1 /*
2  * Copyright (c) 2009, 2013, Oracle and/or its affiliates. All rights reserved.
3  * Copyright 2009 Google Inc.  All Rights Reserved.
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This code is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 only, as
8  * published by the Free Software Foundation.  Oracle designates this
9  * particular file as subject to the "Classpath" exception as provided
10  * by Oracle in the LICENSE file that accompanied this code.
11  *
12  * This code is distributed in the hope that it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15  * version 2 for more details (a copy is included in the LICENSE file that
16  * accompanied this code).
17  *
18  * You should have received a copy of the GNU General Public License version
19  * 2 along with this work; if not, write to the Free Software Foundation,
20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
21  *
22  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
23  * or visit www.oracle.com if you need additional information or have any
24  * questions.
25  */
26 
27 package java.util;
28 
29 /**
30  * A stable, adaptive, iterative mergesort that requires far fewer than
31  * n lg(n) comparisons when running on partially sorted arrays, while
32  * offering performance comparable to a traditional mergesort when run
33  * on random arrays.  Like all proper mergesorts, this sort is stable and
34  * runs O(n log n) time (worst case).  In the worst case, this sort requires
35  * temporary storage space for n/2 object references; in the best case,
36  * it requires only a small constant amount of space.
37  *
38  * This implementation was adapted from Tim Peters's list sort for
39  * Python, which is described in detail here:
40  *
41  *   http://svn.python.org/projects/python/trunk/Objects/listsort.txt
42  *
43  * Tim's C code may be found here:
44  *
45  *   http://svn.python.org/projects/python/trunk/Objects/listobject.c
46  *
47  * The underlying techniques are described in this paper (and may have
48  * even earlier origins):
49  *
50  *  "Optimistic Sorting and Information Theoretic Complexity"
51  *  Peter McIlroy
52  *  SODA (Fourth Annual ACM-SIAM Symposium on Discrete Algorithms),
53  *  pp 467-474, Austin, Texas, 25-27 January 1993.
54  *
55  * While the API to this class consists solely of static methods, it is
56  * (privately) instantiable; a TimSort instance holds the state of an ongoing
57  * sort, assuming the input array is large enough to warrant the full-blown
58  * TimSort. Small arrays are sorted in place, using a binary insertion sort.
59  *
60  * @author Josh Bloch
61  */
62 class TimSort<T> {
63     /**
64      * This is the minimum sized sequence that will be merged.  Shorter
65      * sequences will be lengthened by calling binarySort.  If the entire
66      * array is less than this length, no merges will be performed.
67      *
68      * This constant should be a power of two.  It was 64 in Tim Peter's C
69      * implementation, but 32 was empirically determined to work better in
70      * this implementation.  In the unlikely event that you set this constant
71      * to be a number that's not a power of two, you'll need to change the
72      * {@link #minRunLength} computation.
73      *
74      * If you decrease this constant, you must change the stackLen
75      * computation in the TimSort constructor, or you risk an
76      * ArrayOutOfBounds exception.  See listsort.txt for a discussion
77      * of the minimum stack length required as a function of the length
78      * of the array being sorted and the minimum merge sequence length.
79      */
80     private static final int MIN_MERGE = 32;
81 
82     /**
83      * The array being sorted.
84      */
85     private final T[] a;
86 
87     /**
88      * The comparator for this sort.
89      */
90     private final Comparator<? super T> c;
91 
92     /**
93      * When we get into galloping mode, we stay there until both runs win less
94      * often than MIN_GALLOP consecutive times.
95      */
96     private static final int  MIN_GALLOP = 7;
97 
98     /**
99      * This controls when we get *into* galloping mode.  It is initialized
100      * to MIN_GALLOP.  The mergeLo and mergeHi methods nudge it higher for
101      * random data, and lower for highly structured data.
102      */
103     private int minGallop = MIN_GALLOP;
104 
105     /**
106      * Maximum initial size of tmp array, which is used for merging.  The array
107      * can grow to accommodate demand.
108      *
109      * Unlike Tim's original C version, we do not allocate this much storage
110      * when sorting smaller arrays.  This change was required for performance.
111      */
112     private static final int INITIAL_TMP_STORAGE_LENGTH = 256;
113 
114     /**
115      * Temp storage for merges. A workspace array may optionally be
116      * provided in constructor, and if so will be used as long as it
117      * is big enough.
118      */
119     private T[] tmp;
120     private int tmpBase; // base of tmp array slice
121     private int tmpLen;  // length of tmp array slice
122 
123     /**
124      * A stack of pending runs yet to be merged.  Run i starts at
125      * address base[i] and extends for len[i] elements.  It's always
126      * true (so long as the indices are in bounds) that:
127      *
128      *     runBase[i] + runLen[i] == runBase[i + 1]
129      *
130      * so we could cut the storage for this, but it's a minor amount,
131      * and keeping all the info explicit simplifies the code.
