1 /*
2  * Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.  Oracle designates this
8  * particular file as subject to the "Classpath" exception as provided
9  * by Oracle in the LICENSE file that accompanied this code.
10  *
11  * This code is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * version 2 for more details (a copy is included in the LICENSE file that
15  * accompanied this code).
16  *
17  * You should have received a copy of the GNU General Public License version
18  * 2 along with this work; if not, write to the Free Software Foundation,
19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20  *
21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22  * or visit www.oracle.com if you need additional information or have any
23  * questions.
24  */
25 
26 package java.util;
27 
28 import java.util.concurrent.atomic.AtomicLong;
29 import java.util.function.DoubleConsumer;
30 import java.util.function.IntConsumer;
31 import java.util.function.LongConsumer;
32 import java.util.stream.DoubleStream;
33 import java.util.stream.IntStream;
34 import java.util.stream.LongStream;
35 import java.util.stream.StreamSupport;
36 
37 /**
38  * A generator of uniform pseudorandom values applicable for use in
39  * (among other contexts) isolated parallel computations that may
40  * generate subtasks. Class {@code SplittableRandom} supports methods for
41  * producing pseudorandom numbers of type {@code int}, {@code long},
42  * and {@code double} with similar usages as for class
43  * {@link java.util.Random} but differs in the following ways:
44  *
45  * <ul>
46  *
47  * <li>Series of generated values pass the DieHarder suite testing
48  * independence and uniformity properties of random number generators.
49  * (Most recently validated with <a
50  * href="http://www.phy.duke.edu/~rgb/General/dieharder.php"> version
51  * 3.31.1</a>.) These tests validate only the methods for certain
52  * types and ranges, but similar properties are expected to hold, at
53  * least approximately, for others as well. The <em>period</em>
54  * (length of any series of generated values before it repeats) is at
55  * least 2<sup>64</sup>.
56  *
57  * <li>Method {@link #split} constructs and returns a new
58  * SplittableRandom instance that shares no mutable state with the
59  * current instance. However, with very high probability, the
60  * values collectively generated by the two objects have the same
61  * statistical properties as if the same quantity of values were
62  * generated by a single thread using a single {@code
63  * SplittableRandom} object.
64  *
65  * <li>Instances of SplittableRandom are <em>not</em> thread-safe.
66  * They are designed to be split, not shared, across threads. For
67  * example, a {@link java.util.concurrent.ForkJoinTask
68  * fork/join-style} computation using random numbers might include a
69  * construction of the form {@code new
70  * Subtask(aSplittableRandom.split()).fork()}.
71  *
72  * <li>This class provides additional methods for generating random
73  * streams, that employ the above techniques when used in {@code
74  * stream.parallel()} mode.
75  *
76  * </ul>
77  *
78  * <p>Instances of {@code SplittableRandom} are not cryptographically
79  * secure.  Consider instead using {@link java.security.SecureRandom}
80  * in security-sensitive applications. Additionally,
81  * default-constructed instances do not use a cryptographically random
82  * seed unless the {@linkplain System#getProperty system property}
83  * {@code java.util.secureRandomSeed} is set to {@code true}.
84  *
85  * @author  Guy Steele
86  * @author  Doug Lea
87  * @since   1.8
88  */
89 public final class SplittableRandom {
90 
91     /*
92      * Implementation Overview.
93      *
94      * This algorithm was inspired by the "DotMix" algorithm by
95      * Leiserson, Schardl, and Sukha "Deterministic Parallel
96      * Random-Number Generation for Dynamic-Multithreading Platforms",
97      * PPoPP 2012, as well as those in "Parallel random numbers: as
98      * easy as 1, 2, 3" by Salmon, Morae, Dror, and Shaw, SC 2011.  It
99      * differs mainly in simplifying and cheapening operations.
100      *
101      * The primary update step (method nextSeed()) is to add a
102      * constant ("gamma") to the current (64 bit) seed, forming a
103      * simple sequence.  The seed and the gamma values for any two
104      * SplittableRandom instances are highly likely to be different.
105      *
106      * Methods nextLong, nextInt, and derivatives do not return the
107      * sequence (seed) values, but instead a hash-like bit-mix of
108      * their bits, producing more independently distributed sequences.
109      * For nextLong, the mix64 function is based on David Stafford's
110      * (http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html)
111      * "Mix13" variant of the "64-bit finalizer" function in Austin
112      * Appleby's MurmurHash3 algorithm (see
113      * http://code.google.com/p/smhasher/wiki/MurmurHash3). The mix32
114      * function is based on Stafford's Mix04 mix function, but returns
115      * the upper 32 bits cast as int.
