Searched refs:num_units (Results 1 – 4 of 4) sorted by relevance
/hardware/interfaces/neuralnetworks/1.0/ |
D | types.hal | 554 * [num_units, input_size], where "num_units" corresponds to the number 556 * * 2: A 1-D tensor, of shape [num_units], specifying the bias. For input 567 * * 0: The output tensor, of shape [batch_size, num_units]. For 933 * A 2-D tensor of shape [num_units, input_size], where “num_units” 936 * A 2-D tensor of shape [num_units, input_size]. 938 * A 2-D tensor of shape [num_units, input_size]. 940 * A 2-D tensor of shape [num_units, input_size]. 942 * A 2-D tensor of shape [num_units, output_size], where “output_size” 943 * corresponds to either the number of cell units (i.e., “num_units”), 946 * A 2-D tensor of shape [num_units, output_size]. [all …]
|
/hardware/qcom/neuralnetworks/hvxservice/1.0/ |
D | HexagonModel.cpp | 236 uint32_t num_units = dims[0] * dims[1] * dims[2]; in createFullyConnectedWeightTensor() local 240 num_units, input_size, reinterpret_cast<const float*>(operandInfo.buffer)); in createFullyConnectedWeightTensor() 241 return createTensorInternal(1, 1, input_size, num_units, in createFullyConnectedWeightTensor() 246 num_units, input_size, reinterpret_cast<const uint8_t*>(operandInfo.buffer)); in createFullyConnectedWeightTensor() 247 return createTensorInternal(1, 1, input_size, num_units, in createFullyConnectedWeightTensor()
|
/hardware/interfaces/neuralnetworks/1.2/ |
D | types.hal | 772 * [num_units, input_size], where "num_units" corresponds to the number 774 * * 2: A 1-D tensor, of shape [num_units], specifying the bias. For input 785 * * 0: The output tensor, of shape [batch_size, num_units]. Before HAL version 1.2, for 1218 * A 2-D tensor of shape [num_units, input_size], where “num_units” 1221 * A 2-D tensor of shape [num_units, input_size]. 1223 * A 2-D tensor of shape [num_units, input_size]. 1225 * A 2-D tensor of shape [num_units, input_size]. 1227 * A 2-D tensor of shape [num_units, output_size], where “output_size” 1228 * corresponds to either the number of cell units (i.e., “num_units”), 1231 * A 2-D tensor of shape [num_units, output_size]. [all …]
|
/hardware/interfaces/neuralnetworks/1.3/ |
D | types.hal | 758 * [num_units, input_size], where "num_units" corresponds to the number 760 * * 2: A 1-D tensor, of shape [num_units], specifying the bias. For input 772 * * 0: The output tensor, of shape [batch_size, num_units]. Before HAL version 1.2, for 1215 * A 2-D tensor of shape [num_units, input_size], where “num_units” 1218 * A 2-D tensor of shape [num_units, input_size]. 1220 * A 2-D tensor of shape [num_units, input_size]. 1222 * A 2-D tensor of shape [num_units, input_size]. 1224 * A 2-D tensor of shape [num_units, output_size], where “output_size” 1225 * corresponds to either the number of cell units (i.e., “num_units”), 1228 * A 2-D tensor of shape [num_units, output_size]. [all …]
|