/frameworks/ml/nn/common/operations/ |
D | QLSTM.cpp | 182 const uint32_t batchSize = getSizeOfDimension(inputShape, 0); in prepare() local 299 NN_RET_CHECK_EQ(getSizeOfDimension(outputStateShape, 0), batchSize); in prepare() 303 NN_RET_CHECK_EQ(getSizeOfDimension(cellStateShape, 0), batchSize); in prepare() 390 const uint32_t batchSize = inputShape.dimensions[0]; in execute() local 655 std::vector<int16_t> inputGateBuffer(batchSize * numUnits); in execute() 656 std::vector<int16_t> forgetGateBuffer(batchSize * numUnits); in execute() 657 std::vector<int16_t> cellGateBuffer(batchSize * numUnits); in execute() 658 std::vector<int16_t> outputGateBuffer(batchSize * numUnits); in execute() 659 std::vector<int8_t> buffer8(batchSize * numUnits); in execute() 674 inputToForgetEffectiveScaleB, batchSize, inputSize, in execute() [all …]
|
D | BidirectionalSequenceRNN.cpp | 220 const uint32_t batchSize = getSizeOfDimension(inputShape, 1); in executeTyped() local 252 tempHiddenState.resize(std::max(batchSize * fwNumUnits, batchSize * bwNumUnits)); in executeTyped() 259 const T* inputBatchPtr = input + i * batchSize * inputSize; in executeTyped() 262 auxInputBatchPtr = auxInput + i * batchSize * auxInputSize; in executeTyped() 265 T* fwOutputBatchPtr = fwOutput + i * batchSize * fwOutputBatchStride; in executeTyped() 278 const T* inputBatchPtr = bwInput + i * batchSize * inputSize; in executeTyped() 281 auxInputBatchPtr = auxInput + i * batchSize * auxInputSize; in executeTyped() 289 bwOutputBatchPtr = fwOutput + i * batchSize * bwOutputBatchStride; in executeTyped() 292 bwOutputBatchPtr = bwOutput + i * batchSize * bwOutputBatchStride; in executeTyped() 386 const uint32_t batchSize = in prepare() local [all …]
|
D | UnidirectionalSequenceRNN.cpp | 98 const uint32_t batchSize = getSizeOfDimension(inputShape, 1); in executeTyped() local 111 input += batchSize * inputSize; in executeTyped() 113 output += batchSize * numUnits; in executeTyped() 124 std::copy(hiddenState, hiddenState + batchSize * numUnits, stateOutput); in executeTyped() 162 const uint32_t batchSize = in prepare() local 179 NN_RET_CHECK_EQ(batchSize, getSizeOfDimension(hiddenState, 0)); in prepare() 184 output.dimensions[0] = timeMajor ? maxTime : batchSize; in prepare() 185 output.dimensions[1] = timeMajor ? batchSize : maxTime; in prepare() 192 outputStateShape.dimensions[0] = batchSize; in prepare()
|
D | LSTM.cpp | 434 const uint32_t batchSize = (inputRank == 3) ? getSizeOfDimension(input_shape, timeMajor ? 1 : 0) in LSTMEvalFloat32() local 441 batchInputShape.dimensions = {batchSize, inputSize}; in LSTMEvalFloat32() 442 const uint32_t batchInputSize = batchSize * inputSize; in LSTMEvalFloat32() 443 const uint32_t batchOutputSize = batchSize * outputSize; in LSTMEvalFloat32() 470 output_state_in_buffer, output_state_in_buffer + batchSize * outputSize); in LSTMEvalFloat32() 472 cell_state_in_buffer + batchSize * numCells); in LSTMEvalFloat32() 507 output_state_out_buffer + batchSize * outputSize); in LSTMEvalFloat32() 509 cell_state_out_buffer + batchSize * numCells); in LSTMEvalFloat32() 554 const uint32_t batchSize = (inputRank == 3) ? getSizeOfDimension(input_shape, timeMajor ? 1 : 0) in LSTMEvalFloat16() local 561 batchInputShape.dimensions = {batchSize, inputSize}; in LSTMEvalFloat16() [all …]
|
D | UnidirectionalSequenceLSTM.cpp | 202 const uint32_t batchSize = getSizeOfDimension(inputShape, isTimeMajor(context) ? 1 : 0); in prepare() local 319 NN_RET_CHECK_EQ(getSizeOfDimension(outputStateShape, 0), batchSize); in prepare() 323 NN_RET_CHECK_EQ(getSizeOfDimension(cellStateShape, 0), batchSize); in prepare() 383 outputStateOutTensor.dimensions[0] = batchSize; in prepare() 389 cellStateOutTensor.dimensions[0] = batchSize; in prepare()
|
D | ResizeImageOps.cpp | 68 const int batchSize = getSizeOfDimension(inputShape, 0); in resizeNearestNeighbor() local 81 for (int b = 0; b < batchSize; ++b) { in resizeNearestNeighbor()
|
D | GenerateProposals.cpp | 968 uint32_t batchSize = height * width * numAnchors; in generateProposalsNhwcFloat32Compute() local 969 uint32_t roiBufferSize = batchSize * kRoiDim; in generateProposalsNhwcFloat32Compute() 997 tempRoiShape.dimensions = {batchSize, kRoiDim}; in generateProposalsNhwcFloat32Compute() 999 tempBBoxDeltasShape.dimensions = {batchSize, kRoiDim}; in generateProposalsNhwcFloat32Compute() 1000 std::vector<int32_t> tempBatchSplitData(batchSize, 0); in generateProposalsNhwcFloat32Compute() 1001 Shape tempbatchSplitShape = {.dimensions = {batchSize}}; in generateProposalsNhwcFloat32Compute() 1017 std::vector<uint32_t> select(batchSize); in generateProposalsNhwcFloat32Compute() 1047 scoresBase += batchSize; in generateProposalsNhwcFloat32Compute()
