 #include <log/log.h>
32 
33 #include <openssl/bn.h>
34 #include <openssl/ec.h>
35 #include <openssl/ec_key.h>
36 #include <openssl/ecdsa.h>
37 #include <openssl/engine.h>
38 #include <openssl/evp.h>
39 #include <openssl/rsa.h>
40 #include <openssl/x509.h>
41 
42 #include <memory>
43 
44 #ifndef BACKEND_WIFI_HIDL
45 #include "keystore_backend_binder.h"
46 #else
47 #include "keystore_backend_hidl.h"
48 #endif
49 
50 namespace {
51 KeystoreBackend *g_keystore_backend;
52 void ensure_keystore_engine();
53 
54 /* key_id_dup is called when one of the RSA or EC_KEY objects is duplicated. */
key_id_dup(CRYPTO_EX_DATA *,const CRYPTO_EX_DATA *,void ** from_d,int,long,void *)55 int key_id_dup(CRYPTO_EX_DATA* /* to */,
56                const CRYPTO_EX_DATA* /* from */,
57                void** from_d,
58                int /* index */,
59                long /* argl */,
60                void* /* argp */) {
61     char *key_id = reinterpret_cast<char *>(*from_d);
62     if (key_id != nullptr) {
63         *from_d = strdup(key_id);
64     }
65     return 1;
66 }
67 
68 /* key_id_free is called when one of the RSA, DSA or EC_KEY object is freed. */
key_id_free(void *,void * ptr,CRYPTO_EX_DATA *,int,long,void *)69 void key_id_free(void* /* parent */,
70                  void* ptr,
71                  CRYPTO_EX_DATA* /* ad */,
72                  int /* index */,
73                  long /* argl */,
74                  void* /* argp */) {
75     char *key_id = reinterpret_cast<char *>(ptr);
76     free(key_id);
77 }
78 
79 /* Many OpenSSL APIs take ownership of an argument on success but don't free
80  * the argument on failure. This means we need to tell our scoped pointers when
81  * we've transferred ownership, without triggering a warning by not using the
82  * result of release(). */
83 #define OWNERSHIP_TRANSFERRED(obj) auto _dummy __attribute__((unused)) = (obj).release()
84 
85 const char* rsa_get_key_id(const RSA* rsa);
86 
87 /* rsa_private_transform takes a big-endian integer from |in|, calculates the
88  * d'th power of it, modulo the RSA modulus, and writes the result as a
89  * big-endian integer to |out|. Both |in| and |out| are |len| bytes long. It
90  * returns one on success and zero otherwise. */
rsa_private_transform(RSA * rsa,uint8_t * out,const uint8_t * in,size_t len)91 int rsa_private_transform(RSA *rsa, uint8_t *out, const uint8_t *in, size_t len) {
92     ALOGV("rsa_private_transform(%p, %p, %p, %u)", rsa, out, in, (unsigned) len);
93 
94     ensure_keystore_engine();
95 
96     const char *key_id = rsa_get_key_id(rsa);
97     if (key_id == nullptr) {
98         ALOGE("key had no key_id!");
99         return 0;
100     }
101 
102     uint8_t* reply = nullptr;
103     size_t reply_len;
104     int32_t ret = g_keystore_backend->sign(key_id, in, len, &reply, &reply_len);
105     if (ret < 0) {
106         ALOGW("There was an error during rsa_decrypt: could not connect");
107         return 0;
108     } else if (ret != 0) {
109         ALOGW("Error during sign from keystore: %d", ret);
110         return 0;
111     } else if (reply_len == 0 || reply == nullptr) {
112         ALOGW("No valid signature returned");
113         return 0;
114     }
115 
116     if (reply_len > len) {
117         /* The result of the RSA operation can never be larger than the size of
118          * the modulus so we assume that the result has extra zeros on the