132      */
133     private int stackSize = 0;  // Number of pending runs on stack
134     private final int[] runBase;
135     private final int[] runLen;
136 
137     /**
138      * Creates a TimSort instance to maintain the state of an ongoing sort.
139      *
140      * @param a the array to be sorted
141      * @param c the comparator to determine the order of the sort
142      * @param work a workspace array (slice)
143      * @param workBase origin of usable space in work array
144      * @param workLen usable size of work array
145      */
TimSort(T[] a, Comparator<? super T> c, T[] work, int workBase, int workLen)146     private TimSort(T[] a, Comparator<? super T> c, T[] work, int workBase, int workLen) {
147         this.a = a;
148         this.c = c;
149 
150         // Allocate temp storage (which may be increased later if necessary)
151         int len = a.length;
152         int tlen = (len < 2 * INITIAL_TMP_STORAGE_LENGTH) ?
153             len >>> 1 : INITIAL_TMP_STORAGE_LENGTH;
154         if (work == null || workLen < tlen || workBase + tlen > work.length) {
155             @SuppressWarnings({"unchecked", "UnnecessaryLocalVariable"})
156             T[] newArray = (T[])java.lang.reflect.Array.newInstance
157                 (a.getClass().getComponentType(), tlen);
158             tmp = newArray;
159             tmpBase = 0;
160             tmpLen = tlen;
161         }
162         else {
163             tmp = work;
164             tmpBase = workBase;
165             tmpLen = workLen;
166         }
167 
168         /*
169          * Allocate runs-to-be-merged stack (which cannot be expanded).  The
170          * stack length requirements are described in listsort.txt.  The C
171          * version always uses the same stack length (85), but this was
172          * measured to be too expensive when sorting "mid-sized" arrays (e.g.,
173          * 100 elements) in Java.  Therefore, we use smaller (but sufficiently
174          * large) stack lengths for smaller arrays.  The "magic numbers" in the
175          * computation below must be changed if MIN_MERGE is decreased.  See
176          * the MIN_MERGE declaration above for more information.
177          * The maximum value of 49 allows for an array up to length
178          * Integer.MAX_VALUE-4, if array is filled by the worst case stack size
179          * increasing scenario. More explanations are given in section 4 of:
180          * http://envisage-project.eu/wp-content/uploads/2015/02/sorting.pdf
181          */
182         int stackLen = (len <    120  ?  5 :
183                         len <   1542  ? 10 :
184                         len < 119151  ? 24 : 49);
185         runBase = new int[stackLen];
186         runLen = new int[stackLen];
187     }
188 
189     /*
190      * The next method (package private and static) constitutes the
191      * entire API of this class.
192      */
193 
194     /**
195      * Sorts the given range, using the given workspace array slice
196      * for temp storage when possible. This method is designed to be
197      * invoked from public methods (in class Arrays) after performing
198      * any necessary array bounds checks and expanding parameters into
199      * the required forms.
200      *
201      * @param a the array to be sorted
202      * @param lo the index of the first element, inclusive, to be sorted
203      * @param hi the index of the last element, exclusive, to be sorted
204      * @param c the comparator to use
205      * @param work a workspace array (slice)
206      * @param workBase origin of usable space in work array
207      * @param workLen usable size of work array
208      * @since 1.8
209      */
sort(T[] a, int lo, int hi, Comparator<? super T> c, T[] work, int workBase, int workLen)210     static <T> void sort(T[] a, int lo, int hi, Comparator<? super T> c,
211                          T[] work, int workBase, int workLen) {
212         assert c != null && a != null && lo >= 0 && lo <= hi && hi <= a.length;
213 
214         int nRemaining  = hi - lo;
215         if (nRemaining < 2)
216             return;  // Arrays of size 0 and 1 are always sorted
217 
218         // If array is small, do a "mini-TimSort" with no merges
219         if (nRemaining < MIN_MERGE) {
220             int initRunLen = countRunAndMakeAscending(a, lo, hi, c);
221             binarySort(a, lo, hi, lo + initRunLen, c);
222             return;
223         }
224 
225         /**
226          * March over the array once, left to right, finding natural runs,
227          * extending short natural runs to minRun elements, and merging runs
228          * to maintain stack invariant.