|
/frameworks/native/services/inputflinger/reader/ |
D | InputReader.cpp | 146 size_t batchSize = 1; in processEventsLocked() local 149 while (batchSize < count) { in processEventsLocked() 150 if (rawEvent[batchSize].type >= EventHubInterface::FIRST_SYNTHETIC_EVENT || in processEventsLocked() 151 rawEvent[batchSize].deviceId != deviceId) { in processEventsLocked() 154 batchSize += 1; in processEventsLocked() 157 ALOGD("BatchSize: %zu Count: %zu", batchSize, count); in processEventsLocked() 159 processEventsForDeviceLocked(deviceId, rawEvent, batchSize); in processEventsLocked() 176 count -= batchSize; in processEventsLocked() 177 rawEvent += batchSize; in processEventsLocked()
|
/frameworks/av/media/libstagefright/ |
D | CameraSource.cpp | 985 uint32_t batchSize = 0; in releaseRecordingFrame() local 989 batchSize = mInflightBatchSizes[0]; in releaseRecordingFrame() 992 if (batchSize == 0) { // return buffers one by one in releaseRecordingFrame() 1001 if (mInflightReturnedHandles.size() == batchSize) { in releaseRecordingFrame() 1272 int batchSize = 0; in recordingFrameHandleCallbackTimestampBatch() local 1293 ++batchSize; in recordingFrameHandleCallbackTimestampBatch() 1309 if (batchSize > 0) { in recordingFrameHandleCallbackTimestampBatch() 1311 mInflightBatchSizes.push_back(batchSize); in recordingFrameHandleCallbackTimestampBatch() 1313 for (int i = 0; i < batchSize; i++) { in recordingFrameHandleCallbackTimestampBatch()
|
/frameworks/ml/nn/runtime/test/ |
D | TestValidateOperations.cpp | 3926 const uint32_t batchSize = 2; in bidirectionlSequenceRNNTest() local 3931 uint32_t inputDims[3] = {maxTime, batchSize, inputSize}; in bidirectionlSequenceRNNTest() 3935 uint32_t hiddenStateDims[2] = {batchSize, numUnits}; in bidirectionlSequenceRNNTest() 3936 uint32_t outputDims[2] = {batchSize, numUnits}; in bidirectionlSequenceRNNTest() 4002 const uint32_t batchSize = 2; in unidirectionlSequenceRNNTest() local 4007 uint32_t inputDims[3] = {maxTime, batchSize, inputSize}; in unidirectionlSequenceRNNTest() 4011 uint32_t hiddenStateDims[2] = {batchSize, numUnits}; in unidirectionlSequenceRNNTest() 4012 uint32_t outputDims[2] = {batchSize, numUnits}; in unidirectionlSequenceRNNTest() 4068 const uint32_t batchSize = 3; in unidirectionalSequenceLSTMTest() local 4073 uint32_t inputDims[3] = {maxTime, batchSize, inputSize}; in unidirectionalSequenceLSTMTest() [all …]
|
/frameworks/av/services/camera/libcameraservice/device3/ |
D | Camera3Device.cpp | 4540 size_t batchSize = requests.size(); in processBatchCaptureRequests() local 4542 captureRequests_3_4.resize(batchSize); in processBatchCaptureRequests() 4544 captureRequests.resize(batchSize); in processBatchCaptureRequests() 4550 for (size_t i = 0; i < batchSize; i++) { in processBatchCaptureRequests() 4581 for (size_t i = 0; i < batchSize; i++) { in processBatchCaptureRequests() 4660 if (status == common::V1_0::Status::OK && *numRequestProcessed != batchSize) { in processBatchCaptureRequests() 4662 __FUNCTION__, *numRequestProcessed, batchSize); in processBatchCaptureRequests() 5189 size_t batchSize = mNextRequests.size(); in sendRequestsBatch() local 5190 std::vector<camera3_capture_request_t*> requests(batchSize); in sendRequestsBatch() 5192 for (size_t i = 0; i < batchSize; i++) { in sendRequestsBatch() [all …]
|
/frameworks/ml/nn/tools/api/ |
D | types.spec | 3493 * it is set to true, then the input has a shape [maxTime, batchSize, 3494 * inputSize], otherwise the input has a shape [batchSize, maxTime, 3503 * A 2-D tensor of shape [batchSize, fwNumUnits]. Specifies a hidden 3512 * A 2-D tensor of shape [batchSize, bwNumUnits]. Specifies a hidden 3517 * it is set to true, then the input has a shape [maxTime, batchSize, 3518 * auxInputSize], otherwise the input has a shape [batchSize, maxTime, 3550 * two dimensions are [maxTime, batchSize], otherwise they are set to 3551 * [batchSize, maxTime]. If mergeOutputs is set to true, then the third 3558 * [maxTime, batchSize, bwNumUnits], otherwise the shape is set to 3559 * [batchSize, maxTime, bwNumUnits]. [all …]
|
/frameworks/base/services/core/java/com/android/server/ |
D | AlarmManagerService.java | 1018 final int batchSize = alarms.size(); in haveAlarmsTimeTickAlarm() local 1019 for (int j = 0; j < batchSize; j++) { in haveAlarmsTimeTickAlarm()
|