1 /* libs/pixelflinger/scanline.cpp
2 **
3 ** Copyright 2006-2011, The Android Open Source Project
4 **
5 ** Licensed under the Apache License, Version 2.0 (the "License");
6 ** you may not use this file except in compliance with the License.
7 ** You may obtain a copy of the License at
8 **
9 ** http://www.apache.org/licenses/LICENSE-2.0
10 **
11 ** Unless required by applicable law or agreed to in writing, software
12 ** distributed under the License is distributed on an "AS IS" BASIS,
13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 ** See the License for the specific language governing permissions and
15 ** limitations under the License.
16 */
17
18 #define LOG_TAG "pixelflinger"
19
20 #include <assert.h>
21 #include <stdio.h>
22 #include <stdlib.h>
23 #include <string.h>
24
25 #include <cutils/memory.h>
26 #include <log/log.h>
27
28 #include "buffer.h"
29 #include "scanline.h"
30
31 #include "codeflinger/CodeCache.h"
32 #include "codeflinger/GGLAssembler.h"
33 #if defined(__arm__)
34 #include "codeflinger/ARMAssembler.h"
35 #elif defined(__aarch64__)
36 #include "codeflinger/Arm64Assembler.h"
37 #elif defined(__mips__) && !defined(__LP64__) && __mips_isa_rev < 6
38 #include "codeflinger/MIPSAssembler.h"
39 #elif defined(__mips__) && defined(__LP64__)
40 #include "codeflinger/MIPS64Assembler.h"
41 #endif
42 //#include "codeflinger/ARMAssemblerOptimizer.h"
43
44 // ----------------------------------------------------------------------------
45
46 #define ANDROID_CODEGEN_GENERIC 0 // force generic pixel pipeline
47 #define ANDROID_CODEGEN_C 1 // hand-written C, fallback generic
48 #define ANDROID_CODEGEN_ASM 2 // hand-written asm, fallback generic
49 #define ANDROID_CODEGEN_GENERATED 3 // hand-written asm, fallback codegen
50
51 #ifdef NDEBUG
52 # define ANDROID_RELEASE
53 # define ANDROID_CODEGEN ANDROID_CODEGEN_GENERATED
54 #else
55 # define ANDROID_DEBUG
56 # define ANDROID_CODEGEN ANDROID_CODEGEN_GENERATED
57 #endif
58
59 #if defined(__arm__) || (defined(__mips__) && ((!defined(__LP64__) && __mips_isa_rev < 6) || defined(__LP64__))) || defined(__aarch64__)
60 # define ANDROID_ARM_CODEGEN 1
61 #else
62 # define ANDROID_ARM_CODEGEN 0
63 #endif
64
65 #define DEBUG__CODEGEN_ONLY 0
66
67 /* Set to 1 to dump to the log the states that need a new
68 * code-generated scanline callback, i.e. those that don't
69 * have a corresponding shortcut function.
70 */
71 #define DEBUG_NEEDS 0
72
73 #if defined( __mips__) && ((!defined(__LP64__) && __mips_isa_rev < 6) || defined(__LP64__))
74 #define ASSEMBLY_SCRATCH_SIZE 4096
75 #elif defined(__aarch64__)
76 #define ASSEMBLY_SCRATCH_SIZE 8192
77 #else
78 #define ASSEMBLY_SCRATCH_SIZE 2048
79 #endif
80
81 // ----------------------------------------------------------------------------
82 namespace android {
83 // ----------------------------------------------------------------------------
84
85 static void init_y(context_t*, int32_t);
86 static void init_y_noop(context_t*, int32_t);
87 static void init_y_packed(context_t*, int32_t);
88 static void init_y_error(context_t*, int32_t);
89
90 static void step_y__generic(context_t* c);
91 static void step_y__nop(context_t*);
92 static void step_y__smooth(context_t* c);
93 static void step_y__tmu(context_t* c);
94 static void step_y__w(context_t* c);
95
96 static void scanline(context_t* c);
97 static void scanline_perspective(context_t* c);
98 static void scanline_perspective_single(context_t* c);
99 static void scanline_t32cb16blend(context_t* c);
100 static void scanline_t32cb16blend_dither(context_t* c);
101 static void scanline_t32cb16blend_srca(context_t* c);
102 static void scanline_t32cb16blend_clamp(context_t* c);
103 static void scanline_t32cb16blend_clamp_dither(context_t* c);
104 static void scanline_t32cb16blend_clamp_mod(context_t* c);
105 static void scanline_x32cb16blend_clamp_mod(context_t* c);
106 static void scanline_t32cb16blend_clamp_mod_dither(context_t* c);
107 static void scanline_x32cb16blend_clamp_mod_dither(context_t* c);
108 static void scanline_t32cb16(context_t* c);
109 static void scanline_t32cb16_dither(context_t* c);
110 static void scanline_t32cb16_clamp(context_t* c);
111 static void scanline_t32cb16_clamp_dither(context_t* c);
112 static void scanline_col32cb16blend(context_t* c);
113 static void scanline_t16cb16_clamp(context_t* c);
114 static void scanline_t16cb16blend_clamp_mod(context_t* c);
115 static void scanline_memcpy(context_t* c);
116 static void scanline_memset8(context_t* c);
117 static void scanline_memset16(context_t* c);
118 static void scanline_memset32(context_t* c);
119 static void scanline_noop(context_t* c);
120 static void scanline_set(context_t* c);
121 static void scanline_clear(context_t* c);
122
123 static void rect_generic(context_t* c, size_t yc);
124 static void rect_memcpy(context_t* c, size_t yc);
125
126 #if defined( __arm__)
127 extern "C" void scanline_t32cb16blend_arm(uint16_t*, uint32_t*, size_t);
128 extern "C" void scanline_t32cb16_arm(uint16_t *dst, uint32_t *src, size_t ct);
129 extern "C" void scanline_col32cb16blend_neon(uint16_t *dst, uint32_t *col, size_t ct);
130 extern "C" void scanline_col32cb16blend_arm(uint16_t *dst, uint32_t col, size_t ct);
131 #elif defined(__aarch64__)
132 extern "C" void scanline_t32cb16blend_arm64(uint16_t*, uint32_t*, size_t);
133 extern "C" void scanline_col32cb16blend_arm64(uint16_t *dst, uint32_t col, size_t ct);
134 #elif defined(__mips__) && !defined(__LP64__) && __mips_isa_rev < 6
135 extern "C" void scanline_t32cb16blend_mips(uint16_t*, uint32_t*, size_t);
136 #elif defined(__mips__) && defined(__LP64__)
137 extern "C" void scanline_t32cb16blend_mips64(uint16_t*, uint32_t*, size_t);
138 extern "C" void scanline_col32cb16blend_mips64(uint16_t *dst, uint32_t col, size_t ct);
139 #endif
140
141 // ----------------------------------------------------------------------------
142
convertAbgr8888ToRgb565(uint32_t pix)143 static inline uint16_t convertAbgr8888ToRgb565(uint32_t pix)
144 {
145 return uint16_t( ((pix << 8) & 0xf800) |
146 ((pix >> 5) & 0x07e0) |
147 ((pix >> 19) & 0x001f) );
148 }
149
150 struct shortcut_t {
151 needs_filter_t filter;
152 const char* desc;
153 void (*scanline)(context_t*);
154 void (*init_y)(context_t*, int32_t);
155 };
156
157 // Keep in sync with needs
158
159 /* To understand the values here, have a look at:
160 * system/core/include/private/pixelflinger/ggl_context.h
161 *
162 * Especially the lines defining and using GGL_RESERVE_NEEDS
163 *
164 * Quick reminders:
165 * - the last nibble of the first value is the destination buffer format.
166 * - the last nibble of the third value is the source texture format
167 * - formats: 4=rgb565 1=abgr8888 2=xbgr8888
168 *
169 * In the descriptions below:
170 *
171 * SRC means we copy the source pixels to the destination
172 *
173 * SRC_OVER means we blend the source pixels to the destination
174 * with dstFactor = 1-srcA, srcFactor=1 (premultiplied source).
175 * This mode is otherwise called 'blend'.
176 *
177 * SRCA_OVER means we blend the source pixels to the destination
178 * with dstFactor=srcA*(1-srcA) srcFactor=srcA (non-premul source).
179 * This mode is otherwise called 'blend_srca'
180 *
181 * clamp means we fetch source pixels from a texture with u/v clamping
182 *
183 * mod means the source pixels are modulated (multiplied) by the
184 * a/r/g/b of the current context's color. Typically used for
185 * fade-in / fade-out.
186 *
187 * dither means we dither 32 bit values to 16 bits
188 */
189 static shortcut_t shortcuts[] = {
190 { { { 0x03515104, 0x00000077, { 0x00000A01, 0x00000000 } },
191 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
192 "565 fb, 8888 tx, blend SRC_OVER", scanline_t32cb16blend, init_y_noop },
193 { { { 0x03010104, 0x00000077, { 0x00000A01, 0x00000000 } },
194 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
195 "565 fb, 8888 tx, SRC", scanline_t32cb16, init_y_noop },
196 /* same as first entry, but with dithering */
197 { { { 0x03515104, 0x00000177, { 0x00000A01, 0x00000000 } },
198 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
199 "565 fb, 8888 tx, blend SRC_OVER dither", scanline_t32cb16blend_dither, init_y_noop },
200 /* same as second entry, but with dithering */
201 { { { 0x03010104, 0x00000177, { 0x00000A01, 0x00000000 } },
202 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
203 "565 fb, 8888 tx, SRC dither", scanline_t32cb16_dither, init_y_noop },
204 /* this is used during the boot animation - CHEAT: ignore dithering */
205 { { { 0x03545404, 0x00000077, { 0x00000A01, 0x00000000 } },
206 { 0xFFFFFFFF, 0xFFFFFEFF, { 0xFFFFFFFF, 0x0000003F } } },
207 "565 fb, 8888 tx, blend dst:ONE_MINUS_SRCA src:SRCA", scanline_t32cb16blend_srca, init_y_noop },
208 /* special case for arbitrary texture coordinates (think scaling) */
209 { { { 0x03515104, 0x00000077, { 0x00000001, 0x00000000 } },
210 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
211 "565 fb, 8888 tx, SRC_OVER clamp", scanline_t32cb16blend_clamp, init_y },
212 { { { 0x03515104, 0x00000177, { 0x00000001, 0x00000000 } },
213 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
214 "565 fb, 8888 tx, SRC_OVER clamp dither", scanline_t32cb16blend_clamp_dither, init_y },
215 /* another case used during emulation */
216 { { { 0x03515104, 0x00000077, { 0x00001001, 0x00000000 } },
217 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
218 "565 fb, 8888 tx, SRC_OVER clamp modulate", scanline_t32cb16blend_clamp_mod, init_y },
219 /* and this */
220 { { { 0x03515104, 0x00000077, { 0x00001002, 0x00000000 } },
221 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
222 "565 fb, x888 tx, SRC_OVER clamp modulate", scanline_x32cb16blend_clamp_mod, init_y },
223 { { { 0x03515104, 0x00000177, { 0x00001001, 0x00000000 } },
224 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