119          * left. This provides attackers with an oracle, but there's nothing
120          * that we can do about it here. */
121         ALOGW("Reply len %zu greater than expected %zu", reply_len, len);
122         memcpy(out, &reply[reply_len - len], len);
123     } else if (reply_len < len) {
124         /* If the Keystore implementation returns a short value we assume that
125          * it's because it removed leading zeros from the left side. This is
126          * bad because it provides attackers with an oracle but we cannot do
127          * anything about a broken Keystore implementation here. */
128         ALOGW("Reply len %zu lesser than expected %zu", reply_len, len);
129         memset(out, 0, len);
130         memcpy(out + len - reply_len, &reply[0], reply_len);
131     } else {
132         memcpy(out, &reply[0], len);
133     }
134 
135     ALOGV("rsa=%p keystore_rsa_priv_dec successful", rsa);
136     return 1;
137 }
138 
139 const char* ecdsa_get_key_id(const EC_KEY* ec_key);
140 
141 /* ecdsa_sign signs |digest_len| bytes from |digest| with |ec_key| and writes
142  * the resulting signature (an ASN.1 encoded blob) to |sig|. It returns one on
143  * success and zero otherwise. */
ecdsa_sign(const uint8_t * digest,size_t digest_len,uint8_t * sig,unsigned int * sig_len,EC_KEY * ec_key)144 static int ecdsa_sign(const uint8_t* digest, size_t digest_len, uint8_t* sig,
145                       unsigned int* sig_len, EC_KEY* ec_key) {
146     ALOGV("ecdsa_sign(%p, %u, %p)", digest, (unsigned) digest_len, ec_key);
147 
148     ensure_keystore_engine();
149 
150     const char *key_id = ecdsa_get_key_id(ec_key);
151     if (key_id == nullptr) {
152         ALOGE("key had no key_id!");
153         return 0;
154     }
155 
156     size_t ecdsa_size = ECDSA_size(ec_key);
157 
158     uint8_t* reply = nullptr;
159     size_t reply_len;
160     int32_t ret = g_keystore_backend->sign(
161             key_id, digest, digest_len, &reply, &reply_len);
162     if (ret < 0) {
163         ALOGW("There was an error during ecdsa_sign: could not connect");
164         return 0;
165     } else if (reply_len == 0 || reply == nullptr) {
166         ALOGW("No valid signature returned");
167         return 0;
168     } else if (reply_len > ecdsa_size) {
169         ALOGW("Signature is too large");
170         return 0;
171     }
172 
173     // Reviewer: should't sig_len be checked here? Or is it just assumed that it is at least ecdsa_size?
174     memcpy(sig, &reply[0], reply_len);
175     *sig_len = reply_len;
176 
177     ALOGV("ecdsa_sign(%p, %u, %p) => success", digest, (unsigned)digest_len,
178           ec_key);
179     return 1;
180 }
181 
182 /* KeystoreEngine is a BoringSSL ENGINE that implements RSA and ECDSA by
183  * forwarding the requested operations to Keystore. */
184 class KeystoreEngine {
185  public:
KeystoreEngine()186   KeystoreEngine()
187       : rsa_index_(RSA_get_ex_new_index(0 /* argl */,
188                                         nullptr /* argp */,
189                                         nullptr /* new_func */,
190                                         key_id_dup,
191                                         key_id_free)),
192         ec_key_index_(EC_KEY_get_ex_new_index(0 /* argl */,
193                                               nullptr /* argp */,
194                                               nullptr /* new_func */,
195                                               key_id_dup,
