1 /* 2 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 3 * 4 * This code is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License version 2 only, as 6 * published by the Free Software Foundation. Oracle designates this 7 * particular file as subject to the "Classpath" exception as provided 8 * by Oracle in the LICENSE file that accompanied this code. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 */ 24 25 /* 26 * This file is available under and governed by the GNU General Public 27 * License version 2 only, as published by the Free Software Foundation. 28 * However, the following notice accompanied the original version of this 29 * file: 30 * 31 * Written by Doug Lea with assistance from members of JCP JSR-166 32 * Expert Group and released to the public domain, as explained at 33 * http://creativecommons.org/publicdomain/zero/1.0/ 34 */ 35 36 package java.util.concurrent; 37 38 import java.util.AbstractQueue; 39 import java.util.Arrays; 40 import java.util.Collection; 41 import java.util.Comparator; 42 import java.util.Iterator; 43 import java.util.NoSuchElementException; 44 import java.util.PriorityQueue; 45 import java.util.Queue; 46 import java.util.SortedSet; 47 import java.util.Spliterator; 48 import java.util.concurrent.locks.Condition; 49 import java.util.concurrent.locks.ReentrantLock; 50 import java.util.function.Consumer; 51 52 // BEGIN android-note 53 // removed link to collections framework docs 54 // END android-note 55 56 /** 57 * An unbounded {@linkplain BlockingQueue blocking queue} that uses 58 * the same ordering rules as class {@link PriorityQueue} and supplies 59 * blocking retrieval operations. While this queue is logically 60 * unbounded, attempted additions may fail due to resource exhaustion 61 * (causing {@code OutOfMemoryError}). This class does not permit 62 * {@code null} elements. A priority queue relying on {@linkplain 63 * Comparable natural ordering} also does not permit insertion of 64 * non-comparable objects (doing so results in 65 * {@code ClassCastException}). 66 * 67 * <p>This class and its iterator implement all of the 68 * <em>optional</em> methods of the {@link Collection} and {@link 69 * Iterator} interfaces. The Iterator provided in method {@link 70 * #iterator()} is <em>not</em> guaranteed to traverse the elements of 71 * the PriorityBlockingQueue in any particular order. If you need 72 * ordered traversal, consider using 73 * {@code Arrays.sort(pq.toArray())}. Also, method {@code drainTo} 74 * can be used to <em>remove</em> some or all elements in priority 75 * order and place them in another collection. 76 * 77 * <p>Operations on this class make no guarantees about the ordering 78 * of elements with equal priority. If you need to enforce an 79 * ordering, you can define custom classes or comparators that use a 80 * secondary key to break ties in primary priority values. For 81 * example, here is a class that applies first-in-first-out 82 * tie-breaking to comparable elements. To use it, you would insert a 83 * {@code new FIFOEntry(anEntry)} instead of a plain entry object. 84 * 85 * <pre> {@code 86 * class FIFOEntry<E extends Comparable<? super E>> 87 * implements Comparable<FIFOEntry<E>> { 88 * static final AtomicLong seq = new AtomicLong(0); 89 * final long seqNum; 90 * final E entry; 91 * public FIFOEntry(E entry) { 92 * seqNum = seq.getAndIncrement(); 93 * this.entry = entry; 94 * } 95 * public E getEntry() { return entry; } 96 * public int compareTo(FIFOEntry<E> other) { 97 * int res = entry.compareTo(other.entry); 98 * if (res == 0 && other.entry != this.entry) 99 * res = (seqNum < other.seqNum ? -1 : 1); 100 * return res; 101 * } 102 * }}</pre> 103 * 104 * @since 1.5 105 * @author Doug Lea 106 * @param <E> the type of elements held in this queue 107 */ 108 @SuppressWarnings("unchecked") 109 public class PriorityBlockingQueue<E> extends AbstractQueue<E> 110 implements BlockingQueue<E>, java.io.Serializable { 111 private static final long serialVersionUID = 5595510919245408276L; 112 113 /* 114 * The implementation uses an array-based binary heap, with public 115 * operations protected with a single