/frameworks/base/cmds/statsd/src/metrics/ |
D | MetricProducer.cpp | 122 std::shared_ptr<Activation> activation = in addActivation() local 124 mEventActivationMap.emplace(activationTrackerIndex, activation); in addActivation() 127 deactivationList.push_back(activation); in addActivation() 136 auto& activation = it->second; in activateLocked() local 137 if (ACTIVATE_ON_BOOT == activation->activationType) { in activateLocked() 138 if (ActivationState::kNotActive == activation->state) { in activateLocked() 139 activation->state = ActivationState::kActiveOnBoot; in activateLocked() 144 activation->start_ns = elapsedTimestampNs; in activateLocked() 145 activation->state = ActivationState::kActive; in activateLocked() 169 const auto& activeEventActivation = activeMetric.activation(i); in loadActiveMetricLocked() [all …]
|
/frameworks/ml/nn/runtime/test/specs/V1_2/ |
D | sub_v1_2_broadcast.mod.py | 20 activation = Int32Scalar("act", 0) variable 23 model = Model().Operation("SUB", input0, input1, activation).To(output0) 35 }).AddVariations("float16").AddAllActivations(output0, activation) 41 activation = 0 variable 44 model = Model("quant8").Operation("SUB", input0, input1, activation).To(output0)
|
D | unidirectional_sequence_rnn.mod.py | 20 activation, time_major, output, input_data, weights_data, argument 22 activation = Int32Scalar("activation", activation) 25 recurrent_weights, bias, hidden_state, activation, 152 activation=1, 174 activation=1,
|
D | sub_v1_2.mod.py | 24 activation = Int32Scalar("act", 0) variable 27 model = Model().Operation("SUB", input0, input1, activation).To(output0) 33 }).AddVariations("float16").AddAllActivations(output0, activation) 40 activation = 0 variable 43 model = Model("quant8").Operation("SUB", input0, input1, activation).To(output0)
|
D | bidirectional_sequence_rnn.mod.py | 40 bw_hidden_state, aux_input, fw_aux_weights, bw_aux_weights, activation, argument 47 activation = Int32Scalar("activation", activation) 53 bw_hidden_state, aux_input, fw_aux_weights, bw_aux_weights, activation, 238 activation=1, 288 activation=1, 339 activation=1, 395 activation=1, 449 activation=1, 511 activation=1,
|
D | sub_quantized_different_scales.mod.py | 42 activation = 0 45 model = Model().Operation("SUB", input0, input1, activation).To(output0)
|
/frameworks/ml/nn/common/operations/ |
D | Broadcast.cpp | 55 switch (activation) { \ 75 int32_t activation, float* out, const Shape& shapeOut)>; 78 const Shape& shape2, int32_t activation, _Float16* out, in binaryOperationFloat16() argument 86 operationFloat32(in1_float32.data(), shape1, in2_float32.data(), shape2, activation, in binaryOperationFloat16() 94 int32_t activation, float* out, const Shape& shapeOut) { in addFloat32() argument 99 #define ANDROID_NN_BROADCAST_ADD(activation) \ in addFloat32() argument 100 tflite::optimized_ops::BroadcastAdd<tflite::FusedActivationFunctionType::activation>( \ in addFloat32() 108 #define ANDROID_NN_ADD(activation) \ in addFloat32() argument 109 tflite::optimized_ops::Add<tflite::FusedActivationFunctionType::activation>( \ in addFloat32() 121 int32_t activation, _Float16* out, const Shape& shapeOut) { in addFloat16() argument [all …]
|
D | Activation.cpp | 41 namespace activation { namespace 123 template <ActivationFn activation> 130 CalculateActivationRangeUint8(activation, inputShape, &output_activation_min, in reluXQuant8() 218 template <ActivationFn activation> 225 CalculateActivationRangeInt8(activation, inputShape, &output_activation_min, in reluXQuant8Signed() 620 NN_REGISTER_OPERATION(RELU, "RELU", std::bind(activation::validate, OperationType::RELU, _1), 621 std::bind(activation::prepare, OperationType::RELU, _1), 622 activation::executeRelu, .allowZeroSizedInput = true); 623 NN_REGISTER_OPERATION(RELU1, "RELU1", std::bind(activation::validate, OperationType::RELU1, _1), 624 std::bind(activation::prepare, OperationType::RELU1, _1), [all …]
|
D | DepthwiseConv2D.cpp | 53 int32_t activation; member 65 activation = context->getInputValue<int32_t>(7); in initialize() 82 activation = context->getInputValue<int32_t>(10); in initialize() 115 NN_RET_CHECK_GE(activation, 0); in initialize() 136 int32_t depthMultiplier, int32_t activation, float* outputData, in depthwiseConvNhwc() argument 143 CalculateActivationRangeFloat(activation, &output_activation_min, &output_activation_max); in depthwiseConvNhwc() 170 int32_t dilationHeightFactor, int32_t depthMultiplier, int32_t activation, in depthwiseConvNhwc() argument 184 dilationHeightFactor, depthMultiplier, activation, outputDataFloat32.data(), in depthwiseConvNhwc() 196 int32_t depthMultiplier, int32_t activation, uint8_t* outputData, in depthwiseConvNhwc() argument 213 CalculateActivationRangeUint8(activation, outputShape, &output_activation_min, in depthwiseConvNhwc() [all …]
