/frameworks/ml/nn/common/operations/ |
D | SVDF.cpp | 83 const uint32_t batch_size = SizeOfDimension(input, 0); in Prepare() local 99 stateShape->dimensions = {batch_size, memory_size * num_filters}; in Prepare() 105 outputShape->dimensions = {batch_size, num_units}; in Prepare() 170 const int batch_size = SizeOfDimension(input_, 0); in EvalFloat32() local 176 memcpy(outputStateData, inputStateData, sizeof(float) * batch_size * memory_size * num_filters); in EvalFloat32() 178 for (int b = 0; b < batch_size; b++) { in EvalFloat32() 189 weightsFeatureData, num_filters, input_size, inputData, batch_size, in EvalFloat32() 196 float scratch[batch_size * num_filters]; in EvalFloat32() 197 for (int b = 0; b < batch_size; b++) { in EvalFloat32() 207 tflite::tensor_utils::VectorBatchVectorAssign(biasData, num_units, batch_size, outputData); in EvalFloat32() [all …]
|
D | Multinomial.cpp | 72 const uint32_t batch_size = SizeOfDimension(input, 0); in Prepare() local 77 outputShape->dimensions = {batch_size, sample_count}; in Prepare() 106 const int batch_size = SizeOfDimension(input_, 0); in EvalFloat32() local 118 random_generator.ReserveRandomOutputs(batch_size * sample_count_aligned, 256); in EvalFloat32() 121 for (uint64_t b = 0; b < batch_size; ++b) { in EvalFloat32()
|
D | FullyConnected.cpp | 65 uint32_t batch_size = getSizeOfDimension(outputShape, 0); in fullyConnectedFloat32() local 67 if (batch_size * batch_size == input_n_elements) { in fullyConnectedFloat32() 204 uint32_t batch_size = input_size == 0 ? 0 : input_n_elements / input_size; in validateShapes() local 205 if (batch_size != 0) { in validateShapes() 206 NN_RET_CHECK_EQ(input_size * batch_size, input_n_elements); in validateShapes() 216 output->dimensions = {batch_size, num_units}; in validateShapes()
|
D | RNN.cpp | 65 const uint32_t batch_size = SizeOfDimension(input, 0); in Prepare() local 76 hiddenStateShape->dimensions = {batch_size, num_units}; in Prepare() 80 outputShape->dimensions = {batch_size, num_units}; in Prepare() 149 const uint32_t batch_size = inputShape.dimensions[0]; in RNNStep() local 164 for (uint32_t b = 0; b < batch_size; b++) { in RNNStep()
|
D | MultinomialTest.cpp | 39 MultinomialOpModel(uint32_t batch_size, uint32_t class_size, uint32_t sample_size) in MultinomialOpModel() argument 40 : batch_size_(batch_size), class_size_(class_size), sample_size_(sample_size) { in MultinomialOpModel()
|
/frameworks/ml/nn/runtime/test/specs/V1_3/ |
D | qlstm_projection.mod.py | 22 batch_size = 2 variable 27 InputType = ("TENSOR_QUANT8_ASYMM_SIGNED", [batch_size, input_size], 0.0078125, 0) 58 OutputStateType = ("TENSOR_QUANT8_ASYMM_SIGNED", [batch_size, output_size], 3.05176e-05, 0) 59 CellStateType = ("TENSOR_QUANT16_SYMM", [batch_size, num_units], 3.05176e-05, 0) 134 output_state_in: [ 0 for _ in range(batch_size * output_size) ], 135 cell_state_in: [ 0 for _ in range(batch_size * num_units) ], 191 output_state_in: [ 0 for _ in range(batch_size * output_size) ], 192 cell_state_in: [ 0 for _ in range(batch_size * num_units) ],
|
D | qlstm_noprojection.mod.py | 22 batch_size = 2 variable 27 InputType = ("TENSOR_QUANT8_ASYMM_SIGNED", [batch_size, input_size], 0.0078125, 0) 58 OutputStateType = ("TENSOR_QUANT8_ASYMM_SIGNED", [batch_size, output_size], 3.05176e-05, 0) 59 CellStateType = ("TENSOR_QUANT16_SYMM", [batch_size, num_units], 3.05176e-05, 0) 128 output_state_in: [ 0 for _ in range(batch_size * output_size) ], 129 cell_state_in: [ 0 for _ in range(batch_size * num_units) ],
|
/frameworks/ml/nn/tools/api/ |
D | types.spec | 1013 * [batch_size, input_size], where "input_size" corresponds to the 1018 * Since %{APILevel29}, zero batch_size is supported for this tensor. 1039 * * 0: The output tensor, of shape [batch_size, num_units]. %{BeforeAPILevel29For} 1552 * A 2-D tensor of shape [batch_size, input_size], where “batch_size” 1593 * A 2-D tensor of shape [batch_size, output_size]. 1595 * A 2-D tensor of shape [batch_size, num_units]. 1645 * A 2-D tensor of shape [batch_size, num_units * 3] with CIFG, or 1646 * [batch_size, num_units * 4] without CIFG. 1648 * A 2-D tensor of shape [batch_size, output_size]. 1650 * A 2-D tensor of shape [batch_size, num_units]. [all …]
|