lock. However, allocation 116 * during resizing uses a simple spinlock (used only while not 117 * holding main lock) in order to allow takes to operate 118 * concurrently with allocation. This avoids repeated 119 * postponement of waiting consumers and consequent element 120 * build-up. The need to back away from lock during allocation 121 * makes it impossible to simply wrap delegated 122 * java.util.PriorityQueue operations within a lock, as was done 123 * in a previous version of this class. To maintain 124 * interoperability, a plain PriorityQueue is still used during 125 * serialization, which maintains compatibility at the expense of 126 * transiently doubling overhead. 127 */ 128 129 /** 130 * Default array capacity. 131 */ 132 private static final int DEFAULT_INITIAL_CAPACITY = 11; 133 134 /** 135 * The maximum size of array to allocate. 136 * Some VMs reserve some header words in an array. 137 * Attempts to allocate larger arrays may result in 138 * OutOfMemoryError: Requested array size exceeds VM limit 139 */ 140 private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; 141 142 /** 143 * Priority queue represented as a balanced binary heap: the two 144 * children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The 145 * priority queue is ordered by comparator, or by the elements' 146 * natural ordering, if comparator is null: For each node n in the 147 * heap and each descendant d of n, n <= d. The element with the 148 * lowest value is in queue[0], assuming the queue is nonempty. 149 */ 150 private transient Object[] queue; 151 152 /** 153 * The number of elements in the priority queue. 154 */ 155 private transient int size; 156 157 /** 158 * The comparator, or null if priority queue uses elements' 159 * natural ordering. 160 */ 161 private transient Comparator<? super E> comparator; 162 163 /** 164 * Lock used for all public operations. 165 */ 166 private final ReentrantLock lock; 167 168 /** 169 * Condition for blocking when empty. 170 */ 171 private final Condition notEmpty; 172 173 /** 174 * Spinlock for allocation, acquired via CAS. 175 */ 176 private transient volatile int allocationSpinLock; 177 178 /** 179 * A plain PriorityQueue used only for serialization, 180 * to maintain compatibility with previous versions 181 * of this class. Non-null only during serialization/deserialization. 182 */ 183 private PriorityQueue<E> q; 184 185 /** 186 * Creates a {@code PriorityBlockingQueue} with the default 187 * initial capacity (11) that orders its elements according to 188 * their {@linkplain Comparable natural ordering}. 189 */ PriorityBlockingQueue()190 public PriorityBlockingQueue() { 191 this(DEFAULT_INITIAL_CAPACITY, null); 192 } 193 194 /** 195 * Creates a {@code PriorityBlockingQueue} with the specified 196 * initial capacity that orders its elements according to their 197 * {@linkplain Comparable natural ordering}. 198 * 199 * @param initialCapacity the initial capacity for this priority queue 200 * @throws IllegalArgumentException if {@code initialCapacity} is less 201 * than 1 202 */ PriorityBlockingQueue(int initialCapacity)203 public PriorityBlockingQueue(int initialCapacity) { 204 this(initialCapacity, null); 205 } 206 207 /** 208 * Creates a {@code PriorityBlockingQueue} with the specified initial 209 * capacity that orders its elements according to the specified 210 * comparator. 211 * 212 * @param initialCapacity the initial capacity for this priority queue 213 * @param comparator the comparator that will be used to order this 214 * priority queue. If {@code null}, the {@linkplain Comparable 215 * natural ordering} of the elements will be used. 216 * @throws IllegalArgumentException if {@code initialCapacity} is less 217 * than 1 218 */ PriorityBlockingQueue(int initialCapacity, Comparator<? super E> comparator)219 public PriorityBlockingQueue(int initialCapacity, 220 Comparator<? super E> comparator) { 221 if (initialCapacity < 1) 222 throw new IllegalArgumentException(); 223 this.lock = new ReentrantLock(); 224 this.notEmpty = lock.newCondition(); 225 this.comparator = comparator; 226 this.queue = new Object[initialCapacity]; 227 } 228 229 /** 230 * Creates a {@code PriorityBlockingQueue} containing the elements 231 * in the specified collection. If the specified collection is a 232 * {@link SortedSet} or a {@link PriorityQueue}, this 233 * priority queue will be ordered according to the same ordering. 