/frameworks/ml/nn/common/operations/ |
D | SimpleMath.cpp | 34 const Shape& axisShape, bool keepDims, _Float16* outputData, in meanFloat16() argument 41 meanGeneric<float, float>(inputDataFloat32.data(), inputShape, axis, axisShape, keepDims, in meanFloat16() 49 bool keepDims, T* outputData, const Shape& outputShape) { in meanGeneric() argument 69 getNumberOfDimensions(outputShape), axis, axisSize, keepDims, scratchBuffer, in meanGeneric() 78 const int32_t* axis, const Shape& axisShape, bool keepDims, 82 bool keepDims, uint8_t* outputData, 86 bool keepDims, int8_t* outputData,
|
D | Reduce.cpp | 147 bool keepDims = context->getInputValue<bool8>(kInputKeepDims); in prepare() local 150 if (keepDims) { in prepare()
|
/frameworks/ml/nn/runtime/test/specs/V1_3/ |
D | mean_quant8_signed.mod.py | 19 keepDims = Int32Scalar("keepDims", 0) variable 22 model = model.Operation("MEAN", i1, axis, keepDims).To(output) 43 keepDims = Int32Scalar("keepDims", 1) variable 46 model = model.Operation("MEAN", i1, axis, keepDims).To(output)
|
/frameworks/ml/nn/runtime/test/specs/V1_1/ |
D | mean.mod.py | 4 keepDims = Int32Scalar("keepDims", 0) variable 7 model = model.Operation("MEAN", i1, axis, keepDims).To(output)
|
D | mean_quant8_2.mod.py | 4 keepDims = Int32Scalar("keepDims", 1) variable 7 model = model.Operation("MEAN", i1, axis, keepDims).To(output)
|
D | mean_quant8_1.mod.py | 4 keepDims = Int32Scalar("keepDims", 0) variable 7 model = model.Operation("MEAN", i1, axis, keepDims).To(output)
|
D | mean_float_2.mod.py | 4 keepDims = Int32Scalar("keepDims", 1) variable 7 model = model.Operation("MEAN", i1, axis, keepDims).To(output)
|
D | mean_float_1.mod.py | 4 keepDims = Int32Scalar("keepDims", 0) variable 7 model = model.Operation("MEAN", i1, axis, keepDims).To(output)
|
D | mean_relaxed.mod.py | 20 keepDims = Int32Scalar("keepDims", 0) variable 23 model = model.Operation("MEAN", i1, axis, keepDims).To(output)
|
D | mean_float_2_relaxed.mod.py | 20 keepDims = Int32Scalar("keepDims", 1) variable 23 model = model.Operation("MEAN", i1, axis, keepDims).To(output)
|
D | mean_float_1_relaxed.mod.py | 20 keepDims = Int32Scalar("keepDims", 0) variable 23 model = model.Operation("MEAN", i1, axis, keepDims).To(output)
|
/frameworks/ml/nn/runtime/test/specs/V1_2/ |
D | mean_float16.mod.py | 4 keepDims = Int32Scalar("keepDims", 0) variable 7 model = model.Operation("MEAN", i1, axis, keepDims).To(output)
|
/frameworks/ml/nn/runtime/test/fuzzing/operation_signatures/ |
D | Reduce.cpp | 40 bool keepDims; in reduceOpConstructor() local 42 keepDims = op->inputs[2]->value<bool8>(); in reduceOpConstructor() 44 keepDims = op->inputs[2]->value<int32_t>() > 0; in reduceOpConstructor() 50 } else if (keepDims) { in reduceOpConstructor()
|
/frameworks/ml/nn/common/include/ |
D | Operations.h | 110 const Shape& axisShape, bool keepDims, _Float16* outputData, 114 bool keepDims, T* outputData, const Shape& outputShape);
|
D | OperationsUtils.h | 328 bool meanPrepare(const Shape& input, const int32_t* axisData, const Shape& axisShape, bool keepDims,
|
/frameworks/ml/nn/common/ |
D | CpuExecutor.cpp | 1360 int32_t keepDims = getScalarData<int32_t>(operands[ins[2]]); in executeOperation() local 1366 axis.shape(), keepDims > 0, &outShape) || in executeOperation() 1373 keepDims > 0, reinterpret_cast<_Float16*>(output.buffer), in executeOperation() 1378 reinterpret_cast<const int32_t*>(axis.buffer), axis.shape(), keepDims > 0, in executeOperation() 1383 reinterpret_cast<const int32_t*>(axis.buffer), axis.shape(), keepDims > 0, in executeOperation() 1388 reinterpret_cast<const int32_t*>(axis.buffer), axis.shape(), keepDims > 0, in executeOperation()
|
D | OperationsUtils.cpp | 594 bool meanPrepare(const Shape& input, const int32_t* axisData, const Shape& axisShape, bool keepDims, in meanPrepare() argument 604 if (keepDims) { in meanPrepare()
|
/frameworks/ml/nn/runtime/test/ |
D | TestValidateOperations.cpp | 1720 ANeuralNetworksOperandType keepDims = getOpType(ANEURALNETWORKS_INT32); in meanOpTest() local 1723 OperationTestBase test(ANEURALNETWORKS_MEAN, {input, dims, keepDims}, {output}, in meanOpTest()
|