225 "565 fb, 8888 tx, SRC_OVER clamp modulate dither", scanline_t32cb16blend_clamp_mod_dither, init_y },
226 { { { 0x03515104, 0x00000177, { 0x00001002, 0x00000000 } },
227 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
228 "565 fb, x888 tx, SRC_OVER clamp modulate dither", scanline_x32cb16blend_clamp_mod_dither, init_y },
229 { { { 0x03010104, 0x00000077, { 0x00000001, 0x00000000 } },
230 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
231 "565 fb, 8888 tx, SRC clamp", scanline_t32cb16_clamp, init_y },
232 { { { 0x03010104, 0x00000077, { 0x00000002, 0x00000000 } },
233 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
234 "565 fb, x888 tx, SRC clamp", scanline_t32cb16_clamp, init_y },
235 { { { 0x03010104, 0x00000177, { 0x00000001, 0x00000000 } },
236 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
237 "565 fb, 8888 tx, SRC clamp dither", scanline_t32cb16_clamp_dither, init_y },
238 { { { 0x03010104, 0x00000177, { 0x00000002, 0x00000000 } },
239 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
240 "565 fb, x888 tx, SRC clamp dither", scanline_t32cb16_clamp_dither, init_y },
241 { { { 0x03010104, 0x00000077, { 0x00000004, 0x00000000 } },
242 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
243 "565 fb, 565 tx, SRC clamp", scanline_t16cb16_clamp, init_y },
244 { { { 0x03515104, 0x00000077, { 0x00001004, 0x00000000 } },
245 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0x0000003F } } },
246 "565 fb, 565 tx, SRC_OVER clamp", scanline_t16cb16blend_clamp_mod, init_y },
247 { { { 0x03515104, 0x00000077, { 0x00000000, 0x00000000 } },
248 { 0xFFFFFFFF, 0xFFFFFFFF, { 0xFFFFFFFF, 0xFFFFFFFF } } },
249 "565 fb, 8888 fixed color", scanline_col32cb16blend, init_y_packed },
250 { { { 0x00000000, 0x00000000, { 0x00000000, 0x00000000 } },
251 { 0x00000000, 0x00000007, { 0x00000000, 0x00000000 } } },
252 "(nop) alpha test", scanline_noop, init_y_noop },
253 { { { 0x00000000, 0x00000000, { 0x00000000, 0x00000000 } },
254 { 0x00000000, 0x00000070, { 0x00000000, 0x00000000 } } },
255 "(nop) depth test", scanline_noop, init_y_noop },
256 { { { 0x05000000, 0x00000000, { 0x00000000, 0x00000000 } },
257 { 0x0F000000, 0x00000080, { 0x00000000, 0x00000000 } } },
258 "(nop) logic_op", scanline_noop, init_y_noop },
259 { { { 0xF0000000, 0x00000000, { 0x00000000, 0x00000000 } },
260 { 0xF0000000, 0x00000080, { 0x00000000, 0x00000000 } } },
261 "(nop) color mask", scanline_noop, init_y_noop },
262 { { { 0x0F000000, 0x00000077, { 0x00000000, 0x00000000 } },
263 { 0xFF000000, 0x000000F7, { 0x00000000, 0x00000000 } } },
264 "(set) logic_op", scanline_set, init_y_noop },
265 { { { 0x00000000, 0x00000077, { 0x00000000, 0x00000000 } },
266 { 0xFF000000, 0x000000F7, { 0x00000000, 0x00000000 } } },
267 "(clear) logic_op", scanline_clear, init_y_noop },
268 { { { 0x03000000, 0x00000077, { 0x00000000, 0x00000000 } },
269 { 0xFFFFFF00, 0x000000F7, { 0x00000000, 0x00000000 } } },
270 "(clear) blending 0/0", scanline_clear, init_y_noop },
271 { { { 0x00000000, 0x00000000, { 0x00000000, 0x00000000 } },
272 { 0x0000003F, 0x00000000, { 0x00000000, 0x00000000 } } },
273 "(error) invalid color-buffer format", scanline_noop, init_y_error },
274 };
275 static const needs_filter_t noblend1to1 = {
276 // (disregard dithering, see below)
277 { 0x03010100, 0x00000077, { 0x00000A00, 0x00000000 } },
278 { 0xFFFFFFC0, 0xFFFFFEFF, { 0xFFFFFFC0, 0x0000003F } }
279 };
280 static const needs_filter_t fill16noblend = {
281 { 0x03010100, 0x00000077, { 0x00000000, 0x00000000 } },
282 { 0xFFFFFFC0, 0xFFFFFFFF, { 0x0000003F, 0x0000003F } }
283 };
284
285 // ----------------------------------------------------------------------------
286
287 #if ANDROID_ARM_CODEGEN
288
289 #if defined(__mips__) && ((!defined(__LP64__) && __mips_isa_rev < 6) || defined(__LP64__))
290 static CodeCache gCodeCache(32 * 1024);
291 #elif defined(__aarch64__)
292 static CodeCache gCodeCache(48 * 1024);
293 #else
294 static CodeCache gCodeCache(12 * 1024);
295 #endif
296
297 class ScanlineAssembly : public Assembly {
298 AssemblyKey<needs_t> mKey;
299 public:
ScanlineAssembly(needs_t needs,size_t size)300 ScanlineAssembly(needs_t needs, size_t size)
301 : Assembly(size), mKey(needs) { }
key() const302 const AssemblyKey<needs_t>& key() const { return mKey; }
303 };
304 #endif
305
306 // ----------------------------------------------------------------------------
307
ggl_init_scanline(context_t * c)308 void ggl_init_scanline(context_t* c)
309 {
310 c->init_y = init_y;
311 c->step_y = step_y__generic;
312 c->scanline = scanline;
313 }
314
ggl_uninit_scanline(context_t * c)315 void ggl_uninit_scanline(context_t* c)
316 {
317 if (c->state.buffers.coverage)
318 free(c->state.buffers.coverage);
319 #if ANDROID_ARM_CODEGEN
320 if (c->scanline_as)
321 c->scanline_as->decStrong(c);
322 #endif
323 }
324
325 // ----------------------------------------------------------------------------
326
pick_scanline(context_t * c)327 static void pick_scanline(context_t* c)
328 {
329 #if (!defined(DEBUG__CODEGEN_ONLY) || (DEBUG__CODEGEN_ONLY == 0))
330
331 #if ANDROID_CODEGEN == ANDROID_CODEGEN_GENERIC
332 c->init_y = init_y;
333 c->step_y = step_y__generic;
334 c->scanline = scanline;
335 return;
336 #endif
337
338 //printf("*** needs [%08lx:%08lx:%08lx:%08lx]\n",
339 // c->state.needs.n, c->state.needs.p,
340 // c->state.needs.t[0], c->state.needs.t[1]);
341
342 // first handle the special case that we cannot test with a filter
343 const uint32_t cb_format = GGL_READ_NEEDS(CB_FORMAT, c->state.needs.n);
344 if (GGL_READ_NEEDS(T_FORMAT, c->state.needs.t[0]) == cb_format) {
345 if (c->state.needs.match(noblend1to1)) {
346 // this will match regardless of dithering state, since both
347 // src and dest have the same format anyway, there is no dithering
348 // to be done.
349 const GGLFormat* f =
350 &(c->formats[GGL_READ_NEEDS(T_FORMAT, c->state.needs.t[0])]);
351 if ((f->components == GGL_RGB) ||
352 (f->components == GGL_RGBA) ||
353 (f->components == GGL_LUMINANCE) ||
354 (f->components == GGL_LUMINANCE_ALPHA))
355 {
356 // format must have all of RGB components
357 // (so the current color doesn't show through)
358 c->scanline = scanline_memcpy;
359 c->init_y = init_y_noop;
360 return;
361 }
362 }
363 }
364
365 if (c->state.needs.match(fill16noblend)) {
366 c->init_y = init_y_packed;
367 switch (c->formats[cb_format].size) {
368 case 1: c->scanline = scanline_memset8; return;
369 case 2: c->scanline = scanline_memset16; return;
370 case 4: c->scanline = scanline_memset32; return;
371 }
372 }
373
374 const int numFilters = sizeof(shortcuts)/sizeof(shortcut_t);
375 for (int i=0 ; i<numFilters ; i++) {
376 if (c->state.needs.match(shortcuts[i].filter)) {
377 c->scanline = shortcuts[i].scanline;
378 c->init_y = shortcuts[i].init_y;
379 return;
380 }
381 }
382
383 #if DEBUG_NEEDS
384 ALOGI("Needs: n=0x%08x p=0x%08x t0=0x%08x t1=0x%08x",
385 c->state.needs.n, c->state.needs.p,
386 c->state.needs.t[0], c->state.needs.t[1]);
387 #endif
388
389 #endif // DEBUG__CODEGEN_ONLY
390
391 c->init_y = init_y;
392 c->step_y = step_y__generic;
393
394 #if ANDROID_ARM_CODEGEN
395 // we're going to have to generate some code...
396 // here, generate code for our pixel pipeline
397 const AssemblyKey<needs_t> key(c->state.needs);
398 sp<Assembly> assembly = gCodeCache.lookup(key);
399 if (assembly == 0) {
400 // create a new assembly region
401 sp<ScanlineAssembly> a = new ScanlineAssembly(c->state.needs,
402 ASSEMBLY_SCRATCH_SIZE);
403 // initialize our assembler
404 #if defined(__arm__)
405 GGLAssembler assembler( new ARMAssembler(a) );
406 //GGLAssembler assembler(
407 // new ARMAssemblerOptimizer(new ARMAssembler(a)) );
408 #endif
409 #if defined(__mips__) && !defined(__LP64__) && __mips_isa_rev < 6
410 GGLAssembler assembler( new ArmToMipsAssembler(a) );
411 #elif defined(__mips__) && defined(__LP64__)
412 GGLAssembler assembler( new ArmToMips64Assembler(a) );
413 #elif defined(__aarch64__)
414 GGLAssembler assembler( new ArmToArm64Assembler(a) );
415 #endif
416 // generate the scanline code for the given needs
417 bool err = assembler.scanline(c->state.needs, c) != 0;
418 if (ggl_likely(!err)) {
419 // finally, cache this assembly
420 err = gCodeCache.cache(a->key(), a) < 0;
421 }
422 if (ggl_unlikely(err)) {
423 ALOGE("error generating or caching assembly. Reverting to NOP.");
424 c->scanline = scanline_noop;
425 c->init_y = init_y_noop;
426 c->step_y = step_y__nop;
427 return;
428 }
429 assembly = a;
430 }
431
432 // release the previous assembly
433 if (c->scanline_as) {
434 c->scanline_as->decStrong(c);
435 }
436
437 //ALOGI("using generated pixel-pipeline");
438 c->scanline_as = assembly.get();
439 c->scanline_as->incStrong(c); // hold on to assembly
440 c->scanline = (void(*)(context_t* c))assembly->base();
441 #else
442 // ALOGW("using generic (slow) pixel-pipeline");
443 c->scanline = scanline;
444 #endif
445 }
446
ggl_pick_scanline(context_t * c)447 void ggl_pick_scanline(context_t* c)
448 {
449 pick_scanline(c);
450 if ((c->state.enables & GGL_ENABLE_W) &&
451 (c->state.enables & GGL_ENABLE_TMUS))
452 {
453 c->span = c->scanline;
454 c->scanline = scanline_perspective;
455 if (!(c->state.enabled_tmu & (c->state.enabled_tmu - 1))) {
456 // only one TMU enabled
457 c->scanline = scanline_perspective_single;
458 }
459 }
460 }
461
462 // ----------------------------------------------------------------------------
463
464 static void blending(context_t* c, pixel_t* fragment, pixel_t* fb);
465 static void blend_factor(context_t* c, pixel_t* r, uint32_t factor,
466 const pixel_t* src, const pixel_t* dst);
467 static void rescale(uint32_t& u, uint8_t& su, uint32_t& v, uint8_t& sv);
468
469 #if ANDROID_ARM_CODEGEN && (ANDROID_CODEGEN == ANDROID_CODEGEN_GENERATED)
470
471 // no need to compile the generic-pipeline, it can't be reached