234 * Otherwise, this priority queue will be ordered according to the 235 * {@linkplain Comparable natural ordering} of its elements. 236 * 237 * @param c the collection whose elements are to be placed 238 * into this priority queue 239 * @throws ClassCastException if elements of the specified collection 240 * cannot be compared to one another according to the priority 241 * queue's ordering 242 * @throws NullPointerException if the specified collection or any 243 * of its elements are null 244 */ PriorityBlockingQueue(Collection<? extends E> c)245 public PriorityBlockingQueue(Collection<? extends E> c) { 246 this.lock = new ReentrantLock(); 247 this.notEmpty = lock.newCondition(); 248 boolean heapify = true; // true if not known to be in heap order 249 boolean screen = true; // true if must screen for nulls 250 if (c instanceof SortedSet<?>) { 251 SortedSet<? extends E> ss = (SortedSet<? extends E>) c; 252 this.comparator = (Comparator<? super E>) ss.comparator(); 253 heapify = false; 254 } 255 else if (c instanceof PriorityBlockingQueue<?>) { 256 PriorityBlockingQueue<? extends E> pq = 257 (PriorityBlockingQueue<? extends E>) c; 258 this.comparator = (Comparator<? super E>) pq.comparator(); 259 screen = false; 260 if (pq.getClass() == PriorityBlockingQueue.class) // exact match 261 heapify = false; 262 } 263 Object[] a = c.toArray(); 264 int n = a.length; 265 // If c.toArray incorrectly doesn't return Object[], copy it. 266 if (a.getClass() != Object[].class) 267 a = Arrays.copyOf(a, n, Object[].class); 268 if (screen && (n == 1 || this.comparator != null)) { 269 for (int i = 0; i < n; ++i) 270 if (a[i] == null) 271 throw new NullPointerException(); 272 } 273 this.queue = a; 274 this.size = n; 275 if (heapify) 276 heapify(); 277 } 278 279 /** 280 * Tries to grow array to accommodate at least one more element 281 * (but normally expand by about 50%), giving up (allowing retry) 282 * on contention (which we expect to be rare). Call only while 283 * holding lock. 284 * 285 * @param array the heap array 286 * @param oldCap the length of the array 287 */ tryGrow(Object[] array, int oldCap)288 private void tryGrow(Object[] array, int oldCap) { 289 lock.unlock(); // must release and then re-acquire main lock 290 Object[] newArray = null; 291 if (allocationSpinLock == 0 && 292 U.compareAndSwapInt(this, ALLOCATIONSPINLOCK, 0, 1)) { 293 try { 294 int newCap = oldCap + ((oldCap < 64) ? 295 (oldCap + 2) : // grow faster if small 296 (oldCap >> 1)); 297 if (newCap - MAX_ARRAY_SIZE > 0) { // possible overflow 298 int minCap = oldCap + 1; 299 if (minCap < 0 || minCap > MAX_ARRAY_SIZE) 300 throw new OutOfMemoryError(); 301 newCap = MAX_ARRAY_SIZE; 302 } 303 if (newCap > oldCap && queue == array) 304 newArray = new Object[newCap]; 305 } finally { 306 allocationSpinLock = 0; 307 } 308 } 309 if (newArray == null) // back off if another thread is allocating 310 Thread.yield(); 311 lock.lock(); 312 if (newArray != null && queue == array) { 313 queue = newArray; 314 System.arraycopy(array, 0, newArray, 0, oldCap); 315 } 316 } 317 318 /** 319 * Mechanics for poll(). Call only while holding lock. 320 */ dequeue()321 private E dequeue() { 322 int n = size - 1; 323 if (n < 0) 324 return null; 325 else { 326 Object[] array = queue; 327 E result = (E) array[0]; 328 E x = (E) array[n]; 329 array[n] = null; 330 Comparator<? super E> cmp = comparator; 331 if (cmp == null) 332 siftDownComparable(0, x, array, n); 333 else 334 siftDownUsingComparator(0, x, array, n, cmp); 335 size = n; 336 return result; 337 } 338 } 339 340 /** 341 * Inserts item x at position k, maintaining heap invariant by 342 * promoting x up the tree until it is greater than or equal to 343 * its parent, or is the root. 344 * 345 * To simplify and speed up coercions and comparisons. the 346 * Comparable and Comparator versions are separated into different 347 * methods that are otherwise identical. (Similarly for siftDown.) 