196                                               key_id_free)),
197         engine_(ENGINE_new()) {
198     memset(&rsa_method_, 0, sizeof(rsa_method_));
199     rsa_method_.common.is_static = 1;
200     rsa_method_.private_transform = rsa_private_transform;
201     rsa_method_.flags = RSA_FLAG_OPAQUE;
202     ENGINE_set_RSA_method(engine_, &rsa_method_, sizeof(rsa_method_));
203 
204     memset(&ecdsa_method_, 0, sizeof(ecdsa_method_));
205     ecdsa_method_.common.is_static = 1;
206     ecdsa_method_.sign = ecdsa_sign;
207     ecdsa_method_.flags = ECDSA_FLAG_OPAQUE;
208     ENGINE_set_ECDSA_method(engine_, &ecdsa_method_, sizeof(ecdsa_method_));
209   }
210 
rsa_ex_index() const211   int rsa_ex_index() const { return rsa_index_; }
ec_key_ex_index() const212   int ec_key_ex_index() const { return ec_key_index_; }
213 
engine() const214   const ENGINE* engine() const { return engine_; }
215 
216  private:
217   const int rsa_index_;
218   const int ec_key_index_;
219   RSA_METHOD rsa_method_;
220   ECDSA_METHOD ecdsa_method_;
221   ENGINE* const engine_;
222 };
223 
224 pthread_once_t g_keystore_engine_once = PTHREAD_ONCE_INIT;
225 KeystoreEngine *g_keystore_engine;
226 
227 /* init_keystore_engine is called to initialize |g_keystore_engine|. This
228  * should only be called by |pthread_once|. */
init_keystore_engine()229 void init_keystore_engine() {
230   g_keystore_engine = new KeystoreEngine;
231 #ifndef BACKEND_WIFI_HIDL
232   g_keystore_backend = new KeystoreBackendBinder;
233 #else
234   g_keystore_backend = new KeystoreBackendHidl;
235 #endif
236 }
237 
238 /* ensure_keystore_engine ensures that |g_keystore_engine| is pointing to a
239  * valid |KeystoreEngine| object and creates one if not. */
ensure_keystore_engine()240 void ensure_keystore_engine() {
241   pthread_once(&g_keystore_engine_once, init_keystore_engine);
242 }
243 
rsa_get_key_id(const RSA * rsa)244 const char* rsa_get_key_id(const RSA* rsa) {
245   return reinterpret_cast<char*>(
246       RSA_get_ex_data(rsa, g_keystore_engine->rsa_ex_index()));
247 }
248 
ecdsa_get_key_id(const EC_KEY * ec_key)249 const char* ecdsa_get_key_id(const EC_KEY* ec_key) {
250   return reinterpret_cast<char*>(
251       EC_KEY_get_ex_data(ec_key, g_keystore_engine->ec_key_ex_index()));
252 }
253 
254 /* wrap_rsa returns an |EVP_PKEY| that contains an RSA key where the public
255  * part is taken from |public_rsa| and the private operations are forwarded to
256  * KeyStore and operate on the key named |key_id|. */
wrap_rsa(const char * key_id,const RSA * public_rsa)257 static EVP_PKEY *wrap_rsa(const char *key_id, const RSA *public_rsa) {
258     bssl::UniquePtr<RSA> rsa(RSA_new_method(g_keystore_engine->engine()));
259     if (rsa.get() == nullptr) {
260         return nullptr;
261     }
262 
263     char *key_id_copy = strdup(key_id);
264     if (key_id_copy == nullptr) {
265         return nullptr;
266     }
267 
268     if (!RSA_set_ex_data(rsa.get(), g_keystore_engine->rsa_ex_index(),
269                          key_id_copy)) {
270         free(key_id_copy);
271         return nullptr;
272     }
273 
274     rsa->n = BN_dup(public_rsa->n);
275     rsa->e = BN_dup(public_rsa->e);
276     if (rsa->n == nullptr || rsa->e == nullptr) {
277         return nullptr;
278     }
279 
280     bssl::UniquePtr<EVP_PKEY> result(EVP_PKEY_new());
281     if (result.get() == nullptr ||