116      *
117      * The split operation uses the current generator to form the seed
118      * and gamma for another SplittableRandom.  To conservatively
119      * avoid potential correlations between seed and value generation,
120      * gamma selection (method mixGamma) uses different
121      * (Murmurhash3's) mix constants.  To avoid potential weaknesses
122      * in bit-mixing transformations, we restrict gammas to odd values
123      * with at least 24 0-1 or 1-0 bit transitions.  Rather than
124      * rejecting candidates with too few or too many bits set, method
125      * mixGamma flips some bits (which has the effect of mapping at
126      * most 4 to any given gamma value).  This reduces the effective
127      * set of 64bit odd gamma values by about 2%, and serves as an
128      * automated screening for sequence constant selection that is
129      * left as an empirical decision in some other hashing and crypto
130      * algorithms.
131      *
132      * The resulting generator thus transforms a sequence in which
133      * (typically) many bits change on each step, with an inexpensive
134      * mixer with good (but less than cryptographically secure)
135      * avalanching.
136      *
137      * The default (no-argument) constructor, in essence, invokes
138      * split() for a common "defaultGen" SplittableRandom.  Unlike
139      * other cases, this split must be performed in a thread-safe
140      * manner, so we use an AtomicLong to represent the seed rather
141      * than use an explicit SplittableRandom. To bootstrap the
142      * defaultGen, we start off using a seed based on current time
143      * unless the java.util.secureRandomSeed property is set. This
144      * serves as a slimmed-down (and insecure) variant of SecureRandom
145      * that also avoids stalls that may occur when using /dev/random.
146      *
147      * It is a relatively simple matter to apply the basic design here
148      * to use 128 bit seeds. However, emulating 128bit arithmetic and
149      * carrying around twice the state add more overhead than appears
150      * warranted for current usages.
151      *
152      * File organization: First the non-public methods that constitute
153      * the main algorithm, then the main public methods, followed by
154      * some custom spliterator classes needed for stream methods.
155      */
156 
157     /**
158      * The golden ratio scaled to 64bits, used as the initial gamma
159      * value for (unsplit) SplittableRandoms.
160      */
161     private static final long GOLDEN_GAMMA = 0x9e3779b97f4a7c15L;
162 
163     /**
164      * The least non-zero value returned by nextDouble(). This value
165      * is scaled by a random value of 53 bits to produce a result.
166      */
167     private static final double DOUBLE_UNIT = 0x1.0p-53; // 1.0 / (1L << 53);
168 
169     /**
170      * The seed. Updated only via method nextSeed.
171      */
172     private long seed;
173 
174     /**
175      * The step value.
176      */
177     private final long gamma;
178 
179     /**
180      * Internal constructor used by all others except default constructor.
181      */
SplittableRandom(long seed, long gamma)182     private SplittableRandom(long seed, long gamma) {
183         this.seed = seed;
184         this.gamma = gamma;
185     }
186 
187     /**
188      * Computes Stafford variant 13 of 64bit mix function.
189      */
mix64(long z)190     private static long mix64(long z) {
191         z = (z ^ (z >>> 30)) * 0xbf58476d1ce4e5b9L;
192         z = (z ^ (z >>> 27)) * 0x94d049bb133111ebL;
193         return z ^ (z >>> 31);
194     }
195 
196     /**
197      * Returns the 32 high bits of Stafford variant 4 mix64 function as int.
198      */
mix32(long z)199     private static int mix32(long z) {
200         z = (z ^ (z >>> 33)) * 0x62a9d9ed799705f5L;
201         return (int)(((z ^ (z >>> 28)) * 0xcb24d0a5c88c35b3L) >>> 32);
202     }
203 
204     /**
205      * Returns the gamma value to use for a new split instance.
206      */
mixGamma(long z)207     private static long mixGamma(long z) {
208         z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL; // MurmurHash3 mix constants
209         z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L;
210         z = (z ^ (z >>> 33)) | 1L;                  // force to be odd
211         int n = Long.bitCount(z ^ (z >>> 1));       // ensure enough transitions
212         return (n < 24) ? z ^ 0xaaaaaaaaaaaaaaaaL : z;
213     }
214 
215     /**
216      * Adds gamma to seed.
217      */
nextSeed()218     private long nextSeed() {
219         return seed += gamma;
220     }
221 
222     // IllegalArgumentException messages
223     static final String BAD_BOUND = "bound must be positive";
224     static final String BAD_RANGE = "bound must be greater than origin";
225     static final String BAD_SIZE  = "size must be non-negative";
226 
227     /**
228      * The seed generator for default constructors.