348 * These methods are static, with heap state as arguments, to 349 * simplify use in light of possible comparator exceptions. 350 * 351 * @param k the position to fill 352 * @param x the item to insert 353 * @param array the heap array 354 */ siftUpComparable(int k, T x, Object[] array)355 private static <T> void siftUpComparable(int k, T x, Object[] array) { 356 Comparable<? super T> key = (Comparable<? super T>) x; 357 while (k > 0) { 358 int parent = (k - 1) >>> 1; 359 Object e = array[parent]; 360 if (key.compareTo((T) e) >= 0) 361 break; 362 array[k] = e; 363 k = parent; 364 } 365 array[k] = key; 366 } 367 siftUpUsingComparator(int k, T x, Object[] array, Comparator<? super T> cmp)368 private static <T> void siftUpUsingComparator(int k, T x, Object[] array, 369 Comparator<? super T> cmp) { 370 while (k > 0) { 371 int parent = (k - 1) >>> 1; 372 Object e = array[parent]; 373 if (cmp.compare(x, (T) e) >= 0) 374 break; 375 array[k] = e; 376 k = parent; 377 } 378 array[k] = x; 379 } 380 381 /** 382 * Inserts item x at position k, maintaining heap invariant by 383 * demoting x down the tree repeatedly until it is less than or 384 * equal to its children or is a leaf. 385 * 386 * @param k the position to fill 387 * @param x the item to insert 388 * @param array the heap array 389 * @param n heap size 390 */ siftDownComparable(int k, T x, Object[] array, int n)391 private static <T> void siftDownComparable(int k, T x, Object[] array, 392 int n) { 393 if (n > 0) { 394 Comparable<? super T> key = (Comparable<? super T>)x; 395 int half = n >>> 1; // loop while a non-leaf 396 while (k < half) { 397 int child = (k << 1) + 1; // assume left child is least 398 Object c = array[child]; 399 int right = child + 1; 400 if (right < n && 401 ((Comparable<? super T>) c).compareTo((T) array[right]) > 0) 402 c = array[child = right]; 403 if (key.compareTo((T) c) <= 0) 404 break; 405 array[k] = c; 406 k = child; 407 } 408 array[k] = key; 409 } 410 } 411 siftDownUsingComparator(int k, T x, Object[] array, int n, Comparator<? super T> cmp)412 private static <T> void siftDownUsingComparator(int k, T x, Object[] array, 413 int n, 414 Comparator<? super T> cmp) { 415 if (n > 0) { 416 int half = n >>> 1; 417 while (k < half) { 418 int child = (k << 1) + 1; 419 Object c = array[child]; 420 int right = child + 1; 421 if (right < n && cmp.compare((T) c, (T) array[right]) > 0) 422 c = array[child = right]; 423 if (cmp.compare(x, (T) c) <= 0) 424 break; 425 array[k] = c; 426 k = child; 427 } 428 array[k] = x; 429 } 430 } 431 432 /** 433 * Establishes the heap invariant (described above) in the entire tree, 434 * assuming nothing about the order of the elements prior to the call. 435 */ heapify()436 private void heapify() { 437 Object[] array = queue; 438 int n = size; 439 int half = (n >>> 1) - 1; 440 Comparator<? super E> cmp = comparator; 441 if (cmp == null) { 442 for (int i = half; i >= 0; i--) 443 siftDownComparable(i, (E) array[i], array, n); 444 } 445 else { 446 for (int i = half; i >= 0; i--) 447 siftDownUsingComparator(i, (E) array[i], array, n, cmp); 448 } 449 } 450 451 /** 452 * Inserts the specified element into this priority queue. 453 * 454 * @param e the element to add 455 * @return {@code true} (as specified by {@link Collection#add}) 456 * @throws ClassCastException if the specified element cannot be compared 457 * with elements currently in the priority queue according to the 458 * priority queue's ordering 459 * @throws NullPointerException if the specified element is null 460 */ add(E e)461 public boolean add(E e) { 462 return offer(e); 463 } 464 465 /** 466 * Inserts the specified element into this priority queue. 467 * As the queue is unbounded, this method will never return {@code false}. 