/frameworks/native/libs/input/tests/ |
D | InputWindow_test.cpp | 35 InputWindowInfo i2 = InputWindowInfo::read(p); in TEST() local 36 ASSERT_TRUE(i2.token == nullptr); in TEST() 73 InputWindowInfo i2 = InputWindowInfo::read(p); in TEST() local 74 ASSERT_EQ(i.token, i2.token); in TEST() 75 ASSERT_EQ(i.name, i2.name); in TEST() 76 ASSERT_EQ(i.layoutParamsFlags, i2.layoutParamsFlags); in TEST() 77 ASSERT_EQ(i.layoutParamsType, i2.layoutParamsType); in TEST() 78 ASSERT_EQ(i.dispatchingTimeout, i2.dispatchingTimeout); in TEST() 79 ASSERT_EQ(i.frameLeft, i2.frameLeft); in TEST() 80 ASSERT_EQ(i.frameTop, i2.frameTop); in TEST() [all …]
|
/frameworks/ml/nn/runtime/test/specs/V1_3/ |
D | box_with_nms_limit_quant8_signed.mod.py | 19 i2 = Input("roi", "TENSOR_FLOAT32", "{19, 12}") # roi variable 26 model = Model().Operation("BOX_WITH_NMS_LIMIT", i1, i2, i3, 0.3, -1, 2, 0.4, 0.5, 0.3).To(o1, o2, o… 30 i2: ("TENSOR_QUANT16_ASYMM", 0.125, 0), 57 i2: [ # roi 116 i2 = Input("roi", "TENSOR_FLOAT32", "{19, 12}") # roi variable 123 model = Model().Operation("BOX_WITH_NMS_LIMIT", i1, i2, i3, 0.3, 5, 2, 0.4, 0.5, 0.3).To(o1, o2, o3… 127 i2: ("TENSOR_QUANT16_ASYMM", 0.125, 0), 154 i2: [ # roi 205 i2 = Input("roi", "TENSOR_FLOAT32", "{19, 12}") # roi variable 212 model = Model().Operation("BOX_WITH_NMS_LIMIT", i1, i2, i3, 0.3, -1, 0, 0.4, 1.0, 0.3).To(o1, o2, o… [all …]
|
D | generate_proposals_quant8_signed.mod.py | 21 i2 = Input("bboxDeltas", "TENSOR_FLOAT32", "{1, 2, 2, 8}") # bounding box deltas variable 28 i1, i2, i3, i4, 4.0, 4.0, -1, -1, 0.30, 1.0, layout).To(o1, o2, o3) 32 i2: ("TENSOR_QUANT8_ASYMM_SIGNED", 0.05, 0), 44 i2: [ # bounding box deltas 65 Example((input0, output0)).AddNchw(i1, i2, layout).AddVariations(quant8_signed, includeDefault=Fals… 71 i2 = Input("bboxDeltas", "TENSOR_FLOAT32", "{2, 4, 4, 16}") # bounding box deltas variable 78 i1, i2, i3, i4, 10.0, 10.0, 32, 16, 0.20, 1.0, layout).To(o1, o2, o3) 82 i2: ("TENSOR_QUANT8_ASYMM_SIGNED", 0.1, 0), 124 i2: [ # bounding box deltas 211 Example((input0, output0)).AddNchw(i1, i2, layout).AddVariations(quant8_signed, includeDefault=Fals…
|
D | mul_quant8_signed.mod.py | 19 i2 = Input("op2", "TENSOR_QUANT8_ASYMM_SIGNED", "{2, 2}, 1.0, -128") variable 22 model = model.Operation("MUL", i1, i2, act).To(i3) 27 i2: # input 1 40 i2 = Input("op2", "TENSOR_QUANT8_ASYMM_SIGNED", "{2}, 1.0, -128") variable 43 model = model.Operation("MUL", i1, i2, act).To(i3) 48 i2: # input 1 76 i2 = Parameter("op", "TENSOR_FLOAT32", "{1, 2, 2, 1}", [1, 2, 3, 4]) # weights variable 78 model = model.Operation("MUL", zero_sized, i2, 0).To(o3) 87 i2: ("TENSOR_QUANT8_ASYMM_SIGNED", 0.1, 0),
|