229      */
230     private static final AtomicLong defaultGen
231         = new AtomicLong(mix64(System.currentTimeMillis()) ^
232                          mix64(System.nanoTime()));
233 
234     // at end of <clinit> to survive static initialization circularity
235     static {
236         if (java.security.AccessController.doPrivileged(
237             new java.security.PrivilegedAction<Boolean>() {
238                 public Boolean run() {
239                     return Boolean.getBoolean("java.util.secureRandomSeed");
240                 }})) {
241             byte[] seedBytes = java.security.SecureRandom.getSeed(8);
242             long s = (long)seedBytes[0] & 0xffL;
243             for (int i = 1; i < 8; ++i)
244                 s = (s << 8) | ((long)seedBytes[i] & 0xffL);
245             defaultGen.set(s);
246         }
247     }
248 
249     /*
250      * Internal versions of nextX methods used by streams, as well as
251      * the public nextX(origin, bound) methods.  These exist mainly to
252      * avoid the need for multiple versions of stream spliterators
253      * across the different exported forms of streams.
254      */
255 
256     /**
257      * The form of nextLong used by LongStream Spliterators.  If
258      * origin is greater than bound, acts as unbounded form of
259      * nextLong, else as bounded form.
260      *
261      * @param origin the least value, unless greater than bound
262      * @param bound the upper bound (exclusive), must not equal origin
263      * @return a pseudorandom value
264      */
internalNextLong(long origin, long bound)265     final long internalNextLong(long origin, long bound) {
266         /*
267          * Four Cases:
268          *
269          * 1. If the arguments indicate unbounded form, act as
270          * nextLong().
271          *
272          * 2. If the range is an exact power of two, apply the
273          * associated bit mask.
274          *
275          * 3. If the range is positive, loop to avoid potential bias
276          * when the implicit nextLong() bound (2<sup>64</sup>) is not
277          * evenly divisible by the range. The loop rejects candidates
278          * computed from otherwise over-represented values.  The
279          * expected number of iterations under an ideal generator
280          * varies from 1 to 2, depending on the bound. The loop itself
281          * takes an unlovable form. Because the first candidate is
282          * already available, we need a break-in-the-middle
283          * construction, which is concisely but cryptically performed
284          * within the while-condition of a body-less for loop.
285          *
286          * 4. Otherwise, the range cannot be represented as a positive
287          * long.  The loop repeatedly generates unbounded longs until
288          * obtaining a candidate meeting constraints (with an expected
289          * number of iterations of less than two).
290          */
291 
292         long r = mix64(nextSeed());
293         if (origin < bound) {
294             long n = bound - origin, m = n - 1;
295             if ((n & m) == 0L)  // power of two
296                 r = (r & m) + origin;
297             else if (n > 0L) {  // reject over-represented candidates
298                 for (long u = r >>> 1;            // ensure nonnegative
299                      u + m - (r = u % n) < 0L;    // rejection check
300                      u = mix64(nextSeed()) >>> 1) // retry
301                     ;
302                 r += origin;
303             }
304             else {              // range not representable as long
305                 while (r < origin || r >= bound)
306                     r = mix64(nextSeed());
307             }
308         }
309         return r;
310     }
311 
312     /**
313      * The form of nextInt used by IntStream Spliterators.
314      * Exactly the same as long version, except for types.
315      *
316      * @param origin the least value, unless greater than bound
317      * @param bound the upper bound (exclusive), must not equal origin
318      * @return a pseudorandom value
319      */
internalNextInt(int origin, int bound)320     final int internalNextInt(int origin, int bound) {
321         int r = mix32(nextSeed());
322         if (origin < bound) {
323             int n = bound - origin, m = n - 1;
324             if ((n & m) == 0)
325                 r = (r & m) + origin;
326             else if (n > 0) {
327                 for (int u = r >>> 1;
328                      u + m - (r = u % n) < 0;
329                      u = mix32(nextSeed()) >>> 1)
330                     ;
331                 r += origin;
332             }
333             else {
334                 while (r < origin || r >= bound)
335                     r = mix32(nextSeed());
336             }
337         }
338         return r;
339     }
340 
341     /**
342      * The form of nextDouble used by DoubleStream Spliterators.
343      *
344      * @param origin the least value, unless greater than bound
345      * @param bound the upper bound (exclusive), must not equal origin
346      * @return a pseudorandom value
347      */
internalNextDouble(double origin, double bound)348     final double internalNextDouble(double origin, double bound) {
349         double r = (nextLong() >>> 11) * DOUBLE_UNIT;
350         if (origin < bound) {
351             r = r * (bound - origin) + origin;
352             if (r >= bound) // correct for rounding
353                 r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
354         }
355         return r;
356     }
357 
358     /* ---------------- public methods ---------------- */
359 
360     /**
361      * Creates a new SplittableRandom instance using the specified
362      * initial seed. SplittableRandom instances created with the same
363      * seed in the same program generate identical sequences of values.