468 * 469 * @param e the element to add 470 * @return {@code true} (as specified by {@link Queue#offer}) 471 * @throws ClassCastException if the specified element cannot be compared 472 * with elements currently in the priority queue according to the 473 * priority queue's ordering 474 * @throws NullPointerException if the specified element is null 475 */ offer(E e)476 public boolean offer(E e) { 477 if (e == null) 478 throw new NullPointerException(); 479 final ReentrantLock lock = this.lock; 480 lock.lock(); 481 int n, cap; 482 Object[] array; 483 while ((n = size) >= (cap = (array = queue).length)) 484 tryGrow(array, cap); 485 try { 486 Comparator<? super E> cmp = comparator; 487 if (cmp == null) 488 siftUpComparable(n, e, array); 489 else 490 siftUpUsingComparator(n, e, array, cmp); 491 size = n + 1; 492 notEmpty.signal(); 493 } finally { 494 lock.unlock(); 495 } 496 return true; 497 } 498 499 /** 500 * Inserts the specified element into this priority queue. 501 * As the queue is unbounded, this method will never block. 502 * 503 * @param e the element to add 504 * @throws ClassCastException if the specified element cannot be compared 505 * with elements currently in the priority queue according to the 506 * priority queue's ordering 507 * @throws NullPointerException if the specified element is null 508 */ put(E e)509 public void put(E e) { 510 offer(e); // never need to block 511 } 512 513 /** 514 * Inserts the specified element into this priority queue. 515 * As the queue is unbounded, this method will never block or 516 * return {@code false}. 517 * 518 * @param e the element to add 519 * @param timeout This parameter is ignored as the method never blocks 520 * @param unit This parameter is ignored as the method never blocks 521 * @return {@code true} (as specified by 522 * {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer}) 523 * @throws ClassCastException if the specified element cannot be compared 524 * with elements currently in the priority queue according to the 525 * priority queue's ordering 526 * @throws NullPointerException if the specified element is null 527 */ offer(E e, long timeout, TimeUnit unit)528 public boolean offer(E e, long timeout, TimeUnit unit) { 529 return offer(e); // never need to block 530 } 531 poll()532 public E poll() { 533 final ReentrantLock lock = this.lock; 534 lock.lock(); 535 try { 536 return dequeue(); 537 } finally { 538 lock.unlock(); 539 } 540 } 541 take()542 public E take() throws InterruptedException { 543 final ReentrantLock lock = this.lock; 544 lock.lockInterruptibly(); 545 E result; 546 try { 547 while ( (result = dequeue()) == null) 548 notEmpty.await(); 549 } finally { 550 lock.unlock(); 551 } 552 return result; 553 } 554 poll(long timeout, TimeUnit unit)555 public E poll(long timeout, TimeUnit unit) throws InterruptedException { 556 long nanos = unit.toNanos(timeout); 557 final ReentrantLock lock = this.lock; 558 lock.lockInterruptibly(); 559 E result; 560 try { 561 while ( (result = dequeue()) == null && nanos > 0) 562 nanos = notEmpty.awaitNanos(nanos); 563 } finally { 564 lock.unlock(); 565 } 566 return result; 567 } 568 peek()569 public E peek() { 570 final ReentrantLock lock = this.lock; 571 lock.lock(); 572 try { 573 return (size == 0) ? null : (E) queue[0]; 574 } finally { 575 lock.unlock(); 576 } 577 } 578 579 /** 580 * Returns the comparator used to order the elements in this queue, 581 * or {@code null} if this queue uses the {@linkplain Comparable 582 * natural ordering} of its elements. 583 * 584 * @return the comparator used to order the elements in this queue, 585 * or {@code null} if this queue uses the natural 586 * ordering of its elements 587 */ comparator()588 public Comparator<? super E> comparator() { 589 return comparator; 590 } 591 size()592 public int size() { 593 final ReentrantLock lock = this.lock; 594 lock.lock(); 595 try { 596 return size; 597 } finally { 598 lock.unlock(); 599 } 600 } 601 602 /** 603 * Always returns {@code Integer.MAX_VALUE} because 604 * a {@code PriorityBlockingQueue} is not capacity constrained. 605 * @return {@code Integer.MAX_VALUE} always 606 */ remainingCapacity()607 public int remainingCapacity() { 608 return Integer.MAX_VALUE; 609 } 610 indexOf(Object o)611 private int indexOf(Object o) { 612 if (o != null) { 613 Object[] array = queue; 614 int n = size; 615 for (int i = 0; i < n; i++) 616 if (o.equals(array[i])) 617 return i; 618 } 619 return -1; 620 } 621 622 /** 623 * Removes the ith element from queue. 