|
D | Conv2D.cpp | 68 int32_t activation; member 79 activation = context->getInputValue<int32_t>(6); in initialize() 95 activation = context->getInputValue<int32_t>(9); in initialize() 127 NN_RET_CHECK_GE(activation, 0); in initialize() 197 int32_t dilation_width_factor, int32_t dilation_height_factor, int32_t activation, in convNhwc() argument 204 CalculateActivationRangeFloat(activation, &output_activation_min, &output_activation_max); in convNhwc() 226 int32_t dilation_width_factor, int32_t dilation_height_factor, int32_t activation, in convNhwc() argument 247 CalculateActivationRangeUint8(activation, outputShape, &output_activation_min, in convNhwc() 280 int32_t dilation_width_factor, int32_t dilation_height_factor, int32_t activation, in convNhwc() argument 298 dilation_height_factor, activation, unsignedOutput.data(), outputShape)); in convNhwc() [all …]
|
D | RNN.cpp | 123 const int32_t activation, T* outputData) { in RNNStep() argument 131 recurrentWeightsData, recurrentWeightsShape, activation, in RNNStep() 144 const Shape& recurrentWeightsShape, const int32_t activation, in RNNStep() argument 216 (ActivationFunctor(static_cast<ActivationFn>(activation)))(output_ptr_batch[o]); in RNNStep() 231 const Shape& recurrentWeightsShape, int32_t activation, 239 const Shape& recurrentWeightsShape, const int32_t activation, 247 const Shape& recurrentWeightsShape, int32_t activation, 255 const Shape& recurrentWeightsShape, int32_t activation,
|
D | GroupedConv2D.cpp | 50 int32_t numGroups, int32_t activation, float* outputData, in groupedConvFloat32() argument 56 CalculateActivationRangeFloat(activation, &output_activation_min, &output_activation_max); in groupedConvFloat32() 108 int32_t numGroups, int32_t activation, T* outputData, in groupedConvQuant8() argument 127 CalculateActivationRange<T>(activation, outputShape, &output_activation_min, in groupedConvQuant8() 187 int32_t numGroups, int32_t activation, int8_t* outputData, 196 int32_t numGroups, int32_t activation, uint8_t* outputData, 206 int32_t activation, T* outputData, const Shape& outputShape) { in groupedConvQuant8PerChannel() argument 231 CalculateActivationRange<T>(activation, outputShape, &output_activation_min, in groupedConvQuant8PerChannel() 290 int32_t activation, _Float16* outputData, const Shape& outputShape) { in groupedConvFloat16() argument 304 padding_bottom, stride_width, stride_height, numGroups, activation, in groupedConvFloat16() [all …]
|
D | FullyConnected.cpp | 57 const float* biasData, const Shape& biasShape, int32_t activation, in fullyConnectedFloat32() argument 61 CalculateActivationRangeFloat(activation, &output_activation_min, &output_activation_max); in fullyConnectedFloat32() 87 const _Float16* biasData, const Shape& biasShape, int32_t activation, in fullyConnectedFloat16() argument 99 weightsShape, biasDataFloat32.data(), biasShape, activation, in fullyConnectedFloat16() 108 const int32_t* biasData, const Shape& biasShape, int32_t activation, in fullyConnectedQuant8() argument 126 CalculateActivationRangeUint8(activation, outputShape, &outputActivationMin, in fullyConnectedQuant8() 149 const int32_t* biasData, const Shape& biasShape, int32_t activation, in fullyConnectedQuant8() argument 162 CalculateActivationRangeInt8(activation, outputShape, &outputActivationMin, in fullyConnectedQuant8()
|
D | RNN.h | 53 int32_t activation, T* outputData); 61 int32_t activation, uint32_t outputBatchStride, uint32_t outputBatchStep,
|
D | Pooling.cpp | 48 int32_t activation; member 63 activation = context->getInputValue<int32_t>(9); in initialize() 73 activation = context->getInputValue<int32_t>(6); in initialize() 95 NN_RET_CHECK_GE(activation, 0); in initialize() 117 CalculateActivationRangeUint8(activation, output, &output_activation_min, in toTfliteParam() 124 CalculateActivationRangeInt8(activation, output, &output_activation_min, in toTfliteParam() 130 CalculateActivationRangeFloat(activation, &output_activation_min, in toTfliteParam()
|
/frameworks/ml/nn/runtime/test/specs/V1_3/ |
D | unidirectional_sequence_rnn.mod.py | 20 activation, time_major, output, output_state, input_data, weights_data, argument 23 activation = Int32Scalar("activation", activation) 26 recurrent_weights, bias, hidden_state, activation, 192 activation=1, 218 activation=1,
|