364      *
365      * @param seed the initial seed
366      */
SplittableRandom(long seed)367     public SplittableRandom(long seed) {
368         this(seed, GOLDEN_GAMMA);
369     }
370 
371     /**
372      * Creates a new SplittableRandom instance that is likely to
373      * generate sequences of values that are statistically independent
374      * of those of any other instances in the current program; and
375      * may, and typically does, vary across program invocations.
376      */
SplittableRandom()377     public SplittableRandom() { // emulate defaultGen.split()
378         long s = defaultGen.getAndAdd(2 * GOLDEN_GAMMA);
379         this.seed = mix64(s);
380         this.gamma = mixGamma(s + GOLDEN_GAMMA);
381     }
382 
383     /**
384      * Constructs and returns a new SplittableRandom instance that
385      * shares no mutable state with this instance. However, with very
386      * high probability, the set of values collectively generated by
387      * the two objects has the same statistical properties as if the
388      * same quantity of values were generated by a single thread using
389      * a single SplittableRandom object.  Either or both of the two
390      * objects may be further split using the {@code split()} method,
391      * and the same expected statistical properties apply to the
392      * entire set of generators constructed by such recursive
393      * splitting.
394      *
395      * @return the new SplittableRandom instance
396      */
split()397     public SplittableRandom split() {
398         return new SplittableRandom(nextLong(), mixGamma(nextSeed()));
399     }
400 
401     /**
402      * Returns a pseudorandom {@code int} value.
403      *
404      * @return a pseudorandom {@code int} value
405      */
nextInt()406     public int nextInt() {
407         return mix32(nextSeed());
408     }
409 
410     /**
411      * Returns a pseudorandom {@code int} value between zero (inclusive)
412      * and the specified bound (exclusive).
413      *
414      * @param bound the upper bound (exclusive).  Must be positive.
415      * @return a pseudorandom {@code int} value between zero
416      *         (inclusive) and the bound (exclusive)
417      * @throws IllegalArgumentException if {@code bound} is not positive
418      */
nextInt(int bound)419     public int nextInt(int bound) {
420         if (bound <= 0)
421             throw new IllegalArgumentException(BAD_BOUND);
422         // Specialize internalNextInt for origin 0
423         int r = mix32(nextSeed());
424         int m = bound - 1;
425         if ((bound & m) == 0) // power of two
426             r &= m;
427         else { // reject over-represented candidates
428             for (int u = r >>> 1;
429                  u + m - (r = u % bound) < 0;
430                  u = mix32(nextSeed()) >>> 1)
431                 ;
432         }
433         return r;
434     }
435 
436     /**
437      * Returns a pseudorandom {@code int} value between the specified
438      * origin (inclusive) and the specified bound (exclusive).
439      *
440      * @param origin the least value returned
441      * @param bound the upper bound (exclusive)
442      * @return a pseudorandom {@code int} value between the origin
443      *         (inclusive) and the bound (exclusive)
444      * @throws IllegalArgumentException if {@code origin} is greater than
445      *         or equal to {@code bound}
446      */
nextInt(int origin, int bound)447     public int nextInt(int origin, int bound) {
448         if (origin >= bound)
449             throw new IllegalArgumentException(BAD_RANGE);
450         return internalNextInt(origin, bound);
451     }
452 
453     /**
454      * Returns a pseudorandom {@code long} value.
455      *
456      * @return a pseudorandom {@code long} value
457      */
nextLong()458     public long nextLong() {
459         return mix64(nextSeed());
460     }
461 
462     /**
463      * Returns a pseudorandom {@code long} value between zero (inclusive)
464      * and the specified bound (exclusive).
465      *
466      * @param bound the upper bound (exclusive).  Must be positive.
467      * @return a pseudorandom {@code long} value between zero
468      *         (inclusive) and the bound (exclusive)
469      * @throws IllegalArgumentException if {@code bound} is not positive
470      */
nextLong(long bound)471     public long nextLong(long bound) {
472         if (bound <= 0)
473             throw new IllegalArgumentException(BAD_BOUND);
474         // Specialize internalNextLong for origin 0
475         long r = mix64(nextSeed());
476         long m = bound - 1;
477         if ((bound & m) == 0L) // power of two
478             r &= m;
479         else { // reject over-represented candidates
480             for (long u = r >>> 1;
481                  u + m - (r = u % bound) < 0L;
482                  u = mix64(nextSeed()) >>> 1)
483                 ;
484         }
485         return r;
486     }
487 
488     /**
489      * Returns a pseudorandom {@code long} value between the specified
490      * origin (inclusive) and the specified bound (exclusive).
491      *
492      * @param origin the least value returned
493      * @param bound the upper bound (exclusive)
494      * @return a pseudorandom {@code long} value between the origin
495      *         (inclusive) and the bound (exclusive)
496      * @throws IllegalArgumentException if {@code origin} is greater than
497      *         or equal to {@code bound}
498      */
nextLong(long origin, long bound)499     public long nextLong(long origin, long bound) {
500         if (origin >= bound)
501             throw new IllegalArgumentException(BAD_RANGE);
502         return internalNextLong(origin, bound);
503     }
504 
505     /**
506      * Returns a pseudorandom {@code double} value between zero
507      * (inclusive) and one (exclusive).