scanline(context_t *)472 void scanline(context_t*)
473 {
474 }
475
476 #else
477
rescale(uint32_t & u,uint8_t & su,uint32_t & v,uint8_t & sv)478 void rescale(uint32_t& u, uint8_t& su, uint32_t& v, uint8_t& sv)
479 {
480 if (su && sv) {
481 if (su > sv) {
482 v = ggl_expand(v, sv, su);
483 sv = su;
484 } else if (su < sv) {
485 u = ggl_expand(u, su, sv);
486 su = sv;
487 }
488 }
489 }
490
blending(context_t * c,pixel_t * fragment,pixel_t * fb)491 void blending(context_t* c, pixel_t* fragment, pixel_t* fb)
492 {
493 rescale(fragment->c[0], fragment->s[0], fb->c[0], fb->s[0]);
494 rescale(fragment->c[1], fragment->s[1], fb->c[1], fb->s[1]);
495 rescale(fragment->c[2], fragment->s[2], fb->c[2], fb->s[2]);
496 rescale(fragment->c[3], fragment->s[3], fb->c[3], fb->s[3]);
497
498 pixel_t sf, df;
499 blend_factor(c, &sf, c->state.blend.src, fragment, fb);
500 blend_factor(c, &df, c->state.blend.dst, fragment, fb);
501
502 fragment->c[1] =
503 gglMulAddx(fragment->c[1], sf.c[1], gglMulx(fb->c[1], df.c[1]));
504 fragment->c[2] =
505 gglMulAddx(fragment->c[2], sf.c[2], gglMulx(fb->c[2], df.c[2]));
506 fragment->c[3] =
507 gglMulAddx(fragment->c[3], sf.c[3], gglMulx(fb->c[3], df.c[3]));
508
509 if (c->state.blend.alpha_separate) {
510 blend_factor(c, &sf, c->state.blend.src_alpha, fragment, fb);
511 blend_factor(c, &df, c->state.blend.dst_alpha, fragment, fb);
512 }
513
514 fragment->c[0] =
515 gglMulAddx(fragment->c[0], sf.c[0], gglMulx(fb->c[0], df.c[0]));
516
517 // clamp to 1.0
518 if (fragment->c[0] >= (1LU<<fragment->s[0]))
519 fragment->c[0] = (1<<fragment->s[0])-1;
520 if (fragment->c[1] >= (1LU<<fragment->s[1]))
521 fragment->c[1] = (1<<fragment->s[1])-1;
522 if (fragment->c[2] >= (1LU<<fragment->s[2]))
523 fragment->c[2] = (1<<fragment->s[2])-1;
524 if (fragment->c[3] >= (1LU<<fragment->s[3]))
525 fragment->c[3] = (1<<fragment->s[3])-1;
526 }
527
blendfactor(uint32_t x,uint32_t size,uint32_t def=0)528 static inline int blendfactor(uint32_t x, uint32_t size, uint32_t def = 0)
529 {
530 if (!size)
531 return def;
532
533 // scale to 16 bits
534 if (size > 16) {
535 x >>= (size - 16);
536 } else if (size < 16) {
537 x = ggl_expand(x, size, 16);
538 }
539 x += x >> 15;
540 return x;
541 }
542
blend_factor(context_t *,pixel_t * r,uint32_t factor,const pixel_t * src,const pixel_t * dst)543 void blend_factor(context_t* /*c*/, pixel_t* r,
544 uint32_t factor, const pixel_t* src, const pixel_t* dst)
545 {
546 switch (factor) {
547 case GGL_ZERO:
548 r->c[1] =
549 r->c[2] =
550 r->c[3] =
551 r->c[0] = 0;
552 break;
553 case GGL_ONE:
554 r->c[1] =
555 r->c[2] =
556 r->c[3] =
557 r->c[0] = FIXED_ONE;
558 break;
559 case GGL_DST_COLOR:
560 r->c[1] = blendfactor(dst->c[1], dst->s[1]);
561 r->c[2] = blendfactor(dst->c[2], dst->s[2]);
562 r->c[3] = blendfactor(dst->c[3], dst->s[3]);
563 r->c[0] = blendfactor(dst->c[0], dst->s[0]);
564 break;
565 case GGL_SRC_COLOR:
566 r->c[1] = blendfactor(src->c[1], src->s[1]);
567 r->c[2] = blendfactor(src->c[2], src->s[2]);
568 r->c[3] = blendfactor(src->c[3], src->s[3]);
569 r->c[0] = blendfactor(src->c[0], src->s[0]);
570 break;
571 case GGL_ONE_MINUS_DST_COLOR:
572 r->c[1] = FIXED_ONE - blendfactor(dst->c[1], dst->s[1]);
573 r->c[2] = FIXED_ONE - blendfactor(dst->c[2], dst->s[2]);
574 r->c[3] = FIXED_ONE - blendfactor(dst->c[3], dst->s[3]);
575 r->c[0] = FIXED_ONE - blendfactor(dst->c[0], dst->s[0]);
576 break;
577 case GGL_ONE_MINUS_SRC_COLOR:
578 r->c[1] = FIXED_ONE - blendfactor(src->c[1], src->s[1]);
579 r->c[2] = FIXED_ONE - blendfactor(src->c[2], src->s[2]);
580 r->c[3] = FIXED_ONE - blendfactor(src->c[3], src->s[3]);
581 r->c[0] = FIXED_ONE - blendfactor(src->c[0], src->s[0]);
582 break;
583 case GGL_SRC_ALPHA:
584 r->c[1] =
585 r->c[2] =
586 r->c[3] =
587 r->c[0] = blendfactor(src->c[0], src->s[0], FIXED_ONE);
588 break;
589 case GGL_ONE_MINUS_SRC_ALPHA:
590 r->c[1] =
591 r->c[2] =
592 r->c[3] =
593 r->c[0] = FIXED_ONE - blendfactor(src->c[0], src->s[0], FIXED_ONE);
594 break;
595 case GGL_DST_ALPHA:
596 r->c[1] =
597 r->c[2] =
598 r->c[3] =
599 r->c[0] = blendfactor(dst->c[0], dst->s[0], FIXED_ONE);
600 break;
601 case GGL_ONE_MINUS_DST_ALPHA:
602 r->c[1] =
603 r->c[2] =
604 r->c[3] =
605 r->c[0] = FIXED_ONE - blendfactor(dst->c[0], dst->s[0], FIXED_ONE);
606 break;
607 case GGL_SRC_ALPHA_SATURATE:
608 // XXX: GGL_SRC_ALPHA_SATURATE
609 break;
610 }
611 }
612
wrapping(int32_t coord,uint32_t size,int tx_wrap)613 static GGLfixed wrapping(int32_t coord, uint32_t size, int tx_wrap)
614 {
615 GGLfixed d;
616 if (tx_wrap == GGL_REPEAT) {
617 d = (uint32_t(coord)>>16) * size;
618 } else if (tx_wrap == GGL_CLAMP) { // CLAMP_TO_EDGE semantics
619 const GGLfixed clamp_min = FIXED_HALF;
620 const GGLfixed clamp_max = (size << 16) - FIXED_HALF;
621 if (coord < clamp_min) coord = clamp_min;
622 if (coord > clamp_max) coord = clamp_max;
623 d = coord;
624 } else { // 1:1
625 const GGLfixed clamp_min = 0;
626 const GGLfixed clamp_max = (size << 16);
627 if (coord < clamp_min) coord = clamp_min;
628 if (coord > clamp_max) coord = clamp_max;
629 d = coord;
630 }
631 return d;
632 }
633
634 static inline
ADJUST_COLOR_ITERATOR(GGLcolor v,GGLcolor dvdx,int len)635 GGLcolor ADJUST_COLOR_ITERATOR(GGLcolor v, GGLcolor dvdx, int len)
636 {
637 const int32_t end = dvdx * (len-1) + v;
638 if (end < 0)
639 v -= end;
640 v &= ~(v>>31);
641 return v;
642 }
643
scanline(context_t * c)644 void scanline(context_t* c)
645 {
646 const uint32_t enables = c->state.enables;
647 const int xs = c->iterators.xl;
648 const int x1 = c->iterators.xr;
649 int xc = x1 - xs;
650 const int16_t* covPtr = c->state.buffers.coverage + xs;
651
652 // All iterated values are sampled at the pixel center
653
654 // reset iterators for that scanline...
655 GGLcolor r, g, b, a;
656 iterators_t& ci = c->iterators;
657 if (enables & GGL_ENABLE_SMOOTH) {
658 r = (xs * c->shade.drdx) + ci.ydrdy;
659 g = (xs * c->shade.dgdx) + ci.ydgdy;
660 b = (xs * c->shade.dbdx) + ci.ydbdy;
661 a = (xs * c->shade.dadx) + ci.ydady;
662 r = ADJUST_COLOR_ITERATOR(r, c->shade.drdx, xc);
663 g = ADJUST_COLOR_ITERATOR(g, c->shade.dgdx, xc);
664 b = ADJUST_COLOR_ITERATOR(b, c->shade.dbdx, xc);
665 a = ADJUST_COLOR_ITERATOR(a, c->shade.dadx, xc);
666 } else {
667 r = ci.ydrdy;
668 g = ci.ydgdy;
669 b = ci.ydbdy;
670 a = ci.ydady;
671 }
672
673 // z iterators are 1.31
674 GGLfixed z = (xs * c->shade.dzdx) + ci.ydzdy;
675 GGLfixed f = (xs * c->shade.dfdx) + ci.ydfdy;
676
677 struct {
678 GGLfixed s, t;
679 } tc[GGL_TEXTURE_UNIT_COUNT];
680 if (enables & GGL_ENABLE_TMUS) {
681 for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
682 if (c->state.texture[i].enable) {
683 texture_iterators_t& ti = c->state.texture[i].iterators;
684 if (enables & GGL_ENABLE_W) {
685 tc[i].s = ti.ydsdy;
686 tc[i].t = ti.ydtdy;
687 } else {
688 tc[i].s = (xs * ti.dsdx) + ti.ydsdy;
689 tc[i].t = (xs * ti.dtdx) + ti.ydtdy;
690 }
691 }
692 }
693 }
694
695 pixel_t fragment;
696 pixel_t texel;
697 pixel_t fb;
698
699 uint32_t x = xs;
700 uint32_t y = c->iterators.y;
701
702 while (xc--) {
703
704 { // just a scope
705
706 // read color (convert to 8 bits by keeping only the integer part)
707 fragment.s[1] = fragment.s[2] =
708 fragment.s[3] = fragment.s[0] = 8;
709 fragment.c[1] = r >> (GGL_COLOR_BITS-8);
710 fragment.c[2] = g >> (GGL_COLOR_BITS-8);
711 fragment.c[3] = b >> (GGL_COLOR_BITS-8);
712 fragment.c[0] = a >> (GGL_COLOR_BITS-8);
713
714 // texturing
715 if (enables & GGL_ENABLE_TMUS) {
716 for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
717 texture_t& tx = c->state.texture[i];
718 if (!tx.enable)
719 continue;
720 texture_iterators_t& ti = tx.iterators;
721 int32_t u, v;
722
723 // s-coordinate
724 if (tx.s_coord != GGL_ONE_TO_ONE) {
725 const int w = tx.surface.width;
726 u = wrapping(tc[i].s, w, tx.s_wrap);
727 tc[i].s += ti.dsdx;
728 } else {
729 u = (((tx.shade.is0>>16) + x)<<16) + FIXED_HALF;
730 }
731
732 // t-coordinate
733 if (tx.t_coord != GGL_ONE_TO_ONE) {
734 const int h = tx.surface.height;
735 v = wrapping(tc[i].t, h, tx.t_wrap);
736 tc[i].t += ti.dtdx;
737 } else {
738 v = (((tx.shade.it0>>16) + y)<<16) + FIXED_HALF;
739 }
740
741 // read texture
742 if (tx.mag_filter == GGL_NEAREST &&
743 tx.min_filter == GGL_NEAREST)
744 {
745 u >>= 16;
746 v >>= 16;
747 tx.surface.read(&tx.surface, c, u, v, &texel);
748 } else {
749 const int w = tx.surface.width;
750 const int h = tx.surface.height;
751 u -= FIXED_HALF;
752 v -= FIXED_HALF;
753 int u0 = u >> 16;
754 int v0 = v >> 16;
755 int u1 = u0 + 1;
756 int v1 = v0 + 1;
757 if (tx.s_wrap == GGL_REPEAT) {
758 if (u0<0) u0 += w;
759 if (u1<0) u1 += w;
760 if (u0>=w) u0 -= w;
761 if (u1>=w) u1 -= w;
762 } else {
763 if (u0<0) u0 = 0;
764 if (u1<0) u1 = 0;
765 if (u0>=w) u0 = w-1;
766 if (u1>=w) u1 = w-1;
767 }
768 if (tx.t_wrap == GGL_REPEAT) {
769 if (v0<0) v0 += h;
770 if (v1<0) v1 += h;
771 if (v0>=h) v0 -= h;
772 if (v1>=h) v1 -= h;
773 } else {
774 if (v0<0) v0 = 0;
775 if (v1<0) v1 = 0;
776 if (v0>=h) v0 = h-1;
777 if (v1>=h) v1 = h-1;
778 }
779 pixel_t texels[4];
780 uint32_t mm[4];
781 tx.surface.read(&tx.surface, c, u0, v0, &texels[0]);
782 tx.surface.read(&tx.surface, c, u0, v1, &texels[1]);
783 tx.surface.read(&tx.surface, c, u1, v0, &texels[2]);
784 tx.surface.read(&tx.surface, c, u1, v1, &texels[3]);
785 u = (u >> 12) & 0xF;
786 v = (v >> 12) & 0xF;
787 u += u>>3;
788 v += v>>3;
789 mm[0] = (0x10 - u) * (0x10 - v);
790 mm[1] = (0x10 - u) * v;
791 mm[2] = u * (0x10 - v);
792 mm[3] = 0x100 - (mm[0] + mm[1] + mm[2]);
793 for (int j=0 ; j<4 ; j++) {
794 texel.s[j] = texels[0].s[j];
795 if (!texel.s[j]) continue;
796 texel.s[j] += 8;
797 texel.c[j] = texels[0].c[j]*mm[0] +
798 texels[1].c[j]*mm[1] +
799 texels[2].c[j]*mm[2] +
800 texels[3].c[j]*mm[3] ;
801 }
802 }
803
804 // Texture environnement...
