/frameworks/ml/nn/runtime/test/specs/V1_3/ |
D | bidirectional_sequence_rnn_1_3.mod.py | 25 def merge_outputs(a, a_shape, b, b_shape): function 41 time_major, merge_outputs, fw_output, bw_output, input_data, argument 49 merge_outputs_scalar = BoolScalar("merge_outputs", merge_outputs) 61 if merge_outputs: 81 if not merge_outputs: 246 merge_outputs=0, 296 merge_outputs=0, 348 merge_outputs=1, 363 fw_output_data=merge_outputs(
|
D | bidirectional_sequence_rnn_state_output.mod.py | 25 def merge_outputs(a, a_shape, b, b_shape): function 44 fw_aux_weights, bw_aux_weights, activation, time_major, merge_outputs, argument 53 merge_outputs_scalar = BoolScalar("merge_outputs", merge_outputs) 60 if merge_outputs: 83 if not merge_outputs: 243 merge_outputs=0, 311 merge_outputs=0, 358 merge_outputs=1, 383 fw_output_data=merge_outputs( 421 merge_outputs=0, [all …]
|
D | bidirectional_sequence_lstm_state_output.mod.py | 229 merge_outputs = BoolScalar("merge_outputs", False) 285 merge_outputs,
|
D | bidirectional_sequence_lstm.mod.py | 241 merge_outputs = BoolScalar("merge_outputs", False) 297 merge_outputs,
|
/frameworks/ml/nn/runtime/test/specs/V1_2/ |
D | bidirectional_sequence_rnn.mod.py | 25 def merge_outputs(a, a_shape, b, b_shape): function 41 time_major, merge_outputs, fw_output, bw_output, input_data, argument 49 merge_outputs_scalar = BoolScalar("merge_outputs", merge_outputs) 55 if merge_outputs: 75 if not merge_outputs: 240 merge_outputs=0, 290 merge_outputs=0, 341 merge_outputs=1, 355 fw_output_data=merge_outputs( 397 merge_outputs=0, [all …]
|
D | bidirectional_sequence_lstm_merge_outputs.mod.py | 212 merge_outputs = BoolScalar("merge_outputs", True) 265 activation, cell_clip, proj_clip, merge_outputs, time_major,
|
D | bidirectional_sequence_lstm_float16_batch_major_merge_outputs.mod.py | 213 merge_outputs = BoolScalar("merge_outputs", True) 266 activation, cell_clip, proj_clip, merge_outputs, time_major,
|
D | bidirectional_sequence_lstm_cifg_peephole.mod.py | 213 merge_outputs = BoolScalar("merge_outputs", False) 266 activation, cell_clip, proj_clip, merge_outputs, time_major,
|
D | bidirectional_sequence_lstm_float16_batch_major.mod.py | 213 merge_outputs = BoolScalar("merge_outputs", False) 266 activation, cell_clip, proj_clip, merge_outputs, time_major,
|
D | bidirectional_sequence_lstm.mod.py | 213 merge_outputs = BoolScalar("merge_outputs", False) 266 activation, cell_clip, proj_clip, merge_outputs, time_major,
|
D | bidirectional_sequence_lstm_aux_input.mod.py | 215 merge_outputs = BoolScalar("merge_outputs", False) 268 activation, cell_clip, proj_clip, merge_outputs, time_major,
|
D | bidirectional_sequence_lstm_norm_fw_output.mod.py | 214 merge_outputs = BoolScalar("merge_outputs", False) 267 activation, cell_clip, proj_clip, merge_outputs, time_major,
|
D | bidirectional_sequence_lstm_float16_batch_major_aux_input.mod.py | 216 merge_outputs = BoolScalar("merge_outputs", False) 269 activation, cell_clip, proj_clip, merge_outputs, time_major,
|
/frameworks/ml/nn/common/operations/ |
D | BidirectionalSequenceLSTM.cpp | 187 params_.merge_outputs = getScalarDataWithDefault<bool>(mergeOutputsOperand, false); in BidirectionalSequenceLSTM() 193 if (!params_.merge_outputs) { in BidirectionalSequenceLSTM() 199 uint32_t delta = params_.merge_outputs ? 1 : 0; in BidirectionalSequenceLSTM() 390 fwOutputShape->dimensions[2] = params_.merge_outputs ? n_fw_output + n_bw_output : n_fw_output; in Prepare() 409 if (!params_.merge_outputs) { in Prepare() 569 params_.merge_outputs ? GetBuffer<float>(fw_output_) + n_fw_output_elements in Eval() 572 if (params_.merge_outputs) { in Eval() 694 params_.merge_outputs ? GetBuffer<_Float16>(fw_output_) + n_fw_output_elements in Eval() 697 if (params_.merge_outputs) { in Eval()
|
D | LSTM.h | 41 bool merge_outputs; member
|
/frameworks/ml/nn/common/ |
D | CpuExecutor.cpp | 1054 const auto merge_outputs = getScalarData<bool>( in executeOperation() local 1067 if (!merge_outputs) { in executeOperation() 1073 uint32_t delta = merge_outputs ? 1 : 0; in executeOperation()
|