D | sub_quant8_signed.mod.py | 43 activation = 0 46 model = Model().Operation("SUB", input0, input1, activation).To(output0) 67 activation = 0 variable 70 model = Model("quant8").Operation("SUB", input0, input1, activation).To(output0) 89 activation = 0 variable 92 model = Model("quant8").Operation("SUB", input0, input1, activation).To(output0)
|
D | bidirectional_sequence_rnn_1_3.mod.py | 40 bw_hidden_state, aux_input, fw_aux_weights, bw_aux_weights, activation, argument 47 activation = Int32Scalar("activation", activation) 53 bw_hidden_state, aux_input, fw_aux_weights, bw_aux_weights, activation, 244 activation=1, 294 activation=1, 346 activation=1,
|
D | bidirectional_sequence_rnn_state_output.mod.py | 44 fw_aux_weights, bw_aux_weights, activation, time_major, merge_outputs, argument 51 activation = Int32Scalar("activation", activation) 58 bw_aux_weights, activation, time_major, 241 activation=1, 309 activation=1, 356 activation=1, 419 activation=1, 484 activation=1, 554 activation=1,
|
/frameworks/ml/nn/common/include/ |
D | Operations.h | 53 int32_t dilationHeightFactor, int32_t depthMultiplier, int32_t activation, 60 int32_t depthMultiplier, int32_t activation, float* outputData, 67 int32_t dilationHeightFactor, int32_t depthMultiplier, int32_t activation, 76 int32_t depthMultiplier, int32_t activation, uint8_t* outputData, 149 int32_t activation, _Float16* outputData, const Shape& outputShape); 155 int32_t stride_height, int32_t activation, float* outputData, 163 int32_t stride_height, int32_t activation, T* outputData, 173 int32_t activation, T* outputData, const Shape& outputShape);
|
D | CpuOperationUtils.h | 214 inline void CalculateActivationRange(int32_t activation, const Shape& outputShape, 218 inline void CalculateActivationRange<uint8_t>(int32_t activation, const Shape& outputShape, 221 CalculateActivationRangeUint8(activation, outputShape, outputActivationMin, 226 inline void CalculateActivationRange<int8_t>(int32_t activation, const Shape& outputShape, 229 CalculateActivationRangeInt8(activation, outputShape, outputActivationMin, outputActivationMax);
|
/frameworks/ml/nn/runtime/test/ |
D | TestMemory.cpp | 61 int32_t activation(0); in TEST_F() local 71 model.setOperandValue(f, &activation, sizeof(activation)); in TEST_F() 119 int32_t activation(0); in TEST_F() local 129 model.setOperandValue(f, &activation, sizeof(activation)); in TEST_F()
|
D | TestValidateOperations.cpp | 1297 ANeuralNetworksOperandType activation = {.type = ANEURALNETWORKS_INT32, in simpleMathOpTest() local 1304 operationCode, {input1, input2, activation}, {output}, in simpleMathOpTest() 1390 ANeuralNetworksOperandType activation = {.type = ANEURALNETWORKS_INT32, in TEST() local 1396 OperationTestBase mulTest(ANEURALNETWORKS_MUL, {input1, input2, activation}, {output}); in TEST() 1847 ANeuralNetworksOperandType activation = scalar; in poolingOpTest() local 1851 strideHeight, filterWidth, filterHeight, activation}, in poolingOpTest() 1858 {input, padImplicit, strideWidth, strideHeight, filterWidth, filterHeight, activation}, in poolingOpTest() 1871 filterHeight, activation, layout}, in poolingOpTest() 1877 filterWidth, filterHeight, activation, layout}, in poolingOpTest() 2138 ANeuralNetworksOperandType activation = scalar; in convOpTest() local [all …]
|
/frameworks/ml/nn/common/ |
D | OperationsUtils.cpp | 50 void CalculateActivationRangeImpl(int32_t activation, const Shape& outputShape, int32_t qmin, in CalculateActivationRangeImpl() argument 59 if (activation == kActivationRelu) { in CalculateActivationRangeImpl() 62 } else if (activation == kActivationRelu6) { in CalculateActivationRangeImpl() 65 } else if (activation == kActivationRelu1) { in CalculateActivationRangeImpl() 68 } else if (activation == kActivationNone) { in CalculateActivationRangeImpl() 273 void CalculateActivationRangeUint8(int32_t activation, const Shape& outputShape, int32_t* act_min, in CalculateActivationRangeUint8() argument 278 CalculateActivationRangeImpl(activation, outputShape, qmin, qmax, act_min, act_max); in CalculateActivationRangeUint8() 281 void CalculateActivationRangeInt8(int32_t activation, const Shape& outputShape, int32_t* act_min, in CalculateActivationRangeInt8() argument 286 CalculateActivationRangeImpl(activation, outputShape, qmin, qmax, act_min, act_max); in CalculateActivationRangeInt8() 289 void CalculateActivationRangeFloat(int32_t activation, float* activation_min, in CalculateActivationRangeFloat() argument [all …]
|
/frameworks/base/cmds/statsd/src/ |
D | active_config_list.proto | 27 // Time left in activation. When this proto is loaded after device boot, 28 // the activation should be set to active for this duration. 45 repeated ActiveEventActivation activation = 2; field
|