805 for (int j=0 ; j<4 ; j++) {
806 uint32_t& Cf = fragment.c[j];
807 uint32_t& Ct = texel.c[j];
808 uint8_t& sf = fragment.s[j];
809 uint8_t& st = texel.s[j];
810 uint32_t At = texel.c[0];
811 uint8_t sat = texel.s[0];
812 switch (tx.env) {
813 case GGL_REPLACE:
814 if (st) {
815 Cf = Ct;
816 sf = st;
817 }
818 break;
819 case GGL_MODULATE:
820 if (st) {
821 uint32_t factor = Ct + (Ct>>(st-1));
822 Cf = (Cf * factor) >> st;
823 }
824 break;
825 case GGL_DECAL:
826 if (sat) {
827 rescale(Cf, sf, Ct, st);
828 Cf += ((Ct - Cf) * (At + (At>>(sat-1)))) >> sat;
829 }
830 break;
831 case GGL_BLEND:
832 if (st) {
833 uint32_t Cc = tx.env_color[i];
834 if (sf>8) Cc = (Cc * ((1<<sf)-1))>>8;
835 else if (sf<8) Cc = (Cc - (Cc>>(8-sf)))>>(8-sf);
836 uint32_t factor = Ct + (Ct>>(st-1));
837 Cf = ((((1<<st) - factor) * Cf) + Ct*Cc)>>st;
838 }
839 break;
840 case GGL_ADD:
841 if (st) {
842 rescale(Cf, sf, Ct, st);
843 Cf += Ct;
844 }
845 break;
846 }
847 }
848 }
849 }
850
851 // coverage application
852 if (enables & GGL_ENABLE_AA) {
853 int16_t cf = *covPtr++;
854 fragment.c[0] = (int64_t(fragment.c[0]) * cf) >> 15;
855 }
856
857 // alpha-test
858 if (enables & GGL_ENABLE_ALPHA_TEST) {
859 GGLcolor ref = c->state.alpha_test.ref;
860 GGLcolor alpha = (uint64_t(fragment.c[0]) *
861 ((1<<GGL_COLOR_BITS)-1)) / ((1<<fragment.s[0])-1);
862 switch (c->state.alpha_test.func) {
863 case GGL_NEVER: goto discard;
864 case GGL_LESS: if (alpha<ref) break; goto discard;
865 case GGL_EQUAL: if (alpha==ref) break; goto discard;
866 case GGL_LEQUAL: if (alpha<=ref) break; goto discard;
867 case GGL_GREATER: if (alpha>ref) break; goto discard;
868 case GGL_NOTEQUAL: if (alpha!=ref) break; goto discard;
869 case GGL_GEQUAL: if (alpha>=ref) break; goto discard;
870 }
871 }
872
873 // depth test
874 if (c->state.buffers.depth.format) {
875 if (enables & GGL_ENABLE_DEPTH_TEST) {
876 surface_t* cb = &(c->state.buffers.depth);
877 uint16_t* p = (uint16_t*)(cb->data)+(x+(cb->stride*y));
878 uint16_t zz = uint32_t(z)>>(16);
879 uint16_t depth = *p;
880 switch (c->state.depth_test.func) {
881 case GGL_NEVER: goto discard;
882 case GGL_LESS: if (zz<depth) break; goto discard;
883 case GGL_EQUAL: if (zz==depth) break; goto discard;
884 case GGL_LEQUAL: if (zz<=depth) break; goto discard;
885 case GGL_GREATER: if (zz>depth) break; goto discard;
886 case GGL_NOTEQUAL: if (zz!=depth) break; goto discard;
887 case GGL_GEQUAL: if (zz>=depth) break; goto discard;
888 }
889 // depth buffer is not enabled, if depth-test is not enabled
890 /*
891 fragment.s[1] = fragment.s[2] =
892 fragment.s[3] = fragment.s[0] = 8;
893 fragment.c[1] =
894 fragment.c[2] =
895 fragment.c[3] =
896 fragment.c[0] = 255 - (zz>>8);
897 */
898 if (c->state.mask.depth) {
899 *p = zz;
900 }
901 }
902 }
903
904 // fog
905 if (enables & GGL_ENABLE_FOG) {
906 for (int i=1 ; i<=3 ; i++) {
907 GGLfixed fc = (c->state.fog.color[i] * 0x10000) / 0xFF;
908 uint32_t& c = fragment.c[i];
909 uint8_t& s = fragment.s[i];
910 c = (c * 0x10000) / ((1<<s)-1);
911 c = gglMulAddx(c, f, gglMulx(fc, 0x10000 - f));
912 s = 16;
913 }
914 }
915
916 // blending
917 if (enables & GGL_ENABLE_BLENDING) {
918 fb.c[1] = fb.c[2] = fb.c[3] = fb.c[0] = 0; // placate valgrind
919 fb.s[1] = fb.s[2] = fb.s[3] = fb.s[0] = 0;
920 c->state.buffers.color.read(
921 &(c->state.buffers.color), c, x, y, &fb);
922 blending( c, &fragment, &fb );
923 }
924
925 // write
926 c->state.buffers.color.write(
927 &(c->state.buffers.color), c, x, y, &fragment);
928 }
929
930 discard:
931 // iterate...
932 x += 1;
933 if (enables & GGL_ENABLE_SMOOTH) {
934 r += c->shade.drdx;
935 g += c->shade.dgdx;
936 b += c->shade.dbdx;
937 a += c->shade.dadx;
938 }
939 z += c->shade.dzdx;
940 f += c->shade.dfdx;
941 }
942 }
943
944 #endif // ANDROID_ARM_CODEGEN && (ANDROID_CODEGEN == ANDROID_CODEGEN_GENERATED)
945
946 // ----------------------------------------------------------------------------
947 #if 0
948 #pragma mark -
949 #pragma mark Scanline
950 #endif
951
952 /* Used to parse a 32-bit source texture linearly. Usage is:
953 *
954 * horz_iterator32 hi(context);
955 * while (...) {
956 * uint32_t src_pixel = hi.get_pixel32();
957 * ...
958 * }
959 *
960 * Use only for one-to-one texture mapping.
961 */
962 struct horz_iterator32 {
horz_iterator32android::horz_iterator32963 explicit horz_iterator32(context_t* c) {
964 const int x = c->iterators.xl;
965 const int y = c->iterators.y;
966 texture_t& tx = c->state.texture[0];
967 const int32_t u = (tx.shade.is0>>16) + x;
968 const int32_t v = (tx.shade.it0>>16) + y;
969 m_src = reinterpret_cast<uint32_t*>(tx.surface.data)+(u+(tx.surface.stride*v));
970 }
get_pixel32android::horz_iterator32971 uint32_t get_pixel32() {
972 return *m_src++;
973 }
974 protected:
975 uint32_t* m_src;
976 };
977
978 /* A variant for 16-bit source textures. */
979 struct horz_iterator16 {
horz_iterator16android::horz_iterator16980 explicit horz_iterator16(context_t* c) {
981 const int x = c->iterators.xl;
982 const int y = c->iterators.y;
983 texture_t& tx = c->state.texture[0];
984 const int32_t u = (tx.shade.is0>>16) + x;
985 const int32_t v = (tx.shade.it0>>16) + y;
986 m_src = reinterpret_cast<uint16_t*>(tx.surface.data)+(u+(tx.surface.stride*v));
987 }
get_pixel16android::horz_iterator16988 uint16_t get_pixel16() {
989 return *m_src++;
990 }
991 protected:
992 uint16_t* m_src;
993 };
994
995 /* A clamp iterator is used to iterate inside a texture with GGL_CLAMP.
996 * After initialization, call get_src16() or get_src32() to get the current
997 * texture pixel value.
998 */
999 struct clamp_iterator {
clamp_iteratorandroid::clamp_iterator1000 explicit clamp_iterator(context_t* c) {
1001 const int xs = c->iterators.xl;
1002 texture_t& tx = c->state.texture[0];
1003 texture_iterators_t& ti = tx.iterators;
1004 m_s = (xs * ti.dsdx) + ti.ydsdy;
1005 m_t = (xs * ti.dtdx) + ti.ydtdy;
1006 m_ds = ti.dsdx;
1007 m_dt = ti.dtdx;
1008 m_width_m1 = tx.surface.width - 1;
1009 m_height_m1 = tx.surface.height - 1;
1010 m_data = tx.surface.data;
1011 m_stride = tx.surface.stride;
1012 }
get_pixel16android::clamp_iterator1013 uint16_t get_pixel16() {
1014 int u, v;
1015 get_uv(u, v);
1016 uint16_t* src = reinterpret_cast<uint16_t*>(m_data) + (u + (m_stride*v));
1017 return src[0];
1018 }
get_pixel32android::clamp_iterator1019 uint32_t get_pixel32() {
1020 int u, v;
1021 get_uv(u, v);
1022 uint32_t* src = reinterpret_cast<uint32_t*>(m_data) + (u + (m_stride*v));
1023 return src[0];
1024 }
1025 private:
get_uvandroid::clamp_iterator1026 void get_uv(int& u, int& v) {
1027 int uu = m_s >> 16;
1028 int vv = m_t >> 16;
1029 if (uu < 0)
1030 uu = 0;
1031 if (uu > m_width_m1)
1032 uu = m_width_m1;
1033 if (vv < 0)
1034 vv = 0;
1035 if (vv > m_height_m1)
1036 vv = m_height_m1;
1037 u = uu;
1038 v = vv;
1039 m_s += m_ds;
1040 m_t += m_dt;
1041 }
1042
1043 GGLfixed m_s, m_t;
1044 GGLfixed m_ds, m_dt;
1045 int m_width_m1, m_height_m1;
1046 uint8_t* m_data;
1047 int m_stride;
1048 };
1049
1050 /*
1051 * The 'horizontal clamp iterator' variant corresponds to the case where
1052 * the 'v' coordinate doesn't change. This is useful to avoid one mult and
1053 * extra adds / checks per pixels, if the blending/processing operation after
1054 * this is very fast.
1055 */
is_context_horizontal(const context_t * c)1056 static int is_context_horizontal(const context_t* c) {
1057 return (c->state.texture[0].iterators.dtdx == 0);
1058 }
1059
1060 struct horz_clamp_iterator {
get_pixel16android::horz_clamp_iterator1061 uint16_t get_pixel16() {
1062 int u = m_s >> 16;
1063 m_s += m_ds;
1064 if (u < 0)
1065 u = 0;
1066 if (u > m_width_m1)
1067 u = m_width_m1;
1068 const uint16_t* src = reinterpret_cast<const uint16_t*>(m_data);
1069 return src[u];
1070 }
get_pixel32android::horz_clamp_iterator1071 uint32_t get_pixel32() {
1072 int u = m_s >> 16;
1073 m_s += m_ds;
1074 if (u < 0)
1075 u = 0;
1076 if (u > m_width_m1)
1077 u = m_width_m1;
1078 const uint32_t* src = reinterpret_cast<const uint32_t*>(m_data);
1079 return src[u];
1080 }
1081 protected:
1082 void init(const context_t* c, int shift);
1083 GGLfixed m_s;
1084 GGLfixed m_ds;
1085 int m_width_m1;
1086 const uint8_t* m_data;
1087 };
1088
init(const context_t * c,int shift)1089 void horz_clamp_iterator::init(const context_t* c, int shift)
1090 {
1091 const int xs = c->iterators.xl;
1092 const texture_t& tx = c->state.texture[0];
1093 const texture_iterators_t& ti = tx.iterators;
1094 m_s = (xs * ti.dsdx) + ti.ydsdy;
1095 m_ds = ti.dsdx;
1096 m_width_m1 = tx.surface.width-1;
1097 m_data = tx.surface.data;
1098
1099 GGLfixed t = (xs * ti.dtdx) + ti.ydtdy;
1100 int v = t >> 16;
1101 if (v < 0)
1102 v = 0;
1103 else if (v >= (int)tx.surface.height)
1104 v = (int)tx.surface.height-1;
1105
1106 m_data += (tx.surface.stride*v) << shift;
1107 }
1108
1109 struct horz_clamp_iterator16 : horz_clamp_iterator {
horz_clamp_iterator16android::horz_clamp_iterator161110 explicit horz_clamp_iterator16(const context_t* c) {
1111 init(c,1);
1112 };
1113 };
1114
1115 struct horz_clamp_iterator32 : horz_clamp_iterator {
horz_clamp_iterator32android::horz_clamp_iterator321116 explicit horz_clamp_iterator32(context_t* c) {
1117 init(c,2);
1118 };
1119 };
1120
1121 /* This is used to perform dithering operations.