624 */ removeAt(int i)625 private void removeAt(int i) { 626 Object[] array = queue; 627 int n = size - 1; 628 if (n == i) // removed last element 629 array[i] = null; 630 else { 631 E moved = (E) array[n]; 632 array[n] = null; 633 Comparator<? super E> cmp = comparator; 634 if (cmp == null) 635 siftDownComparable(i, moved, array, n); 636 else 637 siftDownUsingComparator(i, moved, array, n, cmp); 638 if (array[i] == moved) { 639 if (cmp == null) 640 siftUpComparable(i, moved, array); 641 else 642 siftUpUsingComparator(i, moved, array, cmp); 643 } 644 } 645 size = n; 646 } 647 648 /** 649 * Removes a single instance of the specified element from this queue, 650 * if it is present. More formally, removes an element {@code e} such 651 * that {@code o.equals(e)}, if this queue contains one or more such 652 * elements. Returns {@code true} if and only if this queue contained 653 * the specified element (or equivalently, if this queue changed as a 654 * result of the call). 655 * 656 * @param o element to be removed from this queue, if present 657 * @return {@code true} if this queue changed as a result of the call 658 */ remove(Object o)659 public boolean remove(Object o) { 660 final ReentrantLock lock = this.lock; 661 lock.lock(); 662 try { 663 int i = indexOf(o); 664 if (i == -1) 665 return false; 666 removeAt(i); 667 return true; 668 } finally { 669 lock.unlock(); 670 } 671 } 672 673 /** 674 * Identity-based version for use in Itr.remove. 675 */ removeEQ(Object o)676 void removeEQ(Object o) { 677 final ReentrantLock lock = this.lock; 678 lock.lock(); 679 try { 680 Object[] array = queue; 681 for (int i = 0, n = size; i < n; i++) { 682 if (o == array[i]) { 683 removeAt(i); 684 break; 685 } 686 } 687 } finally { 688 lock.unlock(); 689 } 690 } 691 692 /** 693 * Returns {@code true} if this queue contains the specified element. 694 * More formally, returns {@code true} if and only if this queue contains 695 * at least one element {@code e} such that {@code o.equals(e)}. 696 * 697 * @param o object to be checked for containment in this queue 698 * @return {@code true} if this queue contains the specified element 699 */ contains(Object o)700 public boolean contains(Object o) { 701 final ReentrantLock lock = this.lock; 702 lock.lock(); 703 try { 704 return indexOf(o) != -1; 705 } finally { 706 lock.unlock(); 707 } 708 } 709 toString()710 public String toString() { 711 return Helpers.collectionToString(this); 712 } 713 714 /** 715 * @throws UnsupportedOperationException {@inheritDoc} 716 * @throws ClassCastException {@inheritDoc} 717 * @throws NullPointerException {@inheritDoc} 718 * @throws IllegalArgumentException {@inheritDoc} 719 */ drainTo(Collection<? super E> c)720 public int drainTo(Collection<? super E> c) { 721 return drainTo(c, Integer.MAX_VALUE); 722 } 723 724 /** 725 * @throws UnsupportedOperationException {@inheritDoc} 726 * @throws ClassCastException {@inheritDoc} 727 * @throws NullPointerException {@inheritDoc} 728 * @throws IllegalArgumentException {@inheritDoc} 729 */ drainTo(Collection<? super E> c, int maxElements)730 public int drainTo(Collection<? super E> c, int maxElements) { 731 if (c == null) 732 throw new NullPointerException(); 733 if (c == this) 734 throw new IllegalArgumentException(); 735 if (maxElements <= 0) 736 return 0; 737 final ReentrantLock lock = this.lock; 738 lock.lock(); 739 try { 740 int n = Math.min(size, maxElements); 741 for (int i = 0; i < n; i++) { 742 c.add((E) queue[0]); // In this order, in case add() throws. 743 dequeue(); 744 } 745 return n; 746 } finally { 747 lock.unlock(); 748 } 749 } 750 751 /** 752 * Atomically removes all of the elements from this queue. 753 * The queue will be empty after this call returns. 754 */ clear()755 public void clear() { 756 final ReentrantLock lock = this.lock; 757 lock.lock(); 758 try { 759 Object[] array = queue; 760 int n = size; 761 size = 0; 762 for (int i = 0; i < n; i++) 763 array[i] = null; 764 } finally { 765 lock.unlock(); 766 } 767 } 768 769 /** 770 * Returns an array containing all of the elements in this queue. 771 * The returned array elements are in no particular order. 