Home
last modified time | relevance | path

Searched refs:RNN (Results 1 – 23 of 23) sorted by relevance

/frameworks/ml/nn/common/operations/
DRNN.cpp34 RNN::RNN(const Operation& operation, RunTimeOperandInfo* operands) { in RNN() function in android::nn::RNN
49 bool RNN::Prepare(const Operation& operation, RunTimeOperandInfo* operands, Shape* hiddenStateShape, in Prepare()
85 bool RNN::Eval() { in Eval()
120 bool RNN::RNNStep(const T* inputData, const Shape& inputShape, const T* hiddenStateInputData, in RNNStep()
140 bool RNN::RNNStep(const T* inputData, const Shape& inputShape, const T* auxInputData, in RNNStep()
227 template bool RNN::RNNStep<_Float16>(const _Float16* inputData, const Shape& inputShape,
233 template bool RNN::RNNStep<_Float16>(const _Float16* inputData, const Shape& inputShape,
243 template bool RNN::RNNStep<float>(const float* inputData, const Shape& inputShape,
249 template bool RNN::RNNStep<float>(const float* inputData, const Shape& inputShape,
DRNN.h31 class RNN {
33 RNN(const hal::Operation& operation, RunTimeOperandInfo* operands);
DRNNTest.cpp200 ASSERT_EQ(execution.setInput(RNN::k##X##Tensor, X##_.data(), sizeof(float) * X##_.size()), \ in Invoke()
208 ASSERT_EQ(execution.setOutput(RNN::k##X##Tensor, X##_.data(), sizeof(float) * X##_.size()), \ in Invoke()
215 ASSERT_EQ(execution.setInput(RNN::kActivationParam, &activation_, sizeof(activation_)), in Invoke()
DBidirectionalSequenceRNN.cpp267 RNN::RNNStep<T>(inputBatchPtr, fixedTimeInputShape, auxInputBatchPtr, in executeTyped()
295 RNN::RNNStep<T>(inputBatchPtr, fixedTimeInputShape, auxInputBatchPtr, in executeTyped()
DUnidirectionalSequenceRNN.cpp109 RNN::RNNStep<T>(input, fixedTimeInputShape, hiddenState, bias, weights, weightsShape, in executeTyped()
/frameworks/ml/nn/runtime/test/android_fuzzing/corpus/
Dseed037147 type: RNN
Dseed459310 type: RNN
Dseed499456 type: RNN
Dseed4031109 type: RNN
Dseed2061427 type: RNN
/frameworks/ml/nn/runtime/test/generated/spec_V1_0/
Drnn.example.cpp100 .type = TestOperationType::RNN in get_test_model()
377 .type = TestOperationType::RNN in get_test_model_all_inputs_as_internal()
Drnn_state.example.cpp100 .type = TestOperationType::RNN in get_test_model()
377 .type = TestOperationType::RNN in get_test_model_all_inputs_as_internal()
/frameworks/ml/nn/runtime/test/generated/spec_V1_2/
Drnn_float16.example.cpp100 .type = TestOperationType::RNN in get_test_model()
377 .type = TestOperationType::RNN in get_test_model_all_inputs_as_internal()
/frameworks/ml/nn/runtime/test/generated/spec_V1_1/
Drnn_state_relaxed.example.cpp100 .type = TestOperationType::RNN in get_test_model()
377 .type = TestOperationType::RNN in get_test_model_all_inputs_as_internal()
Drnn_relaxed.example.cpp100 .type = TestOperationType::RNN in get_test_model()
377 .type = TestOperationType::RNN in get_test_model_all_inputs_as_internal()
/frameworks/ml/nn/runtime/test/android_fuzzing/
DStaticAssert.cpp80 static_assert(static_cast<TestOperationType>(RNN) == TestOperationType::RNN);
DModel.proto64 RNN = 24; enumerator
/frameworks/ml/nn/runtime/test/
DTestAssertions.cpp67 CHECK_TEST_ENUM(TestOperationType, RNN);
/frameworks/ml/nn/common/
DAndroid.bp173 "operations/RNN.cpp",
DCpuExecutor.cpp1125 case OperationType::RNN: { in executeOperation()
1130 RunTimeOperandInfo& hiddenStateOut = operands[outs[RNN::kHiddenStateOutTensor]]; in executeOperation()
1131 RunTimeOperandInfo& output = operands[outs[RNN::kOutputTensor]]; in executeOperation()
1134 RNN rnn_cell(operation, operands); in executeOperation()
1136 success = RNN::Prepare(operation, operands, &hiddenStateShape, &outputShape) && in executeOperation()
/frameworks/ml/nn/tools/test_generator/test_harness/include/
DTestHarness.h119 RNN = 24, enumerator
/frameworks/ml/nn/runtime/
DNeuralNetworks.cpp333 static_assert(static_cast<int32_t>(OperationType::RNN) == ANEURALNETWORKS_RNN,
/frameworks/ml/nn/tools/api/
Dtypes.spec2124 %{DeclareOperation RNN 24},
3113 * one input into the two RNN cells in the following way:
3123 * An op with cross-linking takes two inputs and feeds them into the RNN
3145 * In this case, the cell feeds inputs into the RNN in the following way: