/frameworks/ml/nn/common/operations/ |
D | Multinomial.cpp | 56 input_ = GetInput(operation, operands, kInputTensor); in Multinomial() 86 switch (input_->type) { in Eval() 88 std::vector<float> inputDataFloat32(getNumberOfElements(input_->shape())); in Eval() 89 convertFloat16ToFloat32(GetBuffer<_Float16>(input_), &inputDataFloat32); in Eval() 94 EvalFloat32(GetBuffer<float>(input_)); in Eval() 98 LOG(ERROR) << "Unsupported data type: " << static_cast<int>(input_->type); in Eval() 106 const int batch_size = SizeOfDimension(input_, 0); in EvalFloat32() 107 const int class_size = SizeOfDimension(input_, 1); in EvalFloat32()
|
D | BidirectionalSequenceLSTM.cpp | 83 input_ = GetInput(operation, operands, kInputTensor); in BidirectionalSequenceLSTM() 177 if (input_->type == OperandType::TENSOR_FLOAT32) { in BidirectionalSequenceLSTM() 254 if (input_->type == OperandType::TENSOR_FLOAT32) { in Prepare() 268 NN_CHECK(NumDimensions(input_) == 3); in Prepare() 269 const uint32_t max_time = SizeOfDimension(input_, params_.time_major ? 0 : 1); in Prepare() 270 const uint32_t n_batch = SizeOfDimension(input_, params_.time_major ? 1 : 0); in Prepare() 271 const uint32_t n_fw_input = SizeOfDimension(input_, 2); in Prepare() 289 input_, fw_input_to_input_weights_, fw_input_to_forget_weights_, in Prepare() 337 NN_CHECK_EQ(aux_input_->shape().dimensions[0], input_->shape().dimensions[0]); in Prepare() 338 NN_CHECK_EQ(aux_input_->shape().dimensions[1], input_->shape().dimensions[1]); in Prepare() [all …]
|
D | SVDF.cpp | 35 input_ = GetInput(operation, operands, kInputTensor); in SVDF() 114 switch (input_->type) { in Eval() 116 std::vector<float> inputDataFloat32(getNumberOfElements(input_->shape())); in Eval() 117 convertFloat16ToFloat32(reinterpret_cast<_Float16*>(input_->buffer), &inputDataFloat32); in Eval() 147 EvalFloat32(reinterpret_cast<float*>(input_->buffer), in Eval() 157 LOG(ERROR) << "Unsupported data type: " << static_cast<int>(input_->type); in Eval() 170 const int batch_size = SizeOfDimension(input_, 0); in EvalFloat32() 171 const int input_size = SizeOfDimension(input_, 1); in EvalFloat32()
|
D | MultinomialTest.cpp | 69 input_.push_back(srng.RandDouble()); in Invoke() 71 ASSERT_EQ(execution.setInput(Multinomial::kInputTensor, input_.data(), in Invoke() 72 sizeof(float) * input_.size()), in Invoke() 91 const std::vector<float>& GetInput() const { return input_; } in GetInput() 101 std::vector<float> input_; member in android::nn::wrapper::MultinomialOpModel
|
D | RNN.cpp | 36 input_ = GetInput(operation, operands, kInputTensor); in RNN() 86 switch (input_->type) { in Eval() 88 RNNStep<_Float16>(reinterpret_cast<_Float16*>(input_->buffer), input_->shape(), in Eval() 100 RNNStep<float>(reinterpret_cast<float*>(input_->buffer), input_->shape(), in Eval() 112 LOG(ERROR) << "Unsupported data type: " << static_cast<int>(input_->type); in Eval()
|
D | LSTM.cpp | 55 input_ = GetInput(operation, operands, kInputTensor); in LSTMCell() 92 if (input_->type == OperandType::TENSOR_FLOAT32) { in LSTMCell() 133 const RunTimeOperandInfo* input_, const RunTimeOperandInfo* input_to_input_weights, in CheckInputTensorDimensions() argument 337 if (input_->type == OperandType::TENSOR_FLOAT32) { in Prepare() 347 NN_CHECK(NumDimensions(input_) > 1); in Prepare() 348 const uint32_t n_batch = SizeOfDimension(input_, 0); in Prepare() 349 const uint32_t n_input = SizeOfDimension(input_, 1); in Prepare() 361 input_, input_to_input_weights_, input_to_forget_weights_, input_to_cell_weights_, in Prepare() 373 const Shape& inputShape = input_->shape(); in Prepare() 995 switch (input_->type) { in Eval() [all …]
|
D | QuantizedLSTM.cpp | 224 input_ = GetInput(operation, operands, kInputTensor); in QuantizedLSTMCell() 382 SizeOfDimension(input_, 1) + SizeOfDimension(prevOutput_, 1)}; in eval() 392 concatTempShape.dimensions = {SizeOfDimension(input_, 0), getSizeOfDimension(weightsShape, 1)}; in eval() 395 activationTempShape.dimensions = {SizeOfDimension(input_, 0), in eval() 415 GetBuffer<const uint8_t>(input_), convertShapeToDims(input_->shape()), in eval()
|
D | LSHProjection.cpp | 35 input_ = GetInput(operation, operands, kInputTensor); in LSHProjection() 168 DenseLshProjection<T>(hash_, input_, weight_, out_buf); in Eval() 172 SparseLshProjection<T>(type_, hash_, input_, weight_, out_buf); in Eval()
|
D | QuantizedLSTMTest.cpp | 76 initializeInputData(inputOperandTypeParams[QuantizedLSTMCell::kInputTensor], &input_); in QuantizedLSTMOpModel() 96 ASSERT_EQ(setInputTensor(&execution, QuantizedLSTMCell::kInputTensor, input_), in invoke() 156 void setInput(const std::vector<uint8_t>& input) { input_ = input; } in setInput() 202 std::vector<uint8_t> input_; member in android::nn::wrapper::QuantizedLSTMOpModel
|
D | Multinomial.h | 51 RunTimeOperandInfo* input_; variable
|
D | SVDF.h | 65 const RunTimeOperandInfo* input_; variable
|
D | LSTM.h | 185 const RunTimeOperandInfo* input_, const RunTimeOperandInfo* input_to_input_weights, 207 const RunTimeOperandInfo* input_; variable
|
D | LSHProjection.h | 58 const RunTimeOperandInfo* input_; variable
|
D | QuantizedLSTM.h | 65 const RunTimeOperandInfo* input_;
|
D | RNN.h | 67 const RunTimeOperandInfo* input_; variable
|
D | BidirectionalSequenceLSTM.h | 163 const RunTimeOperandInfo* input_; variable
|
/frameworks/ml/nn/runtime/test/specs/V1_2/ |
D | quantized_lstm.mod.py | 26 input_ = Input("input", InputType) variable 61 input_, 79 input_: [166, 179, 50, 150], 113 input_ = Input("input", InputType) variable 158 model = model.Operation("QUANTIZED_16BIT_LSTM", input_, input_to_input_weights, 168 input_: [166, 179],
|