229          */
230         TimSort<T> ts = new TimSort<>(a, c, work, workBase, workLen);
231         int minRun = minRunLength(nRemaining);
232         do {
233             // Identify next run
234             int runLen = countRunAndMakeAscending(a, lo, hi, c);
235 
236             // If run is short, extend to min(minRun, nRemaining)
237             if (runLen < minRun) {
238                 int force = nRemaining <= minRun ? nRemaining : minRun;
239                 binarySort(a, lo, lo + force, lo + runLen, c);
240                 runLen = force;
241             }
242 
243             // Push run onto pending-run stack, and maybe merge
244             ts.pushRun(lo, runLen);
245             ts.mergeCollapse();
246 
247             // Advance to find next run
248             lo += runLen;
249             nRemaining -= runLen;
250         } while (nRemaining != 0);
251 
252         // Merge all remaining runs to complete sort
253         assert lo == hi;
254         ts.mergeForceCollapse();
255         assert ts.stackSize == 1;
256     }
257 
258     /**
259      * Sorts the specified portion of the specified array using a binary
260      * insertion sort.  This is the best method for sorting small numbers
261      * of elements.  It requires O(n log n) compares, but O(n^2) data
262      * movement (worst case).
263      *
264      * If the initial part of the specified range is already sorted,
265      * this method can take advantage of it: the method assumes that the
266      * elements from index {@code lo}, inclusive, to {@code start},
267      * exclusive are already sorted.
268      *
269      * @param a the array in which a range is to be sorted
270      * @param lo the index of the first element in the range to be sorted
271      * @param hi the index after the last element in the range to be sorted
272      * @param start the index of the first element in the range that is
273      *        not already known to be sorted ({@code lo <= start <= hi})
274      * @param c comparator to used for the sort
275      */
276     @SuppressWarnings("fallthrough")
binarySort(T[] a, int lo, int hi, int start, Comparator<? super T> c)277     private static <T> void binarySort(T[] a, int lo, int hi, int start,
278                                        Comparator<? super T> c) {
279         assert lo <= start && start <= hi;
280         if (start == lo)
281             start++;
282         for ( ; start < hi; start++) {
283             T pivot = a[start];
284 
285             // Set left (and right) to the index where a[start] (pivot) belongs
286             int left = lo;
287             int right = start;
288             assert left <= right;
289             /*
290              * Invariants:
291              *   pivot >= all in [lo, left).
292              *   pivot <  all in [right, start).
293              */
294             while (left < right) {
295                 int mid = (left + right) >>> 1;
296                 if (c.compare(pivot, a[mid]) < 0)
297                     right = mid;
298                 else
299                     left = mid + 1;
300             }
301             assert left == right;
302 
303             /*
304              * The invariants still hold: pivot >= all in [lo, left) and
305              * pivot < all in [left, start), so pivot belongs at left.  Note
306              * that if there are elements equal to pivot, left points to the
307              * first slot after them -- that's why this sort is stable.
308              * Slide elements over to make room for pivot.
309              */
310             int n = start - left;  // The number of elements to move
311             // Switch is just an optimization for arraycopy in default case
312             switch (n) {
313                 case 2:  a[left + 2] = a[left + 1];
314                 case 1:  a[left + 1] = a[left];
315                          break;
316                 default: System.arraycopy(a, left, a, left + 1, n);
317             }
318             a[left] = pivot;
319         }
320     }
321 
322     /**
323      * Returns the length of the run beginning at the specified position in
324      * the specified array and reverses the run if it is descending (ensuring
325      * that the run will always be ascending when the method returns).
326      *
327      * A run is the longest ascending sequence with:
328      *
329      *    a[lo] <= a[lo + 1] <= a[lo + 2] <= ...
330      *
331      * or the longest descending sequence with:
332      *
333      *    a[lo] >  a[lo + 1] >  a[lo + 2] >  ...
334      *
335      * For its intended use in a stable mergesort, the strictness of the
336      * definition of "descending" is needed so that the call can safely
337      * reverse a descending sequence without violating stability.
338      *
339      * @param a the array in which a run is to be counted and possibly reversed
340      * @param lo index of the first element in the run
341      * @param hi index after the last element that may be contained in the run.
342               It is required that {@code lo < hi}.
343      * @param c the comparator to used for the sort
344      * @return  the length of the run beginning at the specified position in
345      *          the specified array
346      */
countRunAndMakeAscending(T[] a, int lo, int hi, Comparator<? super T> c)347     private static <T> int countRunAndMakeAscending(T[] a, int lo, int hi,
348                                                     Comparator<? super T> c) {
349         assert lo < hi;
350         int runHi = lo + 1;
351         if (runHi == hi)
352             return 1;
353 
354         // Find end of run, and reverse range if descending
355         if (c.compare(a[runHi++], a[lo]) < 0) { // Descending
356             while (runHi < hi && c.compare(a[runHi], a[runHi - 1]) < 0)
357                 runHi++;
358             reverseRange(a, lo, runHi);
359         } else {                              // Ascending
360             while (runHi < hi && c.compare(a[runHi], a[runHi - 1]) >= 0)
361                 runHi++;
362         }
363 
364         return runHi - lo;
365     }
366 
367     /**
368      * Reverse the specified range of the specified array.