1122 */
1123 struct ditherer {
dithererandroid::ditherer1124 explicit ditherer(const context_t* c) {
1125 const int x = c->iterators.xl;
1126 const int y = c->iterators.y;
1127 m_line = &c->ditherMatrix[ ((y & GGL_DITHER_MASK)<<GGL_DITHER_ORDER_SHIFT) ];
1128 m_index = x & GGL_DITHER_MASK;
1129 }
stepandroid::ditherer1130 void step(void) {
1131 m_index++;
1132 }
get_valueandroid::ditherer1133 int get_value(void) {
1134 int ret = m_line[m_index & GGL_DITHER_MASK];
1135 m_index++;
1136 return ret;
1137 }
abgr8888ToRgb565android::ditherer1138 uint16_t abgr8888ToRgb565(uint32_t s) {
1139 uint32_t r = s & 0xff;
1140 uint32_t g = (s >> 8) & 0xff;
1141 uint32_t b = (s >> 16) & 0xff;
1142 return rgb888ToRgb565(r,g,b);
1143 }
1144 /* The following assumes that r/g/b are in the 0..255 range each */
rgb888ToRgb565android::ditherer1145 uint16_t rgb888ToRgb565(uint32_t& r, uint32_t& g, uint32_t &b) {
1146 int threshold = get_value();
1147 /* dither in on GGL_DITHER_BITS, and each of r, g, b is on 8 bits */
1148 r += (threshold >> (GGL_DITHER_BITS-8 +5));
1149 g += (threshold >> (GGL_DITHER_BITS-8 +6));
1150 b += (threshold >> (GGL_DITHER_BITS-8 +5));
1151 if (r > 0xff)
1152 r = 0xff;
1153 if (g > 0xff)
1154 g = 0xff;
1155 if (b > 0xff)
1156 b = 0xff;
1157 return uint16_t(((r & 0xf8) << 8) | ((g & 0xfc) << 3) | (b >> 3));
1158 }
1159 protected:
1160 const uint8_t* m_line;
1161 int m_index;
1162 };
1163
1164 /* This structure is used to blend (SRC_OVER) 32-bit source pixels
1165 * onto 16-bit destination ones. Usage is simply:
1166 *
1167 * blender.blend(<32-bit-src-pixel-value>,<ptr-to-16-bit-dest-pixel>)
1168 */
1169 struct blender_32to16 {
blender_32to16android::blender_32to161170 explicit blender_32to16(context_t* /*c*/) { }
writeandroid::blender_32to161171 void write(uint32_t s, uint16_t* dst) {
1172 if (s == 0)
1173 return;
1174 s = GGL_RGBA_TO_HOST(s);
1175 int sA = (s>>24);
1176 if (sA == 0xff) {
1177 *dst = convertAbgr8888ToRgb565(s);
1178 } else {
1179 int f = 0x100 - (sA + (sA>>7));
1180 int sR = (s >> ( 3))&0x1F;
1181 int sG = (s >> ( 8+2))&0x3F;
1182 int sB = (s >> (16+3))&0x1F;
1183 uint16_t d = *dst;
1184 int dR = (d>>11)&0x1f;
1185 int dG = (d>>5)&0x3f;
1186 int dB = (d)&0x1f;
1187 sR += (f*dR)>>8;
1188 sG += (f*dG)>>8;
1189 sB += (f*dB)>>8;
1190 *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1191 }
1192 }
writeandroid::blender_32to161193 void write(uint32_t s, uint16_t* dst, ditherer& di) {
1194 if (s == 0) {
1195 di.step();
1196 return;
1197 }
1198 s = GGL_RGBA_TO_HOST(s);
1199 int sA = (s>>24);
1200 if (sA == 0xff) {
1201 *dst = di.abgr8888ToRgb565(s);
1202 } else {
1203 int threshold = di.get_value() << (8 - GGL_DITHER_BITS);
1204 int f = 0x100 - (sA + (sA>>7));
1205 int sR = (s >> ( 3))&0x1F;
1206 int sG = (s >> ( 8+2))&0x3F;
1207 int sB = (s >> (16+3))&0x1F;
1208 uint16_t d = *dst;
1209 int dR = (d>>11)&0x1f;
1210 int dG = (d>>5)&0x3f;
1211 int dB = (d)&0x1f;
1212 sR = ((sR << 8) + f*dR + threshold)>>8;
1213 sG = ((sG << 8) + f*dG + threshold)>>8;
1214 sB = ((sB << 8) + f*dB + threshold)>>8;
1215 if (sR > 0x1f) sR = 0x1f;
1216 if (sG > 0x3f) sG = 0x3f;
1217 if (sB > 0x1f) sB = 0x1f;
1218 *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1219 }
1220 }
1221 };
1222
1223 /* This blender does the same for the 'blend_srca' operation.
1224 * where dstFactor=srcA*(1-srcA) srcFactor=srcA
1225 */
1226 struct blender_32to16_srcA {
blender_32to16_srcAandroid::blender_32to16_srcA1227 explicit blender_32to16_srcA(const context_t* /*c*/) { }
writeandroid::blender_32to16_srcA1228 void write(uint32_t s, uint16_t* dst) {
1229 if (!s) {
1230 return;
1231 }
1232 uint16_t d = *dst;
1233 s = GGL_RGBA_TO_HOST(s);
1234 int sR = (s >> ( 3))&0x1F;
1235 int sG = (s >> ( 8+2))&0x3F;
1236 int sB = (s >> (16+3))&0x1F;
1237 int sA = (s>>24);
1238 int f1 = (sA + (sA>>7));
1239 int f2 = 0x100-f1;
1240 int dR = (d>>11)&0x1f;
1241 int dG = (d>>5)&0x3f;
1242 int dB = (d)&0x1f;
1243 sR = (f1*sR + f2*dR)>>8;
1244 sG = (f1*sG + f2*dG)>>8;
1245 sB = (f1*sB + f2*dB)>>8;
1246 *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1247 }
1248 };
1249
1250 /* Common init code the modulating blenders */
1251 struct blender_modulate {
initandroid::blender_modulate1252 void init(const context_t* c) {
1253 const int r = c->iterators.ydrdy >> (GGL_COLOR_BITS-8);
1254 const int g = c->iterators.ydgdy >> (GGL_COLOR_BITS-8);
1255 const int b = c->iterators.ydbdy >> (GGL_COLOR_BITS-8);
1256 const int a = c->iterators.ydady >> (GGL_COLOR_BITS-8);
1257 m_r = r + (r >> 7);
1258 m_g = g + (g >> 7);
1259 m_b = b + (b >> 7);
1260 m_a = a + (a >> 7);
1261 }
1262 protected:
1263 int m_r, m_g, m_b, m_a;
1264 };
1265
1266 /* This blender does a normal blend after modulation.
1267 */
1268 struct blender_32to16_modulate : blender_modulate {
blender_32to16_modulateandroid::blender_32to16_modulate1269 explicit blender_32to16_modulate(const context_t* c) {
1270 init(c);
1271 }
writeandroid::blender_32to16_modulate1272 void write(uint32_t s, uint16_t* dst) {
1273 // blend source and destination
1274 if (!s) {
1275 return;
1276 }
1277 s = GGL_RGBA_TO_HOST(s);
1278
1279 /* We need to modulate s */
1280 uint32_t sA = (s >> 24);
1281 uint32_t sB = (s >> 16) & 0xff;
1282 uint32_t sG = (s >> 8) & 0xff;
1283 uint32_t sR = s & 0xff;
1284
1285 sA = (sA*m_a) >> 8;
1286 /* Keep R/G/B scaled to 5.8 or 6.8 fixed float format */
1287 sR = (sR*m_r) >> (8 - 5);
1288 sG = (sG*m_g) >> (8 - 6);
1289 sB = (sB*m_b) >> (8 - 5);
1290
1291 /* Now do a normal blend */
1292 int f = 0x100 - (sA + (sA>>7));
1293 uint16_t d = *dst;
1294 int dR = (d>>11)&0x1f;
1295 int dG = (d>>5)&0x3f;
1296 int dB = (d)&0x1f;
1297 sR = (sR + f*dR)>>8;
1298 sG = (sG + f*dG)>>8;
1299 sB = (sB + f*dB)>>8;
1300 *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1301 }
writeandroid::blender_32to16_modulate1302 void write(uint32_t s, uint16_t* dst, ditherer& di) {
1303 // blend source and destination
1304 if (!s) {
1305 di.step();
1306 return;
1307 }
1308 s = GGL_RGBA_TO_HOST(s);
1309
1310 /* We need to modulate s */
1311 uint32_t sA = (s >> 24);
1312 uint32_t sB = (s >> 16) & 0xff;
1313 uint32_t sG = (s >> 8) & 0xff;
1314 uint32_t sR = s & 0xff;
1315
1316 sA = (sA*m_a) >> 8;
1317 /* keep R/G/B scaled to 5.8 or 6.8 fixed float format */
1318 sR = (sR*m_r) >> (8 - 5);
1319 sG = (sG*m_g) >> (8 - 6);
1320 sB = (sB*m_b) >> (8 - 5);
1321
1322 /* Scale threshold to 0.8 fixed float format */
1323 int threshold = di.get_value() << (8 - GGL_DITHER_BITS);
1324 int f = 0x100 - (sA + (sA>>7));
1325 uint16_t d = *dst;
1326 int dR = (d>>11)&0x1f;
1327 int dG = (d>>5)&0x3f;
1328 int dB = (d)&0x1f;
1329 sR = (sR + f*dR + threshold)>>8;
1330 sG = (sG + f*dG + threshold)>>8;
1331 sB = (sB + f*dB + threshold)>>8;
1332 if (sR > 0x1f) sR = 0x1f;
1333 if (sG > 0x3f) sG = 0x3f;
1334 if (sB > 0x1f) sB = 0x1f;
1335 *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1336 }
1337 };
1338
1339 /* same as 32to16_modulate, except that the input is xRGB, instead of ARGB */
1340 struct blender_x32to16_modulate : blender_modulate {
blender_x32to16_modulateandroid::blender_x32to16_modulate1341 explicit blender_x32to16_modulate(const context_t* c) {
1342 init(c);
1343 }
writeandroid::blender_x32to16_modulate1344 void write(uint32_t s, uint16_t* dst) {
1345 s = GGL_RGBA_TO_HOST(s);
1346
1347 uint32_t sB = (s >> 16) & 0xff;
1348 uint32_t sG = (s >> 8) & 0xff;
1349 uint32_t sR = s & 0xff;
1350
1351 /* Keep R/G/B in 5.8 or 6.8 format */
1352 sR = (sR*m_r) >> (8 - 5);
1353 sG = (sG*m_g) >> (8 - 6);
1354 sB = (sB*m_b) >> (8 - 5);
1355
1356 int f = 0x100 - m_a;
1357 uint16_t d = *dst;
1358 int dR = (d>>11)&0x1f;
1359 int dG = (d>>5)&0x3f;
1360 int dB = (d)&0x1f;
1361 sR = (sR + f*dR)>>8;
1362 sG = (sG + f*dG)>>8;
1363 sB = (sB + f*dB)>>8;
1364 *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1365 }
writeandroid::blender_x32to16_modulate1366 void write(uint32_t s, uint16_t* dst, ditherer& di) {
1367 s = GGL_RGBA_TO_HOST(s);
1368
1369 uint32_t sB = (s >> 16) & 0xff;
1370 uint32_t sG = (s >> 8) & 0xff;
1371 uint32_t sR = s & 0xff;
1372
1373 sR = (sR*m_r) >> (8 - 5);
1374 sG = (sG*m_g) >> (8 - 6);
1375 sB = (sB*m_b) >> (8 - 5);
1376
1377 /* Now do a normal blend */
1378 int threshold = di.get_value() << (8 - GGL_DITHER_BITS);
1379 int f = 0x100 - m_a;
1380 uint16_t d = *dst;
1381 int dR = (d>>11)&0x1f;
1382 int dG = (d>>5)&0x3f;
1383 int dB = (d)&0x1f;
1384 sR = (sR + f*dR + threshold)>>8;
1385 sG = (sG + f*dG + threshold)>>8;
1386 sB = (sB + f*dB + threshold)>>8;
1387 if (sR > 0x1f) sR = 0x1f;
1388 if (sG > 0x3f) sG = 0x3f;
1389 if (sB > 0x1f) sB = 0x1f;
1390 *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1391 }
1392 };
1393
1394 /* Same as above, but source is 16bit rgb565 */
1395 struct blender_16to16_modulate : blender_modulate {
blender_16to16_modulateandroid::blender_16to16_modulate1396 explicit blender_16to16_modulate(const context_t* c) {
1397 init(c);
1398 }
writeandroid::blender_16to16_modulate1399 void write(uint16_t s16, uint16_t* dst) {
1400 uint32_t s = s16;
1401
1402 uint32_t sR = s >> 11;
1403 uint32_t sG = (s >> 5) & 0x3f;
1404 uint32_t sB = s & 0x1f;
1405
1406 sR = (sR*m_r);
1407 sG = (sG*m_g);
1408 sB = (sB*m_b);
1409
1410 int f = 0x100 - m_a;
1411 uint16_t d = *dst;
1412 int dR = (d>>11)&0x1f;
1413 int dG = (d>>5)&0x3f;
1414 int dB = (d)&0x1f;
1415 sR = (sR + f*dR)>>8;
1416 sG = (sG + f*dG)>>8;
1417 sB = (sB + f*dB)>>8;
1418 *dst = uint16_t((sR<<11)|(sG<<5)|sB);
1419 }
1420 };
1421
1422 /* This is used to iterate over a 16-bit destination color buffer.