508      *
509      * @return a pseudorandom {@code double} value between zero
510      *         (inclusive) and one (exclusive)
511      */
nextDouble()512     public double nextDouble() {
513         return (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT;
514     }
515 
516     /**
517      * Returns a pseudorandom {@code double} value between 0.0
518      * (inclusive) and the specified bound (exclusive).
519      *
520      * @param bound the upper bound (exclusive).  Must be positive.
521      * @return a pseudorandom {@code double} value between zero
522      *         (inclusive) and the bound (exclusive)
523      * @throws IllegalArgumentException if {@code bound} is not positive
524      */
nextDouble(double bound)525     public double nextDouble(double bound) {
526         if (!(bound > 0.0))
527             throw new IllegalArgumentException(BAD_BOUND);
528         double result = (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT * bound;
529         return (result < bound) ?  result : // correct for rounding
530             Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
531     }
532 
533     /**
534      * Returns a pseudorandom {@code double} value between the specified
535      * origin (inclusive) and bound (exclusive).
536      *
537      * @param origin the least value returned
538      * @param bound the upper bound (exclusive)
539      * @return a pseudorandom {@code double} value between the origin
540      *         (inclusive) and the bound (exclusive)
541      * @throws IllegalArgumentException if {@code origin} is greater than
542      *         or equal to {@code bound}
543      */
nextDouble(double origin, double bound)544     public double nextDouble(double origin, double bound) {
545         if (!(origin < bound))
546             throw new IllegalArgumentException(BAD_RANGE);
547         return internalNextDouble(origin, bound);
548     }
549 
550     /**
551      * Returns a pseudorandom {@code boolean} value.
552      *
553      * @return a pseudorandom {@code boolean} value
554      */
nextBoolean()555     public boolean nextBoolean() {
556         return mix32(nextSeed()) < 0;
557     }
558 
559     // stream methods, coded in a way intended to better isolate for
560     // maintenance purposes the small differences across forms.
561 
562     /**
563      * Returns a stream producing the given {@code streamSize} number
564      * of pseudorandom {@code int} values from this generator and/or
565      * one split from it.
566      *
567      * @param streamSize the number of values to generate
568      * @return a stream of pseudorandom {@code int} values
569      * @throws IllegalArgumentException if {@code streamSize} is
570      *         less than zero
571      */
ints(long streamSize)572     public IntStream ints(long streamSize) {
573         if (streamSize < 0L)
574             throw new IllegalArgumentException(BAD_SIZE);
575         return StreamSupport.intStream
576             (new RandomIntsSpliterator
577              (this, 0L, streamSize, Integer.MAX_VALUE, 0),
578              false);
579     }
580 
581     /**
582      * Returns an effectively unlimited stream of pseudorandom {@code int}
583      * values from this generator and/or one split from it.
584      *
585      * @implNote This method is implemented to be equivalent to {@code
586      * ints(Long.MAX_VALUE)}.
587      *
588      * @return a stream of pseudorandom {@code int} values
589      */
ints()590     public IntStream ints() {
591         return StreamSupport.intStream
592             (new RandomIntsSpliterator
593              (this, 0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
594              false);
595     }
596 
597     /**
598      * Returns a stream producing the given {@code streamSize} number
599      * of pseudorandom {@code int} values from this generator and/or one split
600      * from it; each value conforms to the given origin (inclusive) and bound
601      * (exclusive).
602      *
603      * @param streamSize the number of values to generate
604      * @param randomNumberOrigin the origin (inclusive) of each random value
605      * @param randomNumberBound the bound (exclusive) of each random value
606      * @return a stream of pseudorandom {@code int} values,
607      *         each with the given origin (inclusive) and bound (exclusive)
608      * @throws IllegalArgumentException if {@code streamSize} is
609      *         less than zero, or {@code randomNumberOrigin}
610      *         is greater than or equal to {@code randomNumberBound}
611      */
ints(long streamSize, int randomNumberOrigin, int randomNumberBound)612     public IntStream ints(long streamSize, int randomNumberOrigin,
613                           int randomNumberBound) {
614         if (streamSize < 0L)
615             throw new IllegalArgumentException(BAD_SIZE);
616         if (randomNumberOrigin >= randomNumberBound)
617             throw new IllegalArgumentException(BAD_RANGE);
618         return StreamSupport.intStream
619             (new RandomIntsSpliterator
620              (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
621              false);
622     }
623 
624     /**
625      * Returns an effectively unlimited stream of pseudorandom {@code
626      * int} values from this generator and/or one split from it; each value
627      * conforms to the given origin (inclusive) and bound (exclusive).