369      *
370      * @param a the array in which a range is to be reversed
371      * @param lo the index of the first element in the range to be reversed
372      * @param hi the index after the last element in the range to be reversed
373      */
374     private static void reverseRange(Object[] a, int lo, int hi) {
375         hi--;
376         while (lo < hi) {
377             Object t = a[lo];
378             a[lo++] = a[hi];
379             a[hi--] = t;
380         }
381     }
382 
383     /**
384      * Returns the minimum acceptable run length for an array of the specified
385      * length. Natural runs shorter than this will be extended with
386      * {@link #binarySort}.
387      *
388      * Roughly speaking, the computation is:
389      *
390      *  If n < MIN_MERGE, return n (it's too small to bother with fancy stuff).
391      *  Else if n is an exact power of 2, return MIN_MERGE/2.
392      *  Else return an int k, MIN_MERGE/2 <= k <= MIN_MERGE, such that n/k
393      *   is close to, but strictly less than, an exact power of 2.
394      *
395      * For the rationale, see listsort.txt.
396      *
397      * @param n the length of the array to be sorted
398      * @return the length of the minimum run to be merged
399      */
400     private static int minRunLength(int n) {
401         assert n >= 0;
402         int r = 0;      // Becomes 1 if any 1 bits are shifted off
403         while (n >= MIN_MERGE) {
404             r |= (n & 1);
405             n >>= 1;
406         }
407         return n + r;
408     }
409 
410     /**
411      * Pushes the specified run onto the pending-run stack.
412      *
413      * @param runBase index of the first element in the run
414      * @param runLen  the number of elements in the run
415      */
416     private void pushRun(int runBase, int runLen) {
417         this.runBase[stackSize] = runBase;
418         this.runLen[stackSize] = runLen;
419         stackSize++;
420     }
421 
422     /**
423      * Examines the stack of runs waiting to be merged and merges adjacent runs
424      * until the stack invariants are reestablished:
425      *
426      *     1. runLen[i - 3] > runLen[i - 2] + runLen[i - 1]
427      *     2. runLen[i - 2] > runLen[i - 1]
428      *
429      * This method is called each time a new run is pushed onto the stack,
430      * so the invariants are guaranteed to hold for i < stackSize upon
431      * entry to the method.
432      */
433     private void mergeCollapse() {
434         while (stackSize > 1) {
435             int n = stackSize - 2;
436             if (n > 0 && runLen[n-1] <= runLen[n] + runLen[n+1]) {
437                 if (runLen[n - 1] < runLen[n + 1])
438                     n--;
439                 mergeAt(n);
440             } else if (runLen[n] <= runLen[n + 1]) {
441                 mergeAt(n);
442             } else {
443                 break; // Invariant is established
444             }
445         }
446     }
447 
448     /**
449      * Merges all runs on the stack until only one remains.  This method is
450      * called once, to complete the sort.
451      */
mergeForceCollapse()452     private void mergeForceCollapse() {
453         while (stackSize > 1) {
454             int n = stackSize - 2;
455             if (n > 0 && runLen[n - 1] < runLen[n + 1])
456                 n--;
457             mergeAt(n);
458         }
459     }
460 
461     /**
462      * Merges the two runs at stack indices i and i+1.  Run i must be
463      * the penultimate or antepenultimate run on the stack.  In other words,
464      * i must be equal to stackSize-2 or stackSize-3.
465      *
466      * @param i stack index of the first of the two runs to merge
467      */
mergeAt(int i)468     private void mergeAt(int i) {
469         assert stackSize >= 2;
470         assert i >= 0;
471         assert i == stackSize - 2 || i == stackSize - 3;
472 
473         int base1 = runBase[i];
474         int len1 = runLen[i];
475         int base2 = runBase[i + 1];
476         int len2 = runLen[i + 1];
477         assert len1 > 0 && len2 > 0;
478         assert base1 + len1 == base2;
479 
480         /*
481          * Record the length of the combined runs; if i is the 3rd-last
482          * run now, also slide over the last run (which isn't involved
483          * in this merge).  The current run (i+1) goes away in any case.