1423 * Usage is:
1424 *
1425 * dst_iterator16 di(context);
1426 * while (di.count--) {
1427 * <do stuff with dest pixel at di.dst>
1428 * di.dst++;
1429 * }
1430 */
1431 struct dst_iterator16 {
dst_iterator16android::dst_iterator161432 explicit dst_iterator16(const context_t* c) {
1433 const int x = c->iterators.xl;
1434 const int width = c->iterators.xr - x;
1435 const int32_t y = c->iterators.y;
1436 const surface_t* cb = &(c->state.buffers.color);
1437 count = width;
1438 dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y));
1439 }
1440 int count;
1441 uint16_t* dst;
1442 };
1443
1444
scanline_t32cb16_clamp(context_t * c)1445 static void scanline_t32cb16_clamp(context_t* c)
1446 {
1447 dst_iterator16 di(c);
1448
1449 if (is_context_horizontal(c)) {
1450 /* Special case for simple horizontal scaling */
1451 horz_clamp_iterator32 ci(c);
1452 while (di.count--) {
1453 uint32_t s = ci.get_pixel32();
1454 *di.dst++ = convertAbgr8888ToRgb565(s);
1455 }
1456 } else {
1457 /* General case */
1458 clamp_iterator ci(c);
1459 while (di.count--) {
1460 uint32_t s = ci.get_pixel32();
1461 *di.dst++ = convertAbgr8888ToRgb565(s);
1462 }
1463 }
1464 }
1465
scanline_t32cb16_dither(context_t * c)1466 static void scanline_t32cb16_dither(context_t* c)
1467 {
1468 horz_iterator32 si(c);
1469 dst_iterator16 di(c);
1470 ditherer dither(c);
1471
1472 while (di.count--) {
1473 uint32_t s = si.get_pixel32();
1474 *di.dst++ = dither.abgr8888ToRgb565(s);
1475 }
1476 }
1477
scanline_t32cb16_clamp_dither(context_t * c)1478 static void scanline_t32cb16_clamp_dither(context_t* c)
1479 {
1480 dst_iterator16 di(c);
1481 ditherer dither(c);
1482
1483 if (is_context_horizontal(c)) {
1484 /* Special case for simple horizontal scaling */
1485 horz_clamp_iterator32 ci(c);
1486 while (di.count--) {
1487 uint32_t s = ci.get_pixel32();
1488 *di.dst++ = dither.abgr8888ToRgb565(s);
1489 }
1490 } else {
1491 /* General case */
1492 clamp_iterator ci(c);
1493 while (di.count--) {
1494 uint32_t s = ci.get_pixel32();
1495 *di.dst++ = dither.abgr8888ToRgb565(s);
1496 }
1497 }
1498 }
1499
scanline_t32cb16blend_dither(context_t * c)1500 static void scanline_t32cb16blend_dither(context_t* c)
1501 {
1502 dst_iterator16 di(c);
1503 ditherer dither(c);
1504 blender_32to16 bl(c);
1505 horz_iterator32 hi(c);
1506 while (di.count--) {
1507 uint32_t s = hi.get_pixel32();
1508 bl.write(s, di.dst, dither);
1509 di.dst++;
1510 }
1511 }
1512
scanline_t32cb16blend_clamp(context_t * c)1513 static void scanline_t32cb16blend_clamp(context_t* c)
1514 {
1515 dst_iterator16 di(c);
1516 blender_32to16 bl(c);
1517
1518 if (is_context_horizontal(c)) {
1519 horz_clamp_iterator32 ci(c);
1520 while (di.count--) {
1521 uint32_t s = ci.get_pixel32();
1522 bl.write(s, di.dst);
1523 di.dst++;
1524 }
1525 } else {
1526 clamp_iterator ci(c);
1527 while (di.count--) {
1528 uint32_t s = ci.get_pixel32();
1529 bl.write(s, di.dst);
1530 di.dst++;
1531 }
1532 }
1533 }
1534
scanline_t32cb16blend_clamp_dither(context_t * c)1535 static void scanline_t32cb16blend_clamp_dither(context_t* c)
1536 {
1537 dst_iterator16 di(c);
1538 ditherer dither(c);
1539 blender_32to16 bl(c);
1540
1541 clamp_iterator ci(c);
1542 while (di.count--) {
1543 uint32_t s = ci.get_pixel32();
1544 bl.write(s, di.dst, dither);
1545 di.dst++;
1546 }
1547 }
1548
scanline_t32cb16blend_clamp_mod(context_t * c)1549 void scanline_t32cb16blend_clamp_mod(context_t* c)
1550 {
1551 dst_iterator16 di(c);
1552 blender_32to16_modulate bl(c);
1553
1554 clamp_iterator ci(c);
1555 while (di.count--) {
1556 uint32_t s = ci.get_pixel32();
1557 bl.write(s, di.dst);
1558 di.dst++;
1559 }
1560 }
1561
scanline_t32cb16blend_clamp_mod_dither(context_t * c)1562 void scanline_t32cb16blend_clamp_mod_dither(context_t* c)
1563 {
1564 dst_iterator16 di(c);
1565 blender_32to16_modulate bl(c);
1566 ditherer dither(c);
1567
1568 clamp_iterator ci(c);
1569 while (di.count--) {
1570 uint32_t s = ci.get_pixel32();
1571 bl.write(s, di.dst, dither);
1572 di.dst++;
1573 }
1574 }
1575
1576 /* Variant of scanline_t32cb16blend_clamp_mod with a xRGB texture */
scanline_x32cb16blend_clamp_mod(context_t * c)1577 void scanline_x32cb16blend_clamp_mod(context_t* c)
1578 {
1579 dst_iterator16 di(c);
1580 blender_x32to16_modulate bl(c);
1581
1582 clamp_iterator ci(c);
1583 while (di.count--) {
1584 uint32_t s = ci.get_pixel32();
1585 bl.write(s, di.dst);
1586 di.dst++;
1587 }
1588 }
1589
scanline_x32cb16blend_clamp_mod_dither(context_t * c)1590 void scanline_x32cb16blend_clamp_mod_dither(context_t* c)
1591 {
1592 dst_iterator16 di(c);
1593 blender_x32to16_modulate bl(c);
1594 ditherer dither(c);
1595
1596 clamp_iterator ci(c);
1597 while (di.count--) {
1598 uint32_t s = ci.get_pixel32();
1599 bl.write(s, di.dst, dither);
1600 di.dst++;
1601 }
1602 }
1603
scanline_t16cb16_clamp(context_t * c)1604 void scanline_t16cb16_clamp(context_t* c)
1605 {
1606 dst_iterator16 di(c);
1607
1608 /* Special case for simple horizontal scaling */
1609 if (is_context_horizontal(c)) {
1610 horz_clamp_iterator16 ci(c);
1611 while (di.count--) {
1612 *di.dst++ = ci.get_pixel16();
1613 }
1614 } else {
1615 clamp_iterator ci(c);
1616 while (di.count--) {
1617 *di.dst++ = ci.get_pixel16();
1618 }
1619 }
1620 }
1621
1622
1623
1624 template <typename T, typename U>
1625 static inline __attribute__((const))
interpolate(int y,T v0,U dvdx,U dvdy)1626 T interpolate(int y, T v0, U dvdx, U dvdy) {
1627 // interpolates in pixel's centers
1628 // v = v0 + (y + 0.5) * dvdy + (0.5 * dvdx)
1629 return (y * dvdy) + (v0 + ((dvdy + dvdx) >> 1));
1630 }
1631
1632 // ----------------------------------------------------------------------------
1633 #if 0
1634 #pragma mark -
1635 #endif
1636
init_y(context_t * c,int32_t ys)1637 void init_y(context_t* c, int32_t ys)
1638 {
1639 const uint32_t enables = c->state.enables;
1640
1641 // compute iterators...
1642 iterators_t& ci = c->iterators;
1643
1644 // sample in the center
1645 ci.y = ys;
1646
1647 if (enables & (GGL_ENABLE_DEPTH_TEST|GGL_ENABLE_W|GGL_ENABLE_FOG)) {
1648 ci.ydzdy = interpolate(ys, c->shade.z0, c->shade.dzdx, c->shade.dzdy);
1649 ci.ydwdy = interpolate(ys, c->shade.w0, c->shade.dwdx, c->shade.dwdy);
1650 ci.ydfdy = interpolate(ys, c->shade.f0, c->shade.dfdx, c->shade.dfdy);
1651 }
1652
1653 if (ggl_unlikely(enables & GGL_ENABLE_SMOOTH)) {
1654 ci.ydrdy = interpolate(ys, c->shade.r0, c->shade.drdx, c->shade.drdy);
1655 ci.ydgdy = interpolate(ys, c->shade.g0, c->shade.dgdx, c->shade.dgdy);
1656 ci.ydbdy = interpolate(ys, c->shade.b0, c->shade.dbdx, c->shade.dbdy);
1657 ci.ydady = interpolate(ys, c->shade.a0, c->shade.dadx, c->shade.dady);
1658 c->step_y = step_y__smooth;
1659 } else {
1660 ci.ydrdy = c->shade.r0;
1661 ci.ydgdy = c->shade.g0;
1662 ci.ydbdy = c->shade.b0;
1663 ci.ydady = c->shade.a0;
1664 // XXX: do only if needed, or make sure this is fast
1665 c->packed = ggl_pack_color(c, c->state.buffers.color.format,
1666 ci.ydrdy, ci.ydgdy, ci.ydbdy, ci.ydady);
1667 c->packed8888 = ggl_pack_color(c, GGL_PIXEL_FORMAT_RGBA_8888,
1668 ci.ydrdy, ci.ydgdy, ci.ydbdy, ci.ydady);
1669 }
1670
1671 // initialize the variables we need in the shader
1672 generated_vars_t& gen = c->generated_vars;
1673 gen.argb[GGLFormat::ALPHA].c = ci.ydady;
1674 gen.argb[GGLFormat::ALPHA].dx = c->shade.dadx;
1675 gen.argb[GGLFormat::RED ].c = ci.ydrdy;
1676 gen.argb[GGLFormat::RED ].dx = c->shade.drdx;
1677 gen.argb[GGLFormat::GREEN].c = ci.ydgdy;
1678 gen.argb[GGLFormat::GREEN].dx = c->shade.dgdx;
1679 gen.argb[GGLFormat::BLUE ].c = ci.ydbdy;
1680 gen.argb[GGLFormat::BLUE ].dx = c->shade.dbdx;
1681 gen.dzdx = c->shade.dzdx;
1682 gen.f = ci.ydfdy;
1683 gen.dfdx = c->shade.dfdx;
1684
1685 if (enables & GGL_ENABLE_TMUS) {
1686 for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
1687 texture_t& t = c->state.texture[i];
1688 if (!t.enable) continue;
1689
1690 texture_iterators_t& ti = t.iterators;
1691 if (t.s_coord == GGL_ONE_TO_ONE && t.t_coord == GGL_ONE_TO_ONE) {
1692 // we need to set all of these to 0 because in some cases
1693 // step_y__generic() or step_y__tmu() will be used and
1694 // therefore will update dtdy, however, in 1:1 mode
1695 // this is always done by the scanline rasterizer.
1696 ti.dsdx = ti.dsdy = ti.dtdx = ti.dtdy = 0;
1697 ti.ydsdy = t.shade.is0;
1698 ti.ydtdy = t.shade.it0;
1699 } else {
1700 const int adjustSWrap = ((t.s_wrap==GGL_CLAMP)?0:16);
1701 const int adjustTWrap = ((t.t_wrap==GGL_CLAMP)?0:16);
1702 ti.sscale = t.shade.sscale + adjustSWrap;
1703 ti.tscale = t.shade.tscale + adjustTWrap;
1704 if (!(enables & GGL_ENABLE_W)) {
1705 // S coordinate
1706 const int32_t sscale = ti.sscale;
1707 const int32_t sy = interpolate(ys,
1708 t.shade.is0, t.shade.idsdx, t.shade.idsdy);
1709 if (sscale>=0) {
1710 ti.ydsdy= sy << sscale;
1711 ti.dsdx = t.shade.idsdx << sscale;
1712 ti.dsdy = t.shade.idsdy << sscale;
1713 } else {
1714 ti.ydsdy= sy >> -sscale;
1715 ti.dsdx = t.shade.idsdx >> -sscale;
1716 ti.dsdy = t.shade.idsdy >> -sscale;
1717 }
1718 // T coordinate
1719 const int32_t tscale = ti.tscale;
1720 const int32_t ty = interpolate(ys,
1721 t.shade.it0, t.shade.idtdx, t.shade.idtdy);
1722 if (tscale>=0) {
1723 ti.ydtdy= ty << tscale;
1724 ti.dtdx = t.shade.idtdx << tscale;
1725 ti.dtdy = t.shade.idtdy << tscale;
1726 } else {
1727 ti.ydtdy= ty >> -tscale;
1728 ti.dtdx = t.shade.idtdx >> -tscale;
1729 ti.dtdy = t.shade.idtdy >> -tscale;
1730 }
1731 }
1732 }
1733 // mirror for generated code...