628      *
629      * @implNote This method is implemented to be equivalent to {@code
630      * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
631      *
632      * @param randomNumberOrigin the origin (inclusive) of each random value
633      * @param randomNumberBound the bound (exclusive) of each random value
634      * @return a stream of pseudorandom {@code int} values,
635      *         each with the given origin (inclusive) and bound (exclusive)
636      * @throws IllegalArgumentException if {@code randomNumberOrigin}
637      *         is greater than or equal to {@code randomNumberBound}
638      */
ints(int randomNumberOrigin, int randomNumberBound)639     public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
640         if (randomNumberOrigin >= randomNumberBound)
641             throw new IllegalArgumentException(BAD_RANGE);
642         return StreamSupport.intStream
643             (new RandomIntsSpliterator
644              (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
645              false);
646     }
647 
648     /**
649      * Returns a stream producing the given {@code streamSize} number
650      * of pseudorandom {@code long} values from this generator and/or
651      * one split from it.
652      *
653      * @param streamSize the number of values to generate
654      * @return a stream of pseudorandom {@code long} values
655      * @throws IllegalArgumentException if {@code streamSize} is
656      *         less than zero
657      */
longs(long streamSize)658     public LongStream longs(long streamSize) {
659         if (streamSize < 0L)
660             throw new IllegalArgumentException(BAD_SIZE);
661         return StreamSupport.longStream
662             (new RandomLongsSpliterator
663              (this, 0L, streamSize, Long.MAX_VALUE, 0L),
664              false);
665     }
666 
667     /**
668      * Returns an effectively unlimited stream of pseudorandom {@code
669      * long} values from this generator and/or one split from it.
670      *
671      * @implNote This method is implemented to be equivalent to {@code
672      * longs(Long.MAX_VALUE)}.
673      *
674      * @return a stream of pseudorandom {@code long} values
675      */
longs()676     public LongStream longs() {
677         return StreamSupport.longStream
678             (new RandomLongsSpliterator
679              (this, 0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
680              false);
681     }
682 
683     /**
684      * Returns a stream producing the given {@code streamSize} number of
685      * pseudorandom {@code long} values from this generator and/or one split
686      * from it; each value conforms to the given origin (inclusive) and bound
687      * (exclusive).
688      *
689      * @param streamSize the number of values to generate
690      * @param randomNumberOrigin the origin (inclusive) of each random value
691      * @param randomNumberBound the bound (exclusive) of each random value
692      * @return a stream of pseudorandom {@code long} values,
693      *         each with the given origin (inclusive) and bound (exclusive)
694      * @throws IllegalArgumentException if {@code streamSize} is
695      *         less than zero, or {@code randomNumberOrigin}
696      *         is greater than or equal to {@code randomNumberBound}
697      */
longs(long streamSize, long randomNumberOrigin, long randomNumberBound)698     public LongStream longs(long streamSize, long randomNumberOrigin,
699                             long randomNumberBound) {
700         if (streamSize < 0L)
701             throw new IllegalArgumentException(BAD_SIZE);
702         if (randomNumberOrigin >= randomNumberBound)
703             throw new IllegalArgumentException(BAD_RANGE);
704         return StreamSupport.longStream
705             (new RandomLongsSpliterator
706              (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
707              false);
708     }
709 
710     /**
711      * Returns an effectively unlimited stream of pseudorandom {@code
712      * long} values from this generator and/or one split from it; each value
713      * conforms to the given origin (inclusive) and bound (exclusive).
714      *
715      * @implNote This method is implemented to be equivalent to {@code
716      * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
717      *
718      * @param randomNumberOrigin the origin (inclusive) of each random value
719      * @param randomNumberBound the bound (exclusive) of each random value
720      * @return a stream of pseudorandom {@code long} values,
721      *         each with the given origin (inclusive) and bound (exclusive)
722      * @throws IllegalArgumentException if {@code randomNumberOrigin}
723      *         is greater than or equal to {@code randomNumberBound}
724      */
longs(long randomNumberOrigin, long randomNumberBound)725     public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
726         if (randomNumberOrigin >= randomNumberBound)
727             throw new IllegalArgumentException(BAD_RANGE);
728         return StreamSupport.longStream
729             (new RandomLongsSpliterator
730              (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
731              false);
732     }
733 
734     /**
735      * Returns a stream producing the given {@code streamSize} number of
736      * pseudorandom {@code double} values from this generator and/or one split
737      * from it; each value is between zero (inclusive) and one (exclusive).