772 * 773 * <p>The returned array will be "safe" in that no references to it are 774 * maintained by this queue. (In other words, this method must allocate 775 * a new array). The caller is thus free to modify the returned array. 776 * 777 * <p>This method acts as bridge between array-based and collection-based 778 * APIs. 779 * 780 * @return an array containing all of the elements in this queue 781 */ toArray()782 public Object[] toArray() { 783 final ReentrantLock lock = this.lock; 784 lock.lock(); 785 try { 786 return Arrays.copyOf(queue, size); 787 } finally { 788 lock.unlock(); 789 } 790 } 791 792 /** 793 * Returns an array containing all of the elements in this queue; the 794 * runtime type of the returned array is that of the specified array. 795 * The returned array elements are in no particular order. 796 * If the queue fits in the specified array, it is returned therein. 797 * Otherwise, a new array is allocated with the runtime type of the 798 * specified array and the size of this queue. 799 * 800 * <p>If this queue fits in the specified array with room to spare 801 * (i.e., the array has more elements than this queue), the element in 802 * the array immediately following the end of the queue is set to 803 * {@code null}. 804 * 805 * <p>Like the {@link #toArray()} method, this method acts as bridge between 806 * array-based and collection-based APIs. Further, this method allows 807 * precise control over the runtime type of the output array, and may, 808 * under certain circumstances, be used to save allocation costs. 809 * 810 * <p>Suppose {@code x} is a queue known to contain only strings. 811 * The following code can be used to dump the queue into a newly 812 * allocated array of {@code String}: 813 * 814 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre> 815 * 816 * Note that {@code toArray(new Object[0])} is identical in function to 817 * {@code toArray()}. 818 * 819 * @param a the array into which the elements of the queue are to 820 * be stored, if it is big enough; otherwise, a new array of the 821 * same runtime type is allocated for this purpose 822 * @return an array containing all of the elements in this queue 823 * @throws ArrayStoreException if the runtime type of the specified array 824 * is not a supertype of the runtime type of every element in 825 * this queue 826 * @throws NullPointerException if the specified array is null 827 */ toArray(T[] a)828 public <T> T[] toArray(T[] a) { 829 final ReentrantLock lock = this.lock; 830 lock.lock(); 831 try { 832 int n = size; 833 if (a.length < n) 834 // Make a new array of a's runtime type, but my contents: 835 return (T[]) Arrays.copyOf(queue, size, a.getClass()); 836 System.arraycopy(queue, 0, a, 0, n); 837 if (a.length > n) 838 a[n] = null; 839 return a; 840 } finally { 841 lock.unlock(); 842 } 843 } 844 845 /** 846 * Returns an iterator over the elements in this queue. The 847 * iterator does not return the elements in any particular order. 848 * 849 * <p>The returned iterator is 850 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>. 851 * 852 * @return an iterator over the elements in this queue 853 */ iterator()854 public Iterator<E> iterator() { 855 return new Itr(toArray()); 856 } 857 858 /** 859 * Snapshot iterator that works off copy of underlying q array. 860 */ 861 final class Itr implements Iterator<E> { 862 final Object[] array; // Array of all elements 863 int cursor; // index of next element to return 864 int lastRet; // index of last element, or -1 if no such 865 Itr(Object[] array)866 Itr(Object[] array) { 867 lastRet = -1; 868 this.array = array; 869 } 870 hasNext()871 public boolean hasNext() { 872 return cursor < array.length; 873 } 874 next()875 public E next() { 876 if (cursor >= array.length) 877 throw new NoSuchElementException(); 878 lastRet = cursor; 879 return (E)array[cursor++]; 880 } 881 remove()882 public void remove() { 883 if (lastRet < 0) 884 throw new IllegalStateException(); 885 removeEQ(array[lastRet]); 886 lastRet = -1; 887 } 888 } 889 890 /** 891 * Saves this queue to a stream (that is, serializes it). 