1734 generated_tex_vars_t& gen = c->generated_vars.texture[i];
1735 gen.width = t.surface.width;
1736 gen.height = t.surface.height;
1737 gen.stride = t.surface.stride;
1738 gen.data = uintptr_t(t.surface.data);
1739 gen.dsdx = ti.dsdx;
1740 gen.dtdx = ti.dtdx;
1741 }
1742 }
1743
1744 // choose the y-stepper
1745 c->step_y = step_y__nop;
1746 if (enables & GGL_ENABLE_FOG) {
1747 c->step_y = step_y__generic;
1748 } else if (enables & GGL_ENABLE_TMUS) {
1749 if (enables & GGL_ENABLE_SMOOTH) {
1750 c->step_y = step_y__generic;
1751 } else if (enables & GGL_ENABLE_W) {
1752 c->step_y = step_y__w;
1753 } else {
1754 c->step_y = step_y__tmu;
1755 }
1756 } else {
1757 if (enables & GGL_ENABLE_SMOOTH) {
1758 c->step_y = step_y__smooth;
1759 }
1760 }
1761
1762 // choose the rectangle blitter
1763 c->rect = rect_generic;
1764 if ((c->step_y == step_y__nop) &&
1765 (c->scanline == scanline_memcpy))
1766 {
1767 c->rect = rect_memcpy;
1768 }
1769 }
1770
init_y_packed(context_t * c,int32_t y0)1771 void init_y_packed(context_t* c, int32_t y0)
1772 {
1773 uint8_t f = c->state.buffers.color.format;
1774 c->packed = ggl_pack_color(c, f,
1775 c->shade.r0, c->shade.g0, c->shade.b0, c->shade.a0);
1776 c->packed8888 = ggl_pack_color(c, GGL_PIXEL_FORMAT_RGBA_8888,
1777 c->shade.r0, c->shade.g0, c->shade.b0, c->shade.a0);
1778 c->iterators.y = y0;
1779 c->step_y = step_y__nop;
1780 // choose the rectangle blitter
1781 c->rect = rect_generic;
1782 if (c->scanline == scanline_memcpy) {
1783 c->rect = rect_memcpy;
1784 }
1785 }
1786
init_y_noop(context_t * c,int32_t y0)1787 void init_y_noop(context_t* c, int32_t y0)
1788 {
1789 c->iterators.y = y0;
1790 c->step_y = step_y__nop;
1791 // choose the rectangle blitter
1792 c->rect = rect_generic;
1793 if (c->scanline == scanline_memcpy) {
1794 c->rect = rect_memcpy;
1795 }
1796 }
1797
init_y_error(context_t * c,int32_t y0)1798 void init_y_error(context_t* c, int32_t y0)
1799 {
1800 // woooops, shoud never happen,
1801 // fail gracefully (don't display anything)
1802 init_y_noop(c, y0);
1803 ALOGE("color-buffer has an invalid format!");
1804 }
1805
1806 // ----------------------------------------------------------------------------
1807 #if 0
1808 #pragma mark -
1809 #endif
1810
step_y__generic(context_t * c)1811 void step_y__generic(context_t* c)
1812 {
1813 const uint32_t enables = c->state.enables;
1814
1815 // iterate...
1816 iterators_t& ci = c->iterators;
1817 ci.y += 1;
1818
1819 if (enables & GGL_ENABLE_SMOOTH) {
1820 ci.ydrdy += c->shade.drdy;
1821 ci.ydgdy += c->shade.dgdy;
1822 ci.ydbdy += c->shade.dbdy;
1823 ci.ydady += c->shade.dady;
1824 }
1825
1826 const uint32_t mask =
1827 GGL_ENABLE_DEPTH_TEST |
1828 GGL_ENABLE_W |
1829 GGL_ENABLE_FOG;
1830 if (enables & mask) {
1831 ci.ydzdy += c->shade.dzdy;
1832 ci.ydwdy += c->shade.dwdy;
1833 ci.ydfdy += c->shade.dfdy;
1834 }
1835
1836 if ((enables & GGL_ENABLE_TMUS) && (!(enables & GGL_ENABLE_W))) {
1837 for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
1838 if (c->state.texture[i].enable) {
1839 texture_iterators_t& ti = c->state.texture[i].iterators;
1840 ti.ydsdy += ti.dsdy;
1841 ti.ydtdy += ti.dtdy;
1842 }
1843 }
1844 }
1845 }
1846
step_y__nop(context_t * c)1847 void step_y__nop(context_t* c)
1848 {
1849 c->iterators.y += 1;
1850 c->iterators.ydzdy += c->shade.dzdy;
1851 }
1852
step_y__smooth(context_t * c)1853 void step_y__smooth(context_t* c)
1854 {
1855 iterators_t& ci = c->iterators;
1856 ci.y += 1;
1857 ci.ydrdy += c->shade.drdy;
1858 ci.ydgdy += c->shade.dgdy;
1859 ci.ydbdy += c->shade.dbdy;
1860 ci.ydady += c->shade.dady;
1861 ci.ydzdy += c->shade.dzdy;
1862 }
1863
step_y__w(context_t * c)1864 void step_y__w(context_t* c)
1865 {
1866 iterators_t& ci = c->iterators;
1867 ci.y += 1;
1868 ci.ydzdy += c->shade.dzdy;
1869 ci.ydwdy += c->shade.dwdy;
1870 }
1871
step_y__tmu(context_t * c)1872 void step_y__tmu(context_t* c)
1873 {
1874 iterators_t& ci = c->iterators;
1875 ci.y += 1;
1876 ci.ydzdy += c->shade.dzdy;
1877 for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
1878 if (c->state.texture[i].enable) {
1879 texture_iterators_t& ti = c->state.texture[i].iterators;
1880 ti.ydsdy += ti.dsdy;
1881 ti.ydtdy += ti.dtdy;
1882 }
1883 }
1884 }
1885
1886 // ----------------------------------------------------------------------------
1887 #if 0
1888 #pragma mark -
1889 #endif
1890
scanline_perspective(context_t * c)1891 void scanline_perspective(context_t* c)
1892 {
1893 struct {
1894 union {
1895 struct {
1896 int32_t s, sq;
1897 int32_t t, tq;
1898 } sqtq;
1899 struct {
1900 int32_t v, q;
1901 } st[2];
1902 };
1903 } tc[GGL_TEXTURE_UNIT_COUNT] __attribute__((aligned(16)));
1904
1905 // XXX: we should have a special case when dwdx = 0
1906
1907 // 32 pixels spans works okay. 16 is a lot better,
1908 // but hey, it's a software renderer...
1909 const uint32_t SPAN_BITS = 5;
1910 const uint32_t ys = c->iterators.y;
1911 const uint32_t xs = c->iterators.xl;
1912 const uint32_t x1 = c->iterators.xr;
1913 const uint32_t xc = x1 - xs;
1914 uint32_t remainder = xc & ((1<<SPAN_BITS)-1);
1915 uint32_t numSpans = xc >> SPAN_BITS;
1916
1917 const iterators_t& ci = c->iterators;
1918 int32_t w0 = (xs * c->shade.dwdx) + ci.ydwdy;
1919 int32_t q0 = gglRecipQ(w0, 30);
1920 const int iwscale = 32 - gglClz(q0);
1921
1922 const int32_t dwdx = c->shade.dwdx << SPAN_BITS;
1923 int32_t xl = c->iterators.xl;
1924
1925 // We process s & t with a loop to reduce the code size
1926 // (and i-cache pressure).
1927
1928 for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
1929 const texture_t& tmu = c->state.texture[i];
1930 if (!tmu.enable) continue;
1931 int32_t s = tmu.shade.is0 +
1932 (tmu.shade.idsdy * ys) + (tmu.shade.idsdx * xs) +
1933 ((tmu.shade.idsdx + tmu.shade.idsdy)>>1);
1934 int32_t t = tmu.shade.it0 +
1935 (tmu.shade.idtdy * ys) + (tmu.shade.idtdx * xs) +
1936 ((tmu.shade.idtdx + tmu.shade.idtdy)>>1);
1937 tc[i].sqtq.s = s;
1938 tc[i].sqtq.t = t;
1939 tc[i].sqtq.sq = gglMulx(s, q0, iwscale);
1940 tc[i].sqtq.tq = gglMulx(t, q0, iwscale);
1941 }
1942
1943 int32_t span = 0;
1944 do {
1945 int32_t w1;
1946 if (ggl_likely(numSpans)) {
1947 w1 = w0 + dwdx;
1948 } else {
1949 if (remainder) {
1950 // finish off the scanline...
1951 span = remainder;
1952 w1 = (c->shade.dwdx * span) + w0;
1953 } else {
1954 break;
1955 }
1956 }
1957 int32_t q1 = gglRecipQ(w1, 30);
1958 for (int i=0 ; i<GGL_TEXTURE_UNIT_COUNT ; ++i) {
1959 texture_t& tmu = c->state.texture[i];
1960 if (!tmu.enable) continue;
1961 texture_iterators_t& ti = tmu.iterators;
1962
1963 for (int j=0 ; j<2 ; j++) {
1964 int32_t v = tc[i].st[j].v;
1965 if (span) v += (tmu.shade.st[j].dx)*span;
1966 else v += (tmu.shade.st[j].dx)<<SPAN_BITS;
1967 const int32_t v0 = tc[i].st[j].q;
1968 const int32_t v1 = gglMulx(v, q1, iwscale);
1969 int32_t dvdx = v1 - v0;
1970 if (span) dvdx /= span;
1971 else dvdx >>= SPAN_BITS;
1972 tc[i].st[j].v = v;
1973 tc[i].st[j].q = v1;
1974
1975 const int scale = ti.st[j].scale + (iwscale - 30);
1976 if (scale >= 0) {
1977 ti.st[j].ydvdy = v0 << scale;
1978 ti.st[j].dvdx = dvdx << scale;
1979 } else {
1980 ti.st[j].ydvdy = v0 >> -scale;
1981 ti.st[j].dvdx = dvdx >> -scale;
1982 }
1983 }
1984 generated_tex_vars_t& gen = c->generated_vars.texture[i];
1985 gen.dsdx = ti.st[0].dvdx;
1986 gen.dtdx = ti.st[1].dvdx;
1987 }
1988 c->iterators.xl = xl;
1989 c->iterators.xr = xl = xl + (span ? span : (1<<SPAN_BITS));
1990 w0 = w1;
1991 q0 = q1;
1992 c->span(c);
1993 } while(numSpans--);
1994 }
1995
scanline_perspective_single(context_t * c)1996 void scanline_perspective_single(context_t* c)
1997 {
1998 // 32 pixels spans works okay. 16 is a lot better,
1999 // but hey, it's a software renderer...