D | add_quant8_signed.mod.py | 19 i2 = Input("op2", "TENSOR_QUANT8_ASYMM_SIGNED", "{2}, 1.0, 0") variable 22 model = model.Operation("ADD", i1, i2, act).To(i3) 27 i2: # input 1 40 i2 = Input("op2", "TENSOR_QUANT8_ASYMM_SIGNED", "{2, 2}, 1.0, 0") variable 43 model = model.Operation("ADD", i1, i2, act).To(i3) 48 i2: # input 1 76 i2 = Parameter("op", "TENSOR_FLOAT32", "{1, 2, 2, 1}", [1, 2, 3, 4]) # weights variable 78 model = model.Operation("ADD", zero_sized, i2, 0).To(o3) 87 i2: ("TENSOR_QUANT8_ASYMM_SIGNED", 0.1, 0),
|
D | depthwise_conv2d_quant8_signed.mod.py | 48 i2 = Input("op1", "TENSOR_FLOAT32", "{1, 4, 4, 2}") variable 52 Model().Operation("DEPTHWISE_CONV_2D", i2, f2, b2, 0, 0, 0, 0, 1, 1, 2, 0, layout, 2, 2).To(o2) 56 i2: ("TENSOR_QUANT8_ASYMM_SIGNED", 0.5, -128), 64 i2: [0, 0, 0, 0, 0, 0, 0, 0, 72 }).AddNchw(i2, o2, layout).AddVariations(quant8_signed, includeDefault=False) 105 i2 = Input("op1", "TENSOR_FLOAT32", "{1, 4, 4, 2}") variable 109 Model().Operation("DEPTHWISE_CONV_2D", i2, f2, b2, 2, 1, 1, 2, 0, layout, 2, 2).To(o2) 113 i2: ("TENSOR_QUANT8_ASYMM_SIGNED", 0.5, -128), 121 i2: [0, 0, 0, 0, 0, 0, 0, 0, 129 }, name="valid_padding").AddNchw(i2, o2, layout).AddVariations(quant8_signed, includeDefault=False) [all …]
|
D | dequantize_quant8_signed.mod.py | 19 i2 = Output("op2", "TENSOR_FLOAT32", "{1, 2, 2, 1}") variable 20 model = model.Operation("DEQUANTIZE", i1).To(i2) 26 output0 = {i2: # output 0 63 i2 = Output("op2", "TENSOR_FLOAT16", "{1, 2, 2, 1}") variable 64 model = model.Operation("DEQUANTIZE", i1).To(i2) 70 output0 = {i2: # output 0
|
D | batch_to_space_quant8_signed.mod.py | 54 i2 = Input("op1", "TENSOR_FLOAT32", "{4, 2, 2, 1}") variable 56 Model().Operation("BATCH_TO_SPACE_ND", i2, [2, 2], layout).To(o2) 60 i2: ("TENSOR_QUANT8_ASYMM_SIGNED", 0.5, 0), 66 i2: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], 68 }).AddNchw(i2, o2, layout).AddVariations(quant8_signed, includeDefault=False)
|
/frameworks/ml/nn/runtime/test/specs/V1_2/ |
D | depthwise_conv2d_dilation.mod.py | 47 i2 = Input("op1", "TENSOR_FLOAT32", "{1, 4, 4, 2}") variable 51 Model().Operation("DEPTHWISE_CONV_2D", i2, f2, b2, 0, 0, 0, 0, 1, 1, 2, 0, layout, 2, 2).To(o2) 55 i2: ("TENSOR_QUANT8_ASYMM", 0.5, 0), 63 i2: [0, 0, 0, 0, 0, 0, 0, 0, 71 }).AddNchw(i2, o2, layout) 102 i2 = Input("op1", "TENSOR_FLOAT32", "{1, 4, 4, 2}") variable 106 Model().Operation("DEPTHWISE_CONV_2D", i2, f2, b2, 2, 1, 1, 2, 0, layout, 2, 2).To(o2) 110 i2: ("TENSOR_QUANT8_ASYMM", 0.5, 0), 118 i2: [0, 0, 0, 0, 0, 0, 0, 0, 126 }, name="valid_padding").AddNchw(i2, o2, layout) [all …]
|
D | detection_postprocess.mod.py | 19 i2 = Input("roi", "TENSOR_FLOAT32", "{1, 6, 4}") # roi variable 26 Model("regular").Operation("DETECTION_POSTPROCESSING", i1, i2, i3, 10.0, 10.0, 5.0, 5.0, True, 3, 1… 37 i2: [ # six boxes in center-size encoding 70 i2 = Input("roi", "TENSOR_FLOAT32", "{1, 6, 4}") # roi variable 77 Model().Operation("DETECTION_POSTPROCESSING", i1, i2, i3, 10.0, 10.0, 5.0, 5.0, False, 3, 1, 1, 0.0… 88 i2: [ # six boxes in center-size encoding 121 i2 = Input("roi", "TENSOR_FLOAT32", "{1, 6, 7}") # roi variable 128 Model().Operation("DETECTION_POSTPROCESSING", i1, i2, i3, 10.0, 10.0, 5.0, 5.0, False, 3, 1, 1, 0.0… 139 i2: [ # six boxes in center-size encoding 172 i2 = Input("roi", "TENSOR_FLOAT32", "{1, 6, 7}") # roi variable [all …]