484          */
485         runLen[i] = len1 + len2;
486         if (i == stackSize - 3) {
487             runBase[i + 1] = runBase[i + 2];
488             runLen[i + 1] = runLen[i + 2];
489         }
490         stackSize--;
491 
492         /*
493          * Find where the first element of run2 goes in run1. Prior elements
494          * in run1 can be ignored (because they're already in place).
495          */
496         int k = gallopRight(a[base2], a, base1, len1, 0, c);
497         assert k >= 0;
498         base1 += k;
499         len1 -= k;
500         if (len1 == 0)
501             return;
502 
503         /*
504          * Find where the last element of run1 goes in run2. Subsequent elements
505          * in run2 can be ignored (because they're already in place).
506          */
507         len2 = gallopLeft(a[base1 + len1 - 1], a, base2, len2, len2 - 1, c);
508         assert len2 >= 0;
509         if (len2 == 0)
510             return;
511 
512         // Merge remaining runs, using tmp array with min(len1, len2) elements
513         if (len1 <= len2)
514             mergeLo(base1, len1, base2, len2);
515         else
516             mergeHi(base1, len1, base2, len2);
517     }
518 
519     /**
520      * Locates the position at which to insert the specified key into the
521      * specified sorted range; if the range contains an element equal to key,
522      * returns the index of the leftmost equal element.
523      *
524      * @param key the key whose insertion point to search for
525      * @param a the array in which to search
526      * @param base the index of the first element in the range
527      * @param len the length of the range; must be > 0
528      * @param hint the index at which to begin the search, 0 <= hint < n.
529      *     The closer hint is to the result, the faster this method will run.
530      * @param c the comparator used to order the range, and to search
531      * @return the int k,  0 <= k <= n such that a[b + k - 1] < key <= a[b + k],
532      *    pretending that a[b - 1] is minus infinity and a[b + n] is infinity.
533      *    In other words, key belongs at index b + k; or in other words,
534      *    the first k elements of a should precede key, and the last n - k
535      *    should follow it.
536      */
gallopLeft(T key, T[] a, int base, int len, int hint, Comparator<? super T> c)537     private static <T> int gallopLeft(T key, T[] a, int base, int len, int hint,
538                                       Comparator<? super T> c) {
539         assert len > 0 && hint >= 0 && hint < len;
540         int lastOfs = 0;
541         int ofs = 1;
542         if (c.compare(key, a[base + hint]) > 0) {
543             // Gallop right until a[base+hint+lastOfs] < key <= a[base+hint+ofs]
544             int maxOfs = len - hint;
545             while (ofs < maxOfs && c.compare(key, a[base + hint + ofs]) > 0) {
546                 lastOfs = ofs;
547                 ofs = (ofs << 1) + 1;
548                 if (ofs <= 0)   // int overflow
549                     ofs = maxOfs;
550             }
551             if (ofs > maxOfs)
552                 ofs = maxOfs;
553 
554             // Make offsets relative to base
555             lastOfs += hint;
556             ofs += hint;
557         } else { // key <= a[base + hint]
558             // Gallop left until a[base+hint-ofs] < key <= a[base+hint-lastOfs]
559             final int maxOfs = hint + 1;
560             while (ofs < maxOfs && c.compare(key, a[base + hint - ofs]) <= 0) {
561                 lastOfs = ofs;
562                 ofs = (ofs << 1) + 1;
563                 if (ofs <= 0)   // int overflow
564                     ofs = maxOfs;
565             }
566             if (ofs > maxOfs)
567                 ofs = maxOfs;
568 
569             // Make offsets relative to base
570             int tmp = lastOfs;
571             lastOfs = hint - ofs;
572             ofs = hint - tmp;
573         }
574         assert -1 <= lastOfs && lastOfs < ofs && ofs <= len;
575 
576         /*
577          * Now a[base+lastOfs] < key <= a[base+ofs], so key belongs somewhere
578          * to the right of lastOfs but no farther right than ofs.  Do a binary
579          * search, with invariant a[base + lastOfs - 1] < key <= a[base + ofs].
580          */
581         lastOfs++;
582         while (lastOfs < ofs) {
583             int m = lastOfs + ((ofs - lastOfs) >>> 1);
584 
585             if (c.compare(key, a[base + m]) > 0)
586                 lastOfs = m + 1;  // a[base + m] < key
587             else
588                 ofs = m;          // key <= a[base + m]
589         }
590         assert lastOfs == ofs;    // so a[base + ofs - 1] < key <= a[base + ofs]
591         return ofs;
592     }
593 
594     /**
595      * Like gallopLeft, except that if the range contains an element equal to
596      * key, gallopRight returns the index after the rightmost equal element.