738      *
739      * @param streamSize the number of values to generate
740      * @return a stream of {@code double} values
741      * @throws IllegalArgumentException if {@code streamSize} is
742      *         less than zero
743      */
doubles(long streamSize)744     public DoubleStream doubles(long streamSize) {
745         if (streamSize < 0L)
746             throw new IllegalArgumentException(BAD_SIZE);
747         return StreamSupport.doubleStream
748             (new RandomDoublesSpliterator
749              (this, 0L, streamSize, Double.MAX_VALUE, 0.0),
750              false);
751     }
752 
753     /**
754      * Returns an effectively unlimited stream of pseudorandom {@code
755      * double} values from this generator and/or one split from it; each value
756      * is between zero (inclusive) and one (exclusive).
757      *
758      * @implNote This method is implemented to be equivalent to {@code
759      * doubles(Long.MAX_VALUE)}.
760      *
761      * @return a stream of pseudorandom {@code double} values
762      */
doubles()763     public DoubleStream doubles() {
764         return StreamSupport.doubleStream
765             (new RandomDoublesSpliterator
766              (this, 0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
767              false);
768     }
769 
770     /**
771      * Returns a stream producing the given {@code streamSize} number of
772      * pseudorandom {@code double} values from this generator and/or one split
773      * from it; each value conforms to the given origin (inclusive) and bound
774      * (exclusive).
775      *
776      * @param streamSize the number of values to generate
777      * @param randomNumberOrigin the origin (inclusive) of each random value
778      * @param randomNumberBound the bound (exclusive) of each random value
779      * @return a stream of pseudorandom {@code double} values,
780      *         each with the given origin (inclusive) and bound (exclusive)
781      * @throws IllegalArgumentException if {@code streamSize} is
782      *         less than zero
783      * @throws IllegalArgumentException if {@code randomNumberOrigin}
784      *         is greater than or equal to {@code randomNumberBound}
785      */
doubles(long streamSize, double randomNumberOrigin, double randomNumberBound)786     public DoubleStream doubles(long streamSize, double randomNumberOrigin,
787                                 double randomNumberBound) {
788         if (streamSize < 0L)
789             throw new IllegalArgumentException(BAD_SIZE);
790         if (!(randomNumberOrigin < randomNumberBound))
791             throw new IllegalArgumentException(BAD_RANGE);
792         return StreamSupport.doubleStream
793             (new RandomDoublesSpliterator
794              (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
795              false);
796     }
797 
798     /**
799      * Returns an effectively unlimited stream of pseudorandom {@code
800      * double} values from this generator and/or one split from it; each value
801      * conforms to the given origin (inclusive) and bound (exclusive).
802      *
803      * @implNote This method is implemented to be equivalent to {@code
804      * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
805      *
806      * @param randomNumberOrigin the origin (inclusive) of each random value
807      * @param randomNumberBound the bound (exclusive) of each random value
808      * @return a stream of pseudorandom {@code double} values,
809      *         each with the given origin (inclusive) and bound (exclusive)
810      * @throws IllegalArgumentException if {@code randomNumberOrigin}
811      *         is greater than or equal to {@code randomNumberBound}
812      */
doubles(double randomNumberOrigin, double randomNumberBound)813     public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
814         if (!(randomNumberOrigin < randomNumberBound))
815             throw new IllegalArgumentException(BAD_RANGE);
816         return StreamSupport.doubleStream
817             (new RandomDoublesSpliterator
818              (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
819              false);
820     }
821 
822     /**
823      * Spliterator for int streams.  We multiplex the four int
824      * versions into one class by treating a bound less than origin as
825      * unbounded, and also by treating "infinite" as equivalent to
826      * Long.MAX_VALUE. For splits, it uses the standard divide-by-two
827      * approach. The long and double versions of this class are
828      * identical except for types.
829      */
830     private static final class RandomIntsSpliterator
831             implements Spliterator.OfInt {
832         final SplittableRandom rng;
833         long index;
834         final long fence;
835         final int origin;
836         final int bound;
RandomIntsSpliterator(SplittableRandom rng, long index, long fence, int origin, int bound)837         RandomIntsSpliterator(SplittableRandom rng, long index, long fence,
838                               int origin, int bound) {
839             this.rng = rng; this.index = index; this.fence = fence;
840             this.origin = origin; this.bound = bound;
841         }
842 
trySplit()843         public RandomIntsSpliterator trySplit() {
844             long i = index, m = (i + fence) >>> 1;
845             return (m <= i) ? null :
846                 new RandomIntsSpliterator(rng.split(), i, index = m, origin, bound);
847         }
848 
estimateSize()849         public long estimateSize() {
850             return fence - index;
851         }
852 
characteristics()853         public int characteristics() {
854             return (Spliterator.SIZED | Spliterator.SUBSIZED |
855                     Spliterator.NONNULL | Spliterator.IMMUTABLE);
856         }
857 
tryAdvance(IntConsumer consumer)858         public boolean tryAdvance(IntConsumer consumer) {
859             if (consumer == null) throw new NullPointerException();
860             long i = index, f = fence;
861             if (i < f) {
862                 consumer.accept(rng.internalNextInt(origin, bound));
863                 index = i + 1;
864                 return true;
865             }
866             return false;
867         }
868 
forEachRemaining(IntConsumer consumer)869         public void forEachRemaining(IntConsumer consumer) {
870             if (consumer == null) throw new NullPointerException();
871             long i = index, f = fence;
872             if (i < f) {
873                 index = f;
874                 SplittableRandom r = rng;
875                 int o = origin, b = bound;
876                 do {
877                     consumer.accept(r.internalNextInt(o, b));
878                 } while (++i < f);
879             }
880         }
881     }
882 
883     /**
884      * Spliterator for long streams.