|
D | generate_proposals.mod.py | 22 i2 = Input("bboxDeltas", "TENSOR_FLOAT32", "{1, 2, 2, 8}") # bounding box deltas variable 29 i1, i2, i3, i4, 4.0, 4.0, -1, -1, 0.30, 1.0, layout).To(o1, o2, o3) 33 i2: ("TENSOR_QUANT8_ASYMM", 0.05, 128), 45 i2: [ # bounding box deltas 66 Example((input0, output0)).AddNchw(i1, i2, layout).AddVariations("relaxed", quant8, "float16") 71 i2 = Input("bboxDeltas", "TENSOR_FLOAT32", "{2, 4, 4, 16}") # bounding box deltas variable 78 i1, i2, i3, i4, 10.0, 10.0, 32, 16, 0.20, 1.0, layout).To(o1, o2, o3) 82 i2: ("TENSOR_QUANT8_ASYMM", 0.1, 128), 124 i2: [ # bounding box deltas 211 Example((input0, output0)).AddNchw(i1, i2, layout).AddVariations("relaxed", quant8, "float16")
|
D | add_v1_2.mod.py | 20 i2 = Input("op2", "TENSOR_FLOAT16", "{3}") # another vector of 3 float16s variable 23 model = model.Operation("ADD", i1, i2, act).To(i3) 29 i2: # input 1 42 i2 = Input("op2", "TENSOR_FLOAT16", "{2, 2}") variable 45 model = model.Operation("ADD", i1, i2, act).To(i3) 50 i2: # input 1 78 i2 = Parameter("op", "TENSOR_FLOAT32", "{1, 2, 2, 1}", [1, 2, 3, 4]) # weights variable 80 model = model.Operation("ADD", zero_sized, i2, 0).To(o3) 89 i2: ("TENSOR_QUANT8_ASYMM", 0.1, 128),
|
D | mul_v1_2.mod.py | 20 i2 = Input("op2", "TENSOR_FLOAT16", "{3}") # another vector of 3 float16s variable 23 model = model.Operation("MUL", i1, i2, act).To(i3) 29 i2: # input 1 42 i2 = Input("op2", "TENSOR_FLOAT16", "{2, 2}") variable 45 model = model.Operation("MUL", i1, i2, act).To(i3) 50 i2: # input 1 78 i2 = Parameter("op", "TENSOR_FLOAT32", "{1, 2, 2, 1}", [1, 2, 3, 4]) # weights variable 80 model = model.Operation("MUL", zero_sized, i2, 0).To(o3) 89 i2: ("TENSOR_QUANT8_ASYMM", 0.1, 128),
|
D | box_with_nms_limit_gaussian.mod.py | 19 i2 = Input("roi", "TENSOR_FLOAT32", "{19, 12}") # roi variable 26 model = Model().Operation("BOX_WITH_NMS_LIMIT", i1, i2, i3, 0.3, -1, 2, 0.4, 0.5, 0.3).To(o1, o2, o… 30 i2: ("TENSOR_QUANT16_ASYMM", 0.125, 0), 57 i2: [ # roi 115 i2 = Input("roi", "TENSOR_FLOAT32", "{19, 12}") # roi variable 122 model = Model().Operation("BOX_WITH_NMS_LIMIT", i1, i2, i3, 0.3, 5, 2, 0.4, 0.5, 0.3).To(o1, o2, o3… 126 i2: ("TENSOR_QUANT16_ASYMM", 0.125, 0), 153 i2: [ # roi
|
D | box_with_nms_limit_linear.mod.py | 19 i2 = Input("roi", "TENSOR_FLOAT32", "{19, 12}") # roi variable 26 model = Model().Operation("BOX_WITH_NMS_LIMIT", i1, i2, i3, 0.3, -1, 1, 0.4, 1.0, 0.3).To(o1, o2, o… 30 i2: ("TENSOR_QUANT16_ASYMM", 0.125, 0), 57 i2: [ # roi 113 i2 = Input("roi", "TENSOR_FLOAT32", "{19, 12}") # roi variable 120 model = Model().Operation("BOX_WITH_NMS_LIMIT", i1, i2, i3, 0.3, 8, 1, 0.4, 0.5, 0.3).To(o1, o2, o3… 124 i2: ("TENSOR_QUANT16_ASYMM", 0.125, 0), 151 i2: [ # roi