597      *
598      * @param key the key whose insertion point to search for
599      * @param a the array in which to search
600      * @param base the index of the first element in the range
601      * @param len the length of the range; must be > 0
602      * @param hint the index at which to begin the search, 0 <= hint < n.
603      *     The closer hint is to the result, the faster this method will run.
604      * @param c the comparator used to order the range, and to search
605      * @return the int k,  0 <= k <= n such that a[b + k - 1] <= key < a[b + k]
606      */
gallopRight(T key, T[] a, int base, int len, int hint, Comparator<? super T> c)607     private static <T> int gallopRight(T key, T[] a, int base, int len,
608                                        int hint, Comparator<? super T> c) {
609         assert len > 0 && hint >= 0 && hint < len;
610 
611         int ofs = 1;
612         int lastOfs = 0;
613         if (c.compare(key, a[base + hint]) < 0) {
614             // Gallop left until a[b+hint - ofs] <= key < a[b+hint - lastOfs]
615             int maxOfs = hint + 1;
616             while (ofs < maxOfs && c.compare(key, a[base + hint - ofs]) < 0) {
617                 lastOfs = ofs;
618                 ofs = (ofs << 1) + 1;
619                 if (ofs <= 0)   // int overflow
620                     ofs = maxOfs;
621             }
622             if (ofs > maxOfs)
623                 ofs = maxOfs;
624 
625             // Make offsets relative to b
626             int tmp = lastOfs;
627             lastOfs = hint - ofs;
628             ofs = hint - tmp;
629         } else { // a[b + hint] <= key
630             // Gallop right until a[b+hint + lastOfs] <= key < a[b+hint + ofs]
631             int maxOfs = len - hint;
632             while (ofs < maxOfs && c.compare(key, a[base + hint + ofs]) >= 0) {
633                 lastOfs = ofs;
634                 ofs = (ofs << 1) + 1;
635                 if (ofs <= 0)   // int overflow
636                     ofs = maxOfs;
637             }
638             if (ofs > maxOfs)
639                 ofs = maxOfs;
640 
641             // Make offsets relative to b
642             lastOfs += hint;
643             ofs += hint;
644         }
645         assert -1 <= lastOfs && lastOfs < ofs && ofs <= len;
646 
647         /*
648          * Now a[b + lastOfs] <= key < a[b + ofs], so key belongs somewhere to
649          * the right of lastOfs but no farther right than ofs.  Do a binary
650          * search, with invariant a[b + lastOfs - 1] <= key < a[b + ofs].
651          */
652         lastOfs++;
653         while (lastOfs < ofs) {
654             int m = lastOfs + ((ofs - lastOfs) >>> 1);
655 
656             if (c.compare(key, a[base + m]) < 0)
657                 ofs = m;          // key < a[b + m]
658             else
659                 lastOfs = m + 1;  // a[b + m] <= key
660         }
661         assert lastOfs == ofs;    // so a[b + ofs - 1] <= key < a[b + ofs]
662         return ofs;
663     }
664 
665     /**
666      * Merges two adjacent runs in place, in a stable fashion.  The first
667      * element of the first run must be greater than the first element of the
668      * second run (a[base1] > a[base2]), and the last element of the first run
669      * (a[base1 + len1-1]) must be greater than all elements of the second run.
670      *
671      * For performance, this method should be called only when len1 <= len2;
672      * its twin, mergeHi should be called if len1 >= len2.  (Either method
673      * may be called if len1 == len2.)
674      *
675      * @param base1 index of first element in first run to be merged
676      * @param len1  length of first run to be merged (must be > 0)
677      * @param base2 index of first element in second run to be merged
678      *        (must be aBase + aLen)
679      * @param len2  length of second run to be merged (must be > 0)
680      */
681     private void mergeLo(int base1, int len1, int base2, int len2) {
682         assert len1 > 0 && len2 > 0 && base1 + len1 == base2;
683 
684         // Copy first run into temp array
685         T[] a = this.a; // For performance
686         T[] tmp = ensureCapacity(len1);
687         int cursor1 = tmpBase; // Indexes into tmp array
688         int cursor2 = base2;   // Indexes int a
689         int dest = base1;      // Indexes int a
690         System.arraycopy(a, base1, tmp, cursor1, len1);
691 
692         // Move first element of second run and deal with degenerate cases
693         a[dest++] = a[cursor2++];
694         if (--len2 == 0) {
695             System.arraycopy(tmp, cursor1, a, dest, len1);
696             return;
697         }
698         if (len1 == 1) {
699             System.arraycopy(a, cursor2, a, dest, len2);
700             a[dest + len2] = tmp[cursor1]; // Last elt of run 1 to end of merge
701             return;
702         }
703 
704         Comparator<? super T> c = this.c;  // Use local variable for performance
705         int minGallop = this.minGallop;    //  "    "       "     "      "
706     outer:
707         while (true) {
708             int count1 = 0; // Number of times in a row that first run won
709             int count2 = 0; // Number of times in a row that second run won
710 
711             /*
712              * Do the straightforward thing until (if ever) one run starts
713              * winning consistently.
