/frameworks/ml/nn/common/operations/ |
D | QuantizedLSTMTest.cpp | 59 const uint32_t numBatches = inputOperandTypeParams[0].shape[0]; in QuantizedLSTMOpModel() local 66 OperandType cellStateOutOperandType(Type::TENSOR_QUANT16_SYMM, {numBatches, outputSize}, in QuantizedLSTMOpModel() 69 OperandType outputOperandType(Type::TENSOR_QUANT8_ASYMM, {numBatches, outputSize}, in QuantizedLSTMOpModel() 82 cellStateOut_.resize(numBatches * outputSize, 0); in QuantizedLSTMOpModel() 83 output_.resize(numBatches * outputSize, 0); in QuantizedLSTMOpModel() 239 const int numBatches = input.size(); in VerifyGoldens() local 240 EXPECT_GT(numBatches, 0); in VerifyGoldens() 247 for (int b = 0; b < numBatches; ++b) { in VerifyGoldens() 257 for (int b = 0; b < numBatches; ++b) { in VerifyGoldens() 271 const int numBatches = 2; in TEST_F() local [all …]
|
D | RoiAlign.cpp | 68 uint32_t numBatches = getSizeOfDimension(inputShape, 0); in roiAlignNhwc() local 87 NN_RET_CHECK_LT(batchId, numBatches); in roiAlignNhwc() 195 uint32_t numBatches = getSizeOfDimension(inputShape, 0); in roiAlignQuantNhwc() local 219 NN_RET_CHECK_LT(batchId, numBatches); in roiAlignQuantNhwc() 392 uint32_t numBatches = getSizeOfDimension(input, 0); in prepare() local 398 NN_RET_CHECK_GT(numBatches, 0); in prepare()
|
D | TransposeConv2D.cpp | 111 uint32_t numBatches = getSizeOfDimension(inputShape, 0); \ 139 for (uint32_t b = 0; b < numBatches; b++) { in transposeConvNhwc() 169 const uint32_t outerSize = numBatches * outputHeight * outputWidth; in transposeConvNhwc() 225 for (uint32_t b = 0; b < numBatches; b++) { in transposeConvNhwc() 260 const uint32_t outerSize = numBatches * outputHeight * outputWidth; in transposeConvNhwc() 367 for (uint32_t b = 0; b < numBatches; b++) { in transposeConvQuant8PerChannelNhwc() 401 const uint32_t outerSize = numBatches * outputHeight * outputWidth; in transposeConvQuant8PerChannelNhwc()
|
D | InstanceNormalization.cpp | 51 uint32_t numBatches = getSizeOfDimension(inputShape, 0); in instanceNormNhwc() local 55 for (uint32_t b = 0; b < numBatches; b++) { in instanceNormNhwc()
|
D | GroupedConv2D.cpp | 34 uint32_t numBatches = getSizeOfDimension(inputShape, 0); \ 60 for (uint32_t b = 0; b < numBatches; b++) { in groupedConvFloat32() 132 for (uint32_t b = 0; b < numBatches; b++) { in groupedConvQuant8() 236 for (uint32_t b = 0; b < numBatches; b++) { in groupedConvQuant8PerChannel()
|
D | GenerateProposals.cpp | 68 uint32_t numBatches = getSizeOfDimension(imageInfoDataShape, 0); in bboxTransformFloat32() local 80 NN_RET_CHECK_LT(batchIndex, numBatches); in bboxTransformFloat32() 245 uint32_t numBatches = getSizeOfDimension(imageInfoShape, 0); in prepare() local 247 NN_RET_CHECK_GT(numBatches, 0); in prepare() 962 uint32_t numBatches = getSizeOfDimension(scoresShape, 0); in generateProposalsNhwcFloat32Compute() local 1005 for (uint32_t b = 0; b < numBatches; b++) { in generateProposalsNhwcFloat32Compute() 1296 uint32_t numBatches = getSizeOfDimension(scoreShape, 0); in prepare() local 1301 NN_RET_CHECK_EQ(getSizeOfDimension(bboxDeltasShape, 0), numBatches); in prepare() 1305 NN_RET_CHECK_EQ(getSizeOfDimension(imageInfoDataShape, 0), numBatches); in prepare() 1449 uint32_t numBatches = getSizeOfDimension(scoreShape, 0); in detectionPostprocessFloat32() local [all …]
|
D | RoiPooling.cpp | 64 uint32_t numBatches = getSizeOfDimension(inputShape, 0); in roiPoolingNhwc() local 83 NN_RET_CHECK_LT(batchId, numBatches); in roiPoolingNhwc() 237 uint32_t numBatches = getSizeOfDimension(input, 0); in prepare() local
|
D | QuantizedLSTM.cpp | 254 const uint32_t numBatches = SizeOfDimension(input, 0); in prepare() local 259 NN_RET_CHECK_EQ(SizeOfDimension(prevOutput, 0), numBatches); in prepare() 319 NN_CHECK_EQ(SizeOfDimension(prevCellState, 0), numBatches); in prepare()
|
D | Conv2D.cpp | 361 uint32_t numBatches = getSizeOfDimension(inputShape, 0); in convQuant8PerChannelNhwc() local 396 for (uint32_t b = 0; b < numBatches; b++) { in convQuant8PerChannelNhwc() 454 uint32_t numBatches = getSizeOfDimension(inputShape, 0); in convQuant8PerChannelNhwc() local
|
D | DepthwiseConv2D.cpp | 287 uint32_t numBatches = getSizeOfDimension(inputShape, 0); in depthwiseConvQuant8PerChannelNhwc() local 323 for (uint32_t b = 0; b < numBatches; b++) { in depthwiseConvQuant8PerChannelNhwc()
|
/frameworks/ml/nn/runtime/test/ |
D | TestValidateOperations.cpp | 3491 const int numBatches = 2; in detectionPostprocessingOpTest() local 3496 uint32_t inputDims[3] = {numBatches, numAnchors, numClasses}; in detectionPostprocessingOpTest() 3498 uint32_t deltasDims[3] = {numBatches, numAnchors, lengthBoxEncoding}; in detectionPostprocessingOpTest() 3515 uint32_t outputScoreDims[2] = {numBatches, maxNumDetectionsValue}; in detectionPostprocessingOpTest() 3517 uint32_t boundingBoxesDims[3] = {numBatches, maxNumDetectionsValue, 4}; in detectionPostprocessingOpTest() 3521 uint32_t numValidDims[1] = {numBatches}; in detectionPostprocessingOpTest()
|
/frameworks/base/services/core/java/com/android/server/ |
D | AlarmManagerService.java | 1028 final int numBatches = batches.size(); in haveBatchesTimeTickAlarm() local 1029 for (int i = 0; i < numBatches; i++) { in haveBatchesTimeTickAlarm() 3757 final int numBatches = batches.size(); in recordWakeupAlarms() local 3758 for (int nextBatch = 0; nextBatch < numBatches; nextBatch++) { in recordWakeupAlarms()
|
/frameworks/ml/nn/tools/api/ |
D | types.spec | 4871 * and shape [numBatches, inputSize] specifying the input to the LSTM 4943 * and shape [numBatches, outputSize] specifying the cell state from the 4956 * and shape [numBatches, outputSize] which contains a cell state from
|