885      */
886     private static final class RandomLongsSpliterator
887             implements Spliterator.OfLong {
888         final SplittableRandom rng;
889         long index;
890         final long fence;
891         final long origin;
892         final long bound;
RandomLongsSpliterator(SplittableRandom rng, long index, long fence, long origin, long bound)893         RandomLongsSpliterator(SplittableRandom rng, long index, long fence,
894                                long origin, long bound) {
895             this.rng = rng; this.index = index; this.fence = fence;
896             this.origin = origin; this.bound = bound;
897         }
898 
trySplit()899         public RandomLongsSpliterator trySplit() {
900             long i = index, m = (i + fence) >>> 1;
901             return (m <= i) ? null :
902                 new RandomLongsSpliterator(rng.split(), i, index = m, origin, bound);
903         }
904 
estimateSize()905         public long estimateSize() {
906             return fence - index;
907         }
908 
characteristics()909         public int characteristics() {
910             return (Spliterator.SIZED | Spliterator.SUBSIZED |
911                     Spliterator.NONNULL | Spliterator.IMMUTABLE);
912         }
913 
tryAdvance(LongConsumer consumer)914         public boolean tryAdvance(LongConsumer consumer) {
915             if (consumer == null) throw new NullPointerException();
916             long i = index, f = fence;
917             if (i < f) {
918                 consumer.accept(rng.internalNextLong(origin, bound));
919                 index = i + 1;
920                 return true;
921             }
922             return false;
923         }
924 
forEachRemaining(LongConsumer consumer)925         public void forEachRemaining(LongConsumer consumer) {
926             if (consumer == null) throw new NullPointerException();
927             long i = index, f = fence;
928             if (i < f) {
929                 index = f;
930                 SplittableRandom r = rng;
931                 long o = origin, b = bound;
932                 do {
933                     consumer.accept(r.internalNextLong(o, b));
934                 } while (++i < f);
935             }
936         }
937 
938     }
939 
940     /**
941      * Spliterator for double streams.
942      */
943     private static final class RandomDoublesSpliterator
944             implements Spliterator.OfDouble {
945         final SplittableRandom rng;
946         long index;
947         final long fence;
948         final double origin;
949         final double bound;
RandomDoublesSpliterator(SplittableRandom rng, long index, long fence, double origin, double bound)950         RandomDoublesSpliterator(SplittableRandom rng, long index, long fence,
951                                  double origin, double bound) {
952             this.rng = rng; this.index = index; this.fence = fence;
953             this.origin = origin; this.bound = bound;
954         }
955 
trySplit()956         public RandomDoublesSpliterator trySplit() {
957             long i = index, m = (i + fence) >>> 1;
958             return (m <= i) ? null :
959                 new RandomDoublesSpliterator(rng.split(), i, index = m, origin, bound);
960         }
961 
estimateSize()962         public long estimateSize() {
963             return fence - index;
964         }
965 
characteristics()966         public int characteristics() {
967             return (Spliterator.SIZED | Spliterator.SUBSIZED |
968                     Spliterator.NONNULL | Spliterator.IMMUTABLE);
969         }
970 
tryAdvance(DoubleConsumer consumer)971         public boolean tryAdvance(DoubleConsumer consumer) {
972             if (consumer == null) throw new NullPointerException();
973             long i = index, f = fence;
974             if (i < f) {
975                 consumer.accept(rng.internalNextDouble(origin, bound));
976                 index = i + 1;
977                 return true;
978             }
979             return false;
980         }
981 
forEachRemaining(DoubleConsumer consumer)982         public void forEachRemaining(DoubleConsumer consumer) {
983             if (consumer == null) throw new NullPointerException();
984             long i = index, f = fence;
985             if (i < f) {
986                 index = f;
987                 SplittableRandom r = rng;
988                 double o = origin, b = bound;
989                 do {
990                     consumer.accept(r.internalNextDouble(o, b));
991                 } while (++i < f);
992             }
993         }
994     }
995 
996 }
997