714              */
715             do {
716                 assert len1 > 1 && len2 > 0;
717                 if (c.compare(a[cursor2], tmp[cursor1]) < 0) {
718                     a[dest++] = a[cursor2++];
719                     count2++;
720                     count1 = 0;
721                     if (--len2 == 0)
722                         break outer;
723                 } else {
724                     a[dest++] = tmp[cursor1++];
725                     count1++;
726                     count2 = 0;
727                     if (--len1 == 1)
728                         break outer;
729                 }
730             } while ((count1 | count2) < minGallop);
731 
732             /*
733              * One run is winning so consistently that galloping may be a
734              * huge win. So try that, and continue galloping until (if ever)
735              * neither run appears to be winning consistently anymore.
736              */
737             do {
738                 assert len1 > 1 && len2 > 0;
739                 count1 = gallopRight(a[cursor2], tmp, cursor1, len1, 0, c);
740                 if (count1 != 0) {
741                     System.arraycopy(tmp, cursor1, a, dest, count1);
742                     dest += count1;
743                     cursor1 += count1;
744                     len1 -= count1;
745                     if (len1 <= 1) // len1 == 1 || len1 == 0
746                         break outer;
747                 }
748                 a[dest++] = a[cursor2++];
749                 if (--len2 == 0)
750                     break outer;
751 
752                 count2 = gallopLeft(tmp[cursor1], a, cursor2, len2, 0, c);
753                 if (count2 != 0) {
754                     System.arraycopy(a, cursor2, a, dest, count2);
755                     dest += count2;
756                     cursor2 += count2;
757                     len2 -= count2;
758                     if (len2 == 0)
759                         break outer;
760                 }
761                 a[dest++] = tmp[cursor1++];
762                 if (--len1 == 1)
763                     break outer;
764                 minGallop--;
765             } while (count1 >= MIN_GALLOP | count2 >= MIN_GALLOP);
766             if (minGallop < 0)
767                 minGallop = 0;
768             minGallop += 2;  // Penalize for leaving gallop mode
769         }  // End of "outer" loop
770         this.minGallop = minGallop < 1 ? 1 : minGallop;  // Write back to field
771 
772         if (len1 == 1) {
773             assert len2 > 0;
774             System.arraycopy(a, cursor2, a, dest, len2);
775             a[dest + len2] = tmp[cursor1]; //  Last elt of run 1 to end of merge
776         } else if (len1 == 0) {
777             throw new IllegalArgumentException(
778                 "Comparison method violates its general contract!");
779         } else {
780             assert len2 == 0;
781             assert len1 > 1;
782             System.arraycopy(tmp, cursor1, a, dest, len1);
783         }
784     }
785 
786     /**
787      * Like mergeLo, except that this method should be called only if
788      * len1 >= len2; mergeLo should be called if len1 <= len2.  (Either method
789      * may be called if len1 == len2.)
790      *
791      * @param base1 index of first element in first run to be merged
792      * @param len1  length of first run to be merged (must be > 0)
793      * @param base2 index of first element in second run to be merged
794      *        (must be aBase + aLen)
795      * @param len2  length of second run to be merged (must be > 0)
796      */
797     private void mergeHi(int base1, int len1, int base2, int len2) {
798         assert len1 > 0 && len2 > 0 && base1 + len1 == base2;
799 
800         // Copy second run into temp array
801         T[] a = this.a; // For performance
802         T[] tmp = ensureCapacity(len2);
803         int tmpBase = this.tmpBase;
804         System.arraycopy(a, base2, tmp, tmpBase, len2);
805 
806         int cursor1 = base1 + len1 - 1;  // Indexes into a
807         int cursor2 = tmpBase + len2 - 1; // Indexes into tmp array
808         int dest = base2 + len2 - 1;     // Indexes into a
809 
810         // Move last element of first run and deal with degenerate cases
811         a[dest--] = a[cursor1--];
812         if (--len1 == 0) {
813             System.arraycopy(tmp, tmpBase, a, dest - (len2 - 1), len2);
814             return;
815         }
816         if (len2 == 1) {
817             dest -= len1;
818             cursor1 -= len1;
819             System.arraycopy(a, cursor1 + 1, a, dest + 1, len1);
820             a[dest] = tmp[cursor2];
821             return;
822         }
823 
824         Comparator<? super T> c = this.c;  // Use local variable for performance
825         int minGallop = this.minGallop;    //  "    "       "     "      "
826     outer:
827         while (true) {
828             int count1 = 0; // Number of times in a row that first run won
829             int count2 = 0; // Number of times in a row that second run won
830 
831             /*
832              * Do the straightforward thing until (if ever) one run
833              * appears to win consistently.