892 * 893 * For compatibility with previous version of this class, elements 894 * are first copied to a java.util.PriorityQueue, which is then 895 * serialized. 896 * 897 * @param s the stream 898 * @throws java.io.IOException if an I/O error occurs 899 */ writeObject(java.io.ObjectOutputStream s)900 private void writeObject(java.io.ObjectOutputStream s) 901 throws java.io.IOException { 902 lock.lock(); 903 try { 904 // avoid zero capacity argument 905 q = new PriorityQueue<E>(Math.max(size, 1), comparator); 906 q.addAll(this); 907 s.defaultWriteObject(); 908 } finally { 909 q = null; 910 lock.unlock(); 911 } 912 } 913 914 /** 915 * Reconstitutes this queue from a stream (that is, deserializes it). 916 * @param s the stream 917 * @throws ClassNotFoundException if the class of a serialized object 918 * could not be found 919 * @throws java.io.IOException if an I/O error occurs 920 */ readObject(java.io.ObjectInputStream s)921 private void readObject(java.io.ObjectInputStream s) 922 throws java.io.IOException, ClassNotFoundException { 923 try { 924 s.defaultReadObject(); 925 this.queue = new Object[q.size()]; 926 comparator = q.comparator(); 927 addAll(q); 928 } finally { 929 q = null; 930 } 931 } 932 933 // Similar to Collections.ArraySnapshotSpliterator but avoids 934 // commitment to toArray until needed 935 static final class PBQSpliterator<E> implements Spliterator<E> { 936 final PriorityBlockingQueue<E> queue; 937 Object[] array; 938 int index; 939 int fence; 940 PBQSpliterator(PriorityBlockingQueue<E> queue, Object[] array, int index, int fence)941 PBQSpliterator(PriorityBlockingQueue<E> queue, Object[] array, 942 int index, int fence) { 943 this.queue = queue; 944 this.array = array; 945 this.index = index; 946 this.fence = fence; 947 } 948 getFence()949 final int getFence() { 950 int hi; 951 if ((hi = fence) < 0) 952 hi = fence = (array = queue.toArray()).length; 953 return hi; 954 } 955 trySplit()956 public PBQSpliterator<E> trySplit() { 957 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1; 958 return (lo >= mid) ? null : 959 new PBQSpliterator<E>(queue, array, lo, index = mid); 960 } 961 962 @SuppressWarnings("unchecked") forEachRemaining(Consumer<? super E> action)963 public void forEachRemaining(Consumer<? super E> action) { 964 Object[] a; int i, hi; // hoist accesses and checks from loop 965 if (action == null) 966 throw new NullPointerException(); 967 if ((a = array) == null) 968 fence = (a = queue.toArray()).length; 969 if ((hi = fence) <= a.length && 970 (i = index) >= 0 && i < (index = hi)) { 971 do { action.accept((E)a[i]); } while (++i < hi); 972 } 973 } 974 tryAdvance(Consumer<? super E> action)975 public boolean tryAdvance(Consumer<? super E> action) { 976 if (action == null) 977 throw new NullPointerException(); 978 if (getFence() > index && index >= 0) { 979 @SuppressWarnings("unchecked") E e = (E) array[index++]; 980 action.accept(e); 981 return true; 982 } 983 return false; 984 } 985 estimateSize()986 public long estimateSize() { return (long)(getFence() - index); } 987 characteristics()988 public int characteristics() { 989 return Spliterator.NONNULL | Spliterator.SIZED | Spliterator.SUBSIZED; 990 } 991 } 992 993 /** 994 * Returns a {@link Spliterator} over the elements in this queue. 995 * 996 * <p>The returned spliterator is 997 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>. 998 * 999 * <p>The {@code Spliterator} reports {@link Spliterator#SIZED} and 1000 * {@link Spliterator#NONNULL}. 1001 * 1002 * @implNote 1003 * The {@code Spliterator} additionally reports {@link Spliterator#SUBSIZED}. 1004 * 1005 * @return a {@code Spliterator} over the elements in this queue 1006 * @since 1.8 1007 */ spliterator()1008 public Spliterator<E> spliterator() { 1009 return new PBQSpliterator<E>(this, null, 0, -1); 1010 } 1011 1012 // Unsafe mechanics 1013 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe(); 1014 private static final long ALLOCATIONSPINLOCK; 1015 static { 1016 try { 1017 ALLOCATIONSPINLOCK = U.objectFieldOffset 1018 (PriorityBlockingQueue.class.getDeclaredField("allocationSpinLock")); 1019 } catch (ReflectiveOperationException e) { 1020 throw new Error(e); 1021 } 1022 } 1023 } 1024