282         !EVP_PKEY_assign_RSA(result.get(), rsa.get())) {
283         return nullptr;
284     }
285     OWNERSHIP_TRANSFERRED(rsa);
286 
287     return result.release();
288 }
289 
290 /* wrap_ecdsa returns an |EVP_PKEY| that contains an ECDSA key where the public
291  * part is taken from |public_rsa| and the private operations are forwarded to
292  * KeyStore and operate on the key named |key_id|. */
wrap_ecdsa(const char * key_id,const EC_KEY * public_ecdsa)293 static EVP_PKEY *wrap_ecdsa(const char *key_id, const EC_KEY *public_ecdsa) {
294     bssl::UniquePtr<EC_KEY> ec(EC_KEY_new_method(g_keystore_engine->engine()));
295     if (ec.get() == nullptr) {
296         return nullptr;
297     }
298 
299     if (!EC_KEY_set_group(ec.get(), EC_KEY_get0_group(public_ecdsa)) ||
300         !EC_KEY_set_public_key(ec.get(), EC_KEY_get0_public_key(public_ecdsa))) {
301         return nullptr;
302     }
303 
304     char *key_id_copy = strdup(key_id);
305     if (key_id_copy == nullptr) {
306         return nullptr;
307     }
308 
309     if (!EC_KEY_set_ex_data(ec.get(), g_keystore_engine->ec_key_ex_index(),
310                             key_id_copy)) {
311         free(key_id_copy);
312         return nullptr;
313     }
314 
315     bssl::UniquePtr<EVP_PKEY> result(EVP_PKEY_new());
316     if (result.get() == nullptr ||
317         !EVP_PKEY_assign_EC_KEY(result.get(), ec.get())) {
318         return nullptr;
319     }
320     OWNERSHIP_TRANSFERRED(ec);
321 
322     return result.release();
323 }
324 
325 }  /* anonymous namespace */
326 
327 extern "C" {
328 
329 EVP_PKEY* EVP_PKEY_from_keystore(const char* key_id) __attribute__((visibility("default")));
330 
331 /* EVP_PKEY_from_keystore returns an |EVP_PKEY| that contains either an RSA or
332  * ECDSA key where the public part of the key reflects the value of the key
333  * named |key_id| in Keystore and the private operations are forwarded onto
334  * KeyStore. */
EVP_PKEY_from_keystore(const char * key_id)335 EVP_PKEY* EVP_PKEY_from_keystore(const char* key_id) {
336     ALOGV("EVP_PKEY_from_keystore(\"%s\")", key_id);
337 
338     ensure_keystore_engine();
339 
340     uint8_t *pubkey = nullptr;
341     size_t pubkey_len;
342     int32_t ret = g_keystore_backend->get_pubkey(key_id, &pubkey, &pubkey_len);
343     if (ret < 0) {
344         ALOGW("could not contact keystore");
345         return nullptr;
346     } else if (ret != 0 || pubkey == nullptr) {
347         ALOGW("keystore reports error: %d", ret);
348         return nullptr;
349     }
350 
351     const uint8_t *inp = pubkey;
352     bssl::UniquePtr<EVP_PKEY> pkey(d2i_PUBKEY(nullptr, &inp, pubkey_len));
353     if (pkey.get() == nullptr) {
354         ALOGW("Cannot convert pubkey");
355         return nullptr;
356     }
357 
358     EVP_PKEY *result;
359     switch (EVP_PKEY_type(pkey->type)) {
360     case EVP_PKEY_RSA: {
361         bssl::UniquePtr<RSA> public_rsa(EVP_PKEY_get1_RSA(pkey.get()));
362         result = wrap_rsa(key_id, public_rsa.get());
363         break;
364     }
365     case EVP_PKEY_EC: {
366         bssl::UniquePtr<EC_KEY> public_ecdsa(EVP_PKEY_get1_EC_KEY(pkey.get()));
367         result = wrap_ecdsa(key_id, public_ecdsa.get());
368         break;
369     }
370     default:
371         ALOGE("Unsupported key type %d", EVP_PKEY_type(pkey->type));
372         result = nullptr;
373     }
374 
375     return result;
376 }
377 
378 }  // extern "C"
379