|
D | box_with_nms_limit_hard.mod.py | 19 i2 = Input("roi", "TENSOR_FLOAT32", "{19, 12}") # roi variable 26 model = Model().Operation("BOX_WITH_NMS_LIMIT", i1, i2, i3, 0.3, -1, 0, 0.4, 1.0, 0.3).To(o1, o2, o… 30 i2: ("TENSOR_QUANT16_ASYMM", 0.125, 0), 57 i2: [ # roi 106 i2 = Input("roi", "TENSOR_FLOAT32", "{19, 12}") # roi variable 113 model = Model().Operation("BOX_WITH_NMS_LIMIT", i1, i2, i3, 0.3, 5, 0, 0.4, 0.5, 0.3).To(o1, o2, o3… 117 i2: ("TENSOR_QUANT16_ASYMM", 0.125, 0), 144 i2: [ # roi
|
D | conv2d_dilation.mod.py | 42 i2 = Input("op1", "TENSOR_FLOAT32", "{1, 9, 9, 1}") variable 46 Model().Operation("CONV_2D", i2, f2, b2, 0, 0, 0, 0, 1, 1, 0, layout, 3, 3).To(o2) 50 i2: ("TENSOR_QUANT8_ASYMM", 0.5, 0), 58 i2: [0, 0, 0, 0, 0, 0, 0, 0, 0, 68 }).AddNchw(i2, o2, layout).AddVariations("relaxed", quant8, "float16") 93 i2 = Input("op1", "TENSOR_FLOAT32", "{1, 9, 9, 1}") variable 97 Model().Operation("CONV_2D", i2, f2, b2, 2, 1, 1, 0, layout, 3, 3).To(o2) 101 i2: ("TENSOR_QUANT8_ASYMM", 0.5, 0), 109 i2: [0, 0, 0, 0, 0, 0, 0, 0, 0, 119 }, name="valid_padding").AddNchw(i2, o2, layout).AddVariations("relaxed", quant8, "float16")
|
D | div_v1_2.mod.py | 20 i2 = Input("op2", "TENSOR_FLOAT16", "{3}") # another vector of 3 float16s variable 23 model = model.Operation("DIV", i1, i2, act).To(i3) 29 i2: # input 1 42 i2 = Input("op2", "TENSOR_FLOAT16", "{1, 2}") variable 45 model = model.Operation("DIV", i1, i2, act).To(i3) 50 i2: # input 1 78 i2 = Parameter("op", "TENSOR_FLOAT32", "{1, 2, 2, 1}", [1, 2, 3, 4]) # weights variable 80 model = model.Operation("DIV", zero_sized, i2, 0).To(o3)
|
D | batch_to_space_v1_2.mod.py | 38 i2 = Input("op1", "TENSOR_FLOAT32", "{4, 2, 2, 1}") variable 40 Model().Operation("BATCH_TO_SPACE_ND", i2, [2, 2], layout).To(o2) 44 i2: ("TENSOR_QUANT8_ASYMM", 0.5, 128), 50 i2: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], 52 }).AddNchw(i2, o2, layout).AddVariations("relaxed", "float16", quant8)
|
D | space_to_depth_v1_2.mod.py | 38 i2 = Input("op1", "TENSOR_FLOAT32", "{1, 4, 4, 1}") variable 40 Model().Operation("SPACE_TO_DEPTH", i2, 2, layout).To(o2) 44 i2: ("TENSOR_QUANT8_ASYMM", 0.5, 128), 50 i2: [1., 2., 5., 6., 3., 4., 7., 8., 9., 10., 13., 14., 11., 12., 15., 16.], 52 }).AddNchw(i2, o2, layout).AddVariations("relaxed", "float16", quant8)
|
D | depth_to_space_v1_2.mod.py | 38 i2 = Input("op1", "TENSOR_FLOAT32", "{1, 2, 2, 4}") variable 40 Model().Operation("DEPTH_TO_SPACE", i2, 2, layout).To(o2) 44 i2: ("TENSOR_QUANT8_ASYMM", 0.5, 128), 50 i2: [1., 2., 5., 6., 3., 4., 7., 8., 9., 10., 13., 14., 11., 12., 15., 16.], 52 }).AddNchw(i2, o2, layout).AddVariations("relaxed", "float16", quant8)
|