834              */
835             do {
836                 assert len1 > 0 && len2 > 1;
837                 if (c.compare(tmp[cursor2], a[cursor1]) < 0) {
838                     a[dest--] = a[cursor1--];
839                     count1++;
840                     count2 = 0;
841                     if (--len1 == 0)
842                         break outer;
843                 } else {
844                     a[dest--] = tmp[cursor2--];
845                     count2++;
846                     count1 = 0;
847                     if (--len2 == 1)
848                         break outer;
849                 }
850             } while ((count1 | count2) < minGallop);
851 
852             /*
853              * One run is winning so consistently that galloping may be a
854              * huge win. So try that, and continue galloping until (if ever)
855              * neither run appears to be winning consistently anymore.
856              */
857             do {
858                 assert len1 > 0 && len2 > 1;
859                 count1 = len1 - gallopRight(tmp[cursor2], a, base1, len1, len1 - 1, c);
860                 if (count1 != 0) {
861                     dest -= count1;
862                     cursor1 -= count1;
863                     len1 -= count1;
864                     System.arraycopy(a, cursor1 + 1, a, dest + 1, count1);
865                     if (len1 == 0)
866                         break outer;
867                 }
868                 a[dest--] = tmp[cursor2--];
869                 if (--len2 == 1)
870                     break outer;
871 
872                 count2 = len2 - gallopLeft(a[cursor1], tmp, tmpBase, len2, len2 - 1, c);
873                 if (count2 != 0) {
874                     dest -= count2;
875                     cursor2 -= count2;
876                     len2 -= count2;
877                     System.arraycopy(tmp, cursor2 + 1, a, dest + 1, count2);
878                     if (len2 <= 1)  // len2 == 1 || len2 == 0
879                         break outer;
880                 }
881                 a[dest--] = a[cursor1--];
882                 if (--len1 == 0)
883                     break outer;
884                 minGallop--;
885             } while (count1 >= MIN_GALLOP | count2 >= MIN_GALLOP);
886             if (minGallop < 0)
887                 minGallop = 0;
888             minGallop += 2;  // Penalize for leaving gallop mode
889         }  // End of "outer" loop
890         this.minGallop = minGallop < 1 ? 1 : minGallop;  // Write back to field
891 
892         if (len2 == 1) {
893             assert len1 > 0;
894             dest -= len1;
895             cursor1 -= len1;
System.arraycopy(a, cursor1 + 1, a, dest + 1, len1)896             System.arraycopy(a, cursor1 + 1, a, dest + 1, len1);
897             a[dest] = tmp[cursor2];  // Move first elt of run2 to front of merge
898         } else if (len2 == 0) {
899             throw new IllegalArgumentException(
900                 "Comparison method violates its general contract!");
901         } else {
902             assert len1 == 0;
903             assert len2 > 0;
904             System.arraycopy(tmp, tmpBase, a, dest - (len2 - 1), len2);
905         }
906     }
907 
908     /**
909      * Ensures that the external array tmp has at least the specified
910      * number of elements, increasing its size if necessary.  The size
911      * increases exponentially to ensure amortized linear time complexity.
912      *
913      * @param minCapacity the minimum required capacity of the tmp array
914      * @return tmp, whether or not it grew
915      */
916     private T[] ensureCapacity(int minCapacity) {
917         if (tmpLen < minCapacity) {
918             // Compute smallest power of 2 > minCapacity
919             int newSize = minCapacity;
920             newSize |= newSize >> 1;
921             newSize |= newSize >> 2;
922             newSize |= newSize >> 4;
923             newSize |= newSize >> 8;
924             newSize |= newSize >> 16;
925             newSize++;
926 
927             if (newSize < 0) // Not bloody likely!
928                 newSize = minCapacity;
929             else
930                 newSize = Math.min(newSize, a.length >>> 1);
931 
932             @SuppressWarnings({"unchecked", "UnnecessaryLocalVariable"})
933             T[] newArray = (T[])java.lang.reflect.Array.newInstance
934                 (a.getClass().getComponentType(), newSize);
935             tmp = newArray;
936             tmpLen = newSize;
937             tmpBase = 0;
938         }
939         return tmp;
940     }
941 }
942