2000 const uint32_t SPAN_BITS = 5;
2001 const uint32_t ys = c->iterators.y;
2002 const uint32_t xs = c->iterators.xl;
2003 const uint32_t x1 = c->iterators.xr;
2004 const uint32_t xc = x1 - xs;
2005
2006 const iterators_t& ci = c->iterators;
2007 int32_t w = (xs * c->shade.dwdx) + ci.ydwdy;
2008 int32_t iw = gglRecipQ(w, 30);
2009 const int iwscale = 32 - gglClz(iw);
2010
2011 const int i = 31 - gglClz(c->state.enabled_tmu);
2012 generated_tex_vars_t& gen = c->generated_vars.texture[i];
2013 texture_t& tmu = c->state.texture[i];
2014 texture_iterators_t& ti = tmu.iterators;
2015 const int sscale = ti.sscale + (iwscale - 30);
2016 const int tscale = ti.tscale + (iwscale - 30);
2017 int32_t s = tmu.shade.is0 +
2018 (tmu.shade.idsdy * ys) + (tmu.shade.idsdx * xs) +
2019 ((tmu.shade.idsdx + tmu.shade.idsdy)>>1);
2020 int32_t t = tmu.shade.it0 +
2021 (tmu.shade.idtdy * ys) + (tmu.shade.idtdx * xs) +
2022 ((tmu.shade.idtdx + tmu.shade.idtdy)>>1);
2023 int32_t s0 = gglMulx(s, iw, iwscale);
2024 int32_t t0 = gglMulx(t, iw, iwscale);
2025 int32_t xl = c->iterators.xl;
2026
2027 int32_t sq, tq, dsdx, dtdx;
2028 int32_t premainder = xc & ((1<<SPAN_BITS)-1);
2029 uint32_t numSpans = xc >> SPAN_BITS;
2030 if (c->shade.dwdx == 0) {
2031 // XXX: we could choose to do this if the error is small enough
2032 numSpans = 0;
2033 premainder = xc;
2034 goto no_perspective;
2035 }
2036
2037 if (premainder) {
2038 w += c->shade.dwdx * premainder;
2039 iw = gglRecipQ(w, 30);
2040 no_perspective:
2041 s += tmu.shade.idsdx * premainder;
2042 t += tmu.shade.idtdx * premainder;
2043 sq = gglMulx(s, iw, iwscale);
2044 tq = gglMulx(t, iw, iwscale);
2045 dsdx = (sq - s0) / premainder;
2046 dtdx = (tq - t0) / premainder;
2047 c->iterators.xl = xl;
2048 c->iterators.xr = xl = xl + premainder;
2049 goto finish;
2050 }
2051
2052 while (numSpans--) {
2053 w += c->shade.dwdx << SPAN_BITS;
2054 s += tmu.shade.idsdx << SPAN_BITS;
2055 t += tmu.shade.idtdx << SPAN_BITS;
2056 iw = gglRecipQ(w, 30);
2057 sq = gglMulx(s, iw, iwscale);
2058 tq = gglMulx(t, iw, iwscale);
2059 dsdx = (sq - s0) >> SPAN_BITS;
2060 dtdx = (tq - t0) >> SPAN_BITS;
2061 c->iterators.xl = xl;
2062 c->iterators.xr = xl = xl + (1<<SPAN_BITS);
2063 finish:
2064 if (sscale >= 0) {
2065 ti.ydsdy = s0 << sscale;
2066 ti.dsdx = dsdx << sscale;
2067 } else {
2068 ti.ydsdy = s0 >>-sscale;
2069 ti.dsdx = dsdx >>-sscale;
2070 }
2071 if (tscale >= 0) {
2072 ti.ydtdy = t0 << tscale;
2073 ti.dtdx = dtdx << tscale;
2074 } else {
2075 ti.ydtdy = t0 >>-tscale;
2076 ti.dtdx = dtdx >>-tscale;
2077 }
2078 s0 = sq;
2079 t0 = tq;
2080 gen.dsdx = ti.dsdx;
2081 gen.dtdx = ti.dtdx;
2082 c->span(c);
2083 }
2084 }
2085
2086 // ----------------------------------------------------------------------------
2087
scanline_col32cb16blend(context_t * c)2088 void scanline_col32cb16blend(context_t* c)
2089 {
2090 int32_t x = c->iterators.xl;
2091 size_t ct = c->iterators.xr - x;
2092 int32_t y = c->iterators.y;
2093 surface_t* cb = &(c->state.buffers.color);
2094 union {
2095 uint16_t* dst;
2096 uint32_t* dst32;
2097 };
2098 dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y));
2099
2100 #if ((ANDROID_CODEGEN >= ANDROID_CODEGEN_ASM) && defined(__arm__))
2101 #if defined(__ARM_HAVE_NEON) && BYTE_ORDER == LITTLE_ENDIAN
2102 scanline_col32cb16blend_neon(dst, &(c->packed8888), ct);
2103 #else // defined(__ARM_HAVE_NEON) && BYTE_ORDER == LITTLE_ENDIAN
2104 scanline_col32cb16blend_arm(dst, GGL_RGBA_TO_HOST(c->packed8888), ct);
2105 #endif // defined(__ARM_HAVE_NEON) && BYTE_ORDER == LITTLE_ENDIAN
2106 #elif ((ANDROID_CODEGEN >= ANDROID_CODEGEN_ASM) && defined(__aarch64__))
2107 scanline_col32cb16blend_arm64(dst, GGL_RGBA_TO_HOST(c->packed8888), ct);
2108 #elif ((ANDROID_CODEGEN >= ANDROID_CODEGEN_ASM) && (defined(__mips__) && defined(__LP64__)))
2109 scanline_col32cb16blend_mips64(dst, GGL_RGBA_TO_HOST(c->packed8888), ct);
2110 #else
2111 uint32_t s = GGL_RGBA_TO_HOST(c->packed8888);
2112 int sA = (s>>24);
2113 int f = 0x100 - (sA + (sA>>7));
2114 while (ct--) {
2115 uint16_t d = *dst;
2116 int dR = (d>>11)&0x1f;
2117 int dG = (d>>5)&0x3f;
2118 int dB = (d)&0x1f;
2119 int sR = (s >> ( 3))&0x1F;
2120 int sG = (s >> ( 8+2))&0x3F;
2121 int sB = (s >> (16+3))&0x1F;
2122 sR += (f*dR)>>8;
2123 sG += (f*dG)>>8;
2124 sB += (f*dB)>>8;
2125 *dst++ = uint16_t((sR<<11)|(sG<<5)|sB);
2126 }
2127 #endif
2128
2129 }
2130
scanline_t32cb16(context_t * c)2131 void scanline_t32cb16(context_t* c)
2132 {
2133 int32_t x = c->iterators.xl;
2134 size_t ct = c->iterators.xr - x;
2135 int32_t y = c->iterators.y;
2136 surface_t* cb = &(c->state.buffers.color);
2137 union {
2138 uint16_t* dst;
2139 uint32_t* dst32;
2140 };
2141 dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y));
2142
2143 surface_t* tex = &(c->state.texture[0].surface);
2144 const int32_t u = (c->state.texture[0].shade.is0>>16) + x;
2145 const int32_t v = (c->state.texture[0].shade.it0>>16) + y;
2146 uint32_t *src = reinterpret_cast<uint32_t*>(tex->data)+(u+(tex->stride*v));
2147 uint32_t s, d;
2148
2149 if (ct==1 || uintptr_t(dst)&2) {
2150 last_one:
2151 s = GGL_RGBA_TO_HOST( *src++ );
2152 *dst++ = convertAbgr8888ToRgb565(s);
2153 ct--;
2154 }
2155
2156 while (ct >= 2) {
2157 #if BYTE_ORDER == BIG_ENDIAN
2158 s = GGL_RGBA_TO_HOST( *src++ );
2159 d = convertAbgr8888ToRgb565_hi16(s);
2160
2161 s = GGL_RGBA_TO_HOST( *src++ );
2162 d |= convertAbgr8888ToRgb565(s);
2163 #else
2164 s = GGL_RGBA_TO_HOST( *src++ );
2165 d = convertAbgr8888ToRgb565(s);
2166
2167 s = GGL_RGBA_TO_HOST( *src++ );
2168 d |= convertAbgr8888ToRgb565(s) << 16;
2169 #endif
2170 *dst32++ = d;
2171 ct -= 2;
2172 }
2173
2174 if (ct > 0) {
2175 goto last_one;
2176 }
2177 }
2178
scanline_t32cb16blend(context_t * c)2179 void scanline_t32cb16blend(context_t* c)
2180 {
2181 #if ((ANDROID_CODEGEN >= ANDROID_CODEGEN_ASM) && (defined(__arm__) || defined(__aarch64__) || \
2182 (defined(__mips__) && ((!defined(__LP64__) && __mips_isa_rev < 6) || defined(__LP64__)))))
2183 int32_t x = c->iterators.xl;
2184 size_t ct = c->iterators.xr - x;
2185 int32_t y = c->iterators.y;
2186 surface_t* cb = &(c->state.buffers.color);
2187 uint16_t* dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y));
2188
2189 surface_t* tex = &(c->state.texture[0].surface);
2190 const int32_t u = (c->state.texture[0].shade.is0>>16) + x;
2191 const int32_t v = (c->state.texture[0].shade.it0>>16) + y;
2192 uint32_t *src = reinterpret_cast<uint32_t*>(tex->data)+(u+(tex->stride*v));
2193
2194 #ifdef __arm__
2195 scanline_t32cb16blend_arm(dst, src, ct);
2196 #elif defined(__aarch64__)
2197 scanline_t32cb16blend_arm64(dst, src, ct);
2198 #elif defined(__mips__) && !defined(__LP64__) && __mips_isa_rev < 6
2199 scanline_t32cb16blend_mips(dst, src, ct);
2200 #elif defined(__mips__) && defined(__LP64__)
2201 scanline_t32cb16blend_mips64(dst, src, ct);
2202 #endif
2203 #else
2204 dst_iterator16 di(c);
2205 horz_iterator32 hi(c);
2206 blender_32to16 bl(c);
2207 while (di.count--) {
2208 uint32_t s = hi.get_pixel32();
2209 bl.write(s, di.dst);
2210 di.dst++;
2211 }
2212 #endif
2213 }
2214
scanline_t32cb16blend_srca(context_t * c)2215 void scanline_t32cb16blend_srca(context_t* c)
2216 {
2217 dst_iterator16 di(c);
2218 horz_iterator32 hi(c);
2219 blender_32to16_srcA blender(c);
2220
2221 while (di.count--) {
2222 uint32_t s = hi.get_pixel32();
2223 blender.write(s,di.dst);
2224 di.dst++;
2225 }
2226 }
2227
scanline_t16cb16blend_clamp_mod(context_t * c)2228 void scanline_t16cb16blend_clamp_mod(context_t* c)
2229 {
2230 const int a = c->iterators.ydady >> (GGL_COLOR_BITS-8);
2231 if (a == 0) {
2232 return;
2233 }
2234
2235 if (a == 255) {
2236 scanline_t16cb16_clamp(c);
2237 return;
2238 }
2239
2240 dst_iterator16 di(c);
2241 blender_16to16_modulate blender(c);
2242 clamp_iterator ci(c);
2243
2244 while (di.count--) {
2245 uint16_t s = ci.get_pixel16();
2246 blender.write(s, di.dst);
2247 di.dst++;
2248 }
2249 }
2250
scanline_memcpy(context_t * c)2251 void scanline_memcpy(context_t* c)
2252 {
2253 int32_t x = c->iterators.xl;
2254 size_t ct = c->iterators.xr - x;
2255 int32_t y = c->iterators.y;
2256 surface_t* cb = &(c->state.buffers.color);
2257 const GGLFormat* fp = &(c->formats[cb->format]);
2258 uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) +
2259 (x + (cb->stride * y)) * fp->size;
2260
2261 surface_t* tex = &(c->state.texture[0].surface);
2262 const int32_t u = (c->state.texture[0].shade.is0>>16) + x;
2263 const int32_t v = (c->state.texture[0].shade.it0>>16) + y;
2264 uint8_t *src = reinterpret_cast<uint8_t*>(tex->data) +
2265 (u + (tex->stride * v)) * fp->size;
2266
2267 const size_t size = ct * fp->size;
2268 memcpy(dst, src, size);
2269 }
2270
scanline_memset8(context_t * c)2271 void scanline_memset8(context_t* c)
2272 {
2273 int32_t x = c->iterators.xl;
2274 size_t ct = c->iterators.xr - x;
2275 int32_t y = c->iterators.y;
2276 surface_t* cb = &(c->state.buffers.color);
2277 uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) + (x+(cb->stride*y));
2278 uint32_t packed = c->packed;
2279 memset(dst, packed, ct);
2280 }
2281
scanline_memset16(context_t * c)2282 void scanline_memset16(context_t* c)
2283 {
2284 int32_t x = c->iterators.xl;
2285 size_t ct = c->iterators.xr - x;
2286 int32_t y = c->iterators.y;
2287 surface_t* cb = &(c->state.buffers.color);
2288 uint16_t* dst = reinterpret_cast<uint16_t*>(cb->data) + (x+(cb->stride*y));
2289 uint32_t packed = c->packed;
2290 android_memset16(dst, packed, ct*2);
2291 }
2292
scanline_memset32(context_t * c)2293 void scanline_memset32(context_t* c)
2294 {
2295 int32_t x = c->iterators.xl;
2296 size_t ct = c->iterators.xr - x;
2297 int32_t y = c->iterators.y;
2298 surface_t* cb = &(c->state.buffers.color);
2299 uint32_t* dst = reinterpret_cast<uint32_t*>(cb->data) + (x+(cb->stride*y));
2300 uint32_t packed = GGL_HOST_TO_RGBA(c->packed);
2301 android_memset32(dst, packed, ct*4);
2302 }
2303
scanline_clear(context_t * c)2304 void scanline_clear(context_t* c)
2305 {
2306 int32_t x = c->iterators.xl;
2307 size_t ct = c->iterators.xr - x;
2308 int32_t y = c->iterators.y;
2309 surface_t* cb = &(c->state.buffers.color);
2310 const GGLFormat* fp = &(c->formats[cb->format]);
2311 uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) +
2312 (x + (cb->stride * y)) * fp->size;
2313 const size_t size = ct * fp->size;
2314 memset(dst, 0, size);
2315 }
2316
scanline_set(context_t * c)2317 void scanline_set(context_t* c)
2318 {
2319 int32_t x = c->iterators.xl;
2320 size_t ct = c->iterators.xr - x;
2321 int32_t y = c->iterators.y;
2322 surface_t* cb = &(c->state.buffers.color);
2323 const GGLFormat* fp = &(c->formats[cb->format]);
2324 uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) +
2325 (x + (cb->stride * y)) * fp->size;
2326 const size_t size = ct * fp->size;
2327 memset(dst, 0xFF, size);
2328 }
2329
scanline_noop(context_t *)2330 void scanline_noop(context_t* /*c*/)
2331 {
2332 }
2333
rect_generic(context_t * c,size_t yc)2334 void rect_generic(context_t* c, size_t yc)
2335 {
2336 do {
2337 c->scanline(c);
2338 c->step_y(c);
2339 } while (--yc);
2340 }
2341
rect_memcpy(context_t * c,size_t yc)2342 void rect_memcpy(context_t* c, size_t yc)
2343 {
2344 int32_t x = c->iterators.xl;
2345 size_t ct = c->iterators.xr - x;
2346 int32_t y = c->iterators.y;
2347 surface_t* cb = &(c->state.buffers.color);
2348 const GGLFormat* fp = &(c->formats[cb->format]);
2349 uint8_t* dst = reinterpret_cast<uint8_t*>(cb->data) +
2350 (x + (cb->stride * y)) * fp->size;
2351
2352 surface_t* tex = &(c->state.texture[0].surface);
2353 const int32_t u = (c->state.texture[0].shade.is0>>16) + x;
2354 const int32_t v = (c->state.texture[0].shade.it0>>16) + y;
2355 uint8_t *src = reinterpret_cast<uint8_t*>(tex->data) +
2356 (u + (tex->stride * v)) * fp->size;
2357
2358 if (cb->stride == tex->stride && ct == size_t(cb->stride)) {
2359 memcpy(dst, src, ct * fp->size * yc);
2360 } else {
2361 const size_t size = ct * fp->size;
2362 const size_t dbpr = cb->stride * fp->size;
2363 const size_t sbpr = tex->stride * fp->size;
2364 do {
2365 memcpy(dst, src, size);
2366 dst += dbpr;
2367 src += sbpr;
2368 } while (--yc);
2369 }
2370 }
2371 // ----------------------------------------------------------------------------
2372 }; // namespace android
2373
2374