Home
last modified time | relevance | path

Searched refs:keepDims (Results 1 – 18 of 18) sorted by relevance

/frameworks/ml/nn/common/operations/
DSimpleMath.cpp34 const Shape& axisShape, bool keepDims, _Float16* outputData, in meanFloat16() argument
41 meanGeneric<float, float>(inputDataFloat32.data(), inputShape, axis, axisShape, keepDims, in meanFloat16()
49 bool keepDims, T* outputData, const Shape& outputShape) { in meanGeneric() argument
69 getNumberOfDimensions(outputShape), axis, axisSize, keepDims, scratchBuffer, in meanGeneric()
78 const int32_t* axis, const Shape& axisShape, bool keepDims,
82 bool keepDims, uint8_t* outputData,
86 bool keepDims, int8_t* outputData,
DReduce.cpp147 bool keepDims = context->getInputValue<bool8>(kInputKeepDims); in prepare() local
150 if (keepDims) { in prepare()
/frameworks/ml/nn/runtime/test/specs/V1_3/
Dmean_quant8_signed.mod.py19 keepDims = Int32Scalar("keepDims", 0) variable
22 model = model.Operation("MEAN", i1, axis, keepDims).To(output)
43 keepDims = Int32Scalar("keepDims", 1) variable
46 model = model.Operation("MEAN", i1, axis, keepDims).To(output)
/frameworks/ml/nn/runtime/test/specs/V1_1/
Dmean.mod.py4 keepDims = Int32Scalar("keepDims", 0) variable
7 model = model.Operation("MEAN", i1, axis, keepDims).To(output)
Dmean_quant8_2.mod.py4 keepDims = Int32Scalar("keepDims", 1) variable
7 model = model.Operation("MEAN", i1, axis, keepDims).To(output)
Dmean_quant8_1.mod.py4 keepDims = Int32Scalar("keepDims", 0) variable
7 model = model.Operation("MEAN", i1, axis, keepDims).To(output)
Dmean_float_2.mod.py4 keepDims = Int32Scalar("keepDims", 1) variable
7 model = model.Operation("MEAN", i1, axis, keepDims).To(output)
Dmean_float_1.mod.py4 keepDims = Int32Scalar("keepDims", 0) variable
7 model = model.Operation("MEAN", i1, axis, keepDims).To(output)
Dmean_relaxed.mod.py20 keepDims = Int32Scalar("keepDims", 0) variable
23 model = model.Operation("MEAN", i1, axis, keepDims).To(output)
Dmean_float_2_relaxed.mod.py20 keepDims = Int32Scalar("keepDims", 1) variable
23 model = model.Operation("MEAN", i1, axis, keepDims).To(output)
Dmean_float_1_relaxed.mod.py20 keepDims = Int32Scalar("keepDims", 0) variable
23 model = model.Operation("MEAN", i1, axis, keepDims).To(output)
/frameworks/ml/nn/runtime/test/specs/V1_2/
Dmean_float16.mod.py4 keepDims = Int32Scalar("keepDims", 0) variable
7 model = model.Operation("MEAN", i1, axis, keepDims).To(output)
/frameworks/ml/nn/runtime/test/fuzzing/operation_signatures/
DReduce.cpp40 bool keepDims; in reduceOpConstructor() local
42 keepDims = op->inputs[2]->value<bool8>(); in reduceOpConstructor()
44 keepDims = op->inputs[2]->value<int32_t>() > 0; in reduceOpConstructor()
50 } else if (keepDims) { in reduceOpConstructor()
/frameworks/ml/nn/common/include/
DOperations.h110 const Shape& axisShape, bool keepDims, _Float16* outputData,
114 bool keepDims, T* outputData, const Shape& outputShape);
DOperationsUtils.h328 bool meanPrepare(const Shape& input, const int32_t* axisData, const Shape& axisShape, bool keepDims,
/frameworks/ml/nn/common/
DCpuExecutor.cpp1360 int32_t keepDims = getScalarData<int32_t>(operands[ins[2]]); in executeOperation() local
1366 axis.shape(), keepDims > 0, &outShape) || in executeOperation()
1373 keepDims > 0, reinterpret_cast<_Float16*>(output.buffer), in executeOperation()
1378 reinterpret_cast<const int32_t*>(axis.buffer), axis.shape(), keepDims > 0, in executeOperation()
1383 reinterpret_cast<const int32_t*>(axis.buffer), axis.shape(), keepDims > 0, in executeOperation()
1388 reinterpret_cast<const int32_t*>(axis.buffer), axis.shape(), keepDims > 0, in executeOperation()
DOperationsUtils.cpp594 bool meanPrepare(const Shape& input, const int32_t* axisData, const Shape& axisShape, bool keepDims, in meanPrepare() argument
604 if (keepDims) { in meanPrepare()
/frameworks/ml/nn/runtime/test/
DTestValidateOperations.cpp1720 ANeuralNetworksOperandType keepDims = getOpType(ANEURALNETWORKS_INT32); in meanOpTest() local
1723 OperationTestBase test(ANEURALNETWORKS_MEAN, {input, dims, keepDims}, {output}, in meanOpTest()