/frameworks/base/core/java/android/os/ |
D | WorkSource.java | 567 int i1 = 0, i2 = 0; in removeUids() local 569 while (i1 < N1 && i2 < N2) { in removeUids() 570 if (DEBUG) Log.d(TAG, "Step: target @ " + i1 + " of " + N1 + ", other @ " + i2 in removeUids() 572 if (uids2[i2] == uids1[i1]) { in removeUids() 573 if (DEBUG) Log.d(TAG, "i1=" + i1 + " i2=" + i2 + " N1=" + N1 in removeUids() 578 i2++; in removeUids() 579 } else if (uids2[i2] > uids1[i1]) { in removeUids() 580 if (DEBUG) Log.d(TAG, "i1=" + i1 + " i2=" + i2 + " N1=" + N1 + ": skip i1"); in removeUids() 583 if (DEBUG) Log.d(TAG, "i1=" + i1 + " i2=" + i2 + " N1=" + N1 + ": skip i2"); in removeUids() 584 i2++; in removeUids() [all …]
|
/frameworks/layoutlib/create/tests/com/android/tools/layoutlib/create/ |
D | DelegateClassAdapterTest.java | 105 Object i2 = clazz2.newInstance(); in testNoOp() 106 assertNotNull(i2); in testNoOp() 107 assertEquals(42, callAdd(i2, 20, 22)); in testNoOp() 110 callCallNativeInstance(i2, 10, 3.1415, new Object[0]); in testNoOp() 160 Object i2 = clazz2.newInstance(); in testConstructorAfterDelegate() 161 assertNotNull(i2); in testConstructorAfterDelegate() 162 assertEquals(123, clazz2.getField("mId").getInt(i2)); in testConstructorAfterDelegate() 195 Object i2 = clazz2.getConstructor(outerClazz2).newInstance(o2); in testInnerConstructorAfterDelegate() 196 assertNotNull(i2); in testInnerConstructorAfterDelegate() 197 assertEquals(98, clazz2.getField("mInnerId").getInt(i2)); in testInnerConstructorAfterDelegate() [all …]
|
/frameworks/rs/ |
D | rsCppUtils.h | 174 static inline uint16_t rsBoxFilter565(uint16_t i1, uint16_t i2, uint16_t i3, uint16_t i4) { in rsBoxFilter565() argument 175 uint32_t r = ((i1 & 0x1f) + (i2 & 0x1f) + (i3 & 0x1f) + (i4 & 0x1f)); in rsBoxFilter565() 176 uint32_t g = ((i1 >> 5) & 0x3f) + ((i2 >> 5) & 0x3f) + ((i3 >> 5) & 0x3f) + ((i4 >> 5) & 0x3f); in rsBoxFilter565() 177 uint32_t b = ((i1 >> 11) + (i2 >> 11) + (i3 >> 11) + (i4 >> 11)); in rsBoxFilter565() 181 static inline uint32_t rsBoxFilter8888(uint32_t i1, uint32_t i2, uint32_t i3, uint32_t i4) { in rsBoxFilter8888() argument 182 uint32_t r = (i1 & 0xff) + (i2 & 0xff) + (i3 & 0xff) + (i4 & 0xff); in rsBoxFilter8888() 183 … uint32_t g = ((i1 >> 8) & 0xff) + ((i2 >> 8) & 0xff) + ((i3 >> 8) & 0xff) + ((i4 >> 8) & 0xff); in rsBoxFilter8888() 184 …uint32_t b = ((i1 >> 16) & 0xff) + ((i2 >> 16) & 0xff) + ((i3 >> 16) & 0xff) + ((i4 >> 16) & 0xff); in rsBoxFilter8888() 185 …uint32_t a = ((i1 >> 24) & 0xff) + ((i2 >> 24) & 0xff) + ((i3 >> 24) & 0xff) + ((i4 >> 24) & 0xff); in rsBoxFilter8888()
|
/frameworks/ml/nn/runtime/test/specs/V1_0/ |
D | relu6_quant8_1.mod.py | 20 i2 = Output("op2", "TENSOR_QUANT8_ASYMM", "{1, 2, 2, 1}, 0.5f, 0") # output 0 variable 21 model = model.Operation("RELU6", i1).To(i2) 26 output0 = {i2: # output 0 34 output1 = {i2: # output 0
|