Searched refs:beta (Results 1 – 4 of 4) sorted by relevance
/hardware/qcom/neuralnetworks/hvxservice/1.0/ |
D | HexagonOperationsPrepare.cpp | 299 const hexagon_nn_input& beta = model->getTensor(ins[4]); in local_response_normalization() local 306 return model->addBasicOperation(OP_LRN_f, NN_PAD_NA, {input, window, bias, alpha, beta}, outs); in local_response_normalization() 462 const hexagon_nn_input& beta = model->getTensor(ins[1]); in softmax() local 465 return model->addBasicOperation(OP_Softmax_f, NN_PAD_NA, {input, beta}, outs); in softmax() 900 const hexagon_nn_input& beta = model->getTensor(ins[1]); in softmax() local 907 {input, input_min, input_max, beta}, outs); in softmax()
|
/hardware/interfaces/neuralnetworks/1.0/ |
D | types.hal | 732 * output = input / pow((bias + alpha * sqr_sum), beta) 750 * * 4: A scalar, specifying the exponent, beta. 751 * For input tensor of {@link OperandType::TENSOR_FLOAT32}, the beta 1296 * exp((input[batch, i] - max(input[batch, :])) * beta) / 1297 * sum_{k}{exp((input[batch, k] - max(input[batch, :])) * beta)} 1311 * beta. If input0 is of {@link OperandType::TENSOR_FLOAT32} or
|
/hardware/interfaces/neuralnetworks/1.2/ |
D | types.hal | 973 * output = input / pow((bias + alpha * sqr_sum), beta) 1000 * * 4: A scalar, specifying the exponent, beta. 1001 * For input tensor of {@link OperandType::TENSOR_FLOAT16}, the beta 1003 * For input tensor of {@link OperandType::TENSOR_FLOAT32}, the beta 1664 * exp((input[batch, i] - max(input[batch, :])) * beta) / 1665 * sum_{k}{exp((input[batch, k] - max(input[batch, :])) * beta)} 1682 * beta. If input0 is of {@link OperandType::TENSOR_FLOAT32} or 3311 * sqrt(var[b, c] + epsilon) + beta 3337 * * 2: A scalar, specifying beta, the offset applied to the normalized 3481 * output = logits * beta - log(reduce_sum(exp(logits * beta), axis)) [all …]
|
/hardware/interfaces/neuralnetworks/1.3/ |
D | types.hal | 967 * output = input / pow((bias + alpha * sqr_sum), beta) 994 * * 4: A scalar, specifying the exponent, beta. 995 * For input tensor of {@link OperandType::TENSOR_FLOAT16}, the beta 997 * For input tensor of {@link OperandType::TENSOR_FLOAT32}, the beta 1700 * exp((input[batch, i] - max(input[batch, :])) * beta) / 1701 * sum_{k}{exp((input[batch, k] - max(input[batch, :])) * beta)} 1719 * beta. If input0 is of {@link OperandType::TENSOR_FLOAT32}, 3516 * sqrt(var[b, c] + epsilon) + beta 3542 * * 2: A scalar, specifying beta, the offset applied to the normalized 3688 * output = logits * beta - log(reduce_sum(exp(logits * beta), axis)) [all …]
|