1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "intrinsics_arm_vixl.h"
18
19 #include "arch/arm/instruction_set_features_arm.h"
20 #include "art_method.h"
21 #include "code_generator_arm_vixl.h"
22 #include "common_arm.h"
23 #include "heap_poisoning.h"
24 #include "intrinsics.h"
25 #include "intrinsics_utils.h"
26 #include "lock_word.h"
27 #include "mirror/array-inl.h"
28 #include "mirror/object_array-inl.h"
29 #include "mirror/reference.h"
30 #include "mirror/string-inl.h"
31 #include "scoped_thread_state_change-inl.h"
32 #include "thread-current-inl.h"
33
34 #include "aarch32/constants-aarch32.h"
35
36 namespace art {
37 namespace arm {
38
39 #define __ assembler->GetVIXLAssembler()->
40
41 using helpers::DRegisterFrom;
42 using helpers::HighRegisterFrom;
43 using helpers::InputDRegisterAt;
44 using helpers::InputRegisterAt;
45 using helpers::InputSRegisterAt;
46 using helpers::Int32ConstantFrom;
47 using helpers::LocationFrom;
48 using helpers::LowRegisterFrom;
49 using helpers::LowSRegisterFrom;
50 using helpers::HighSRegisterFrom;
51 using helpers::OutputDRegister;
52 using helpers::OutputRegister;
53 using helpers::RegisterFrom;
54 using helpers::SRegisterFrom;
55
56 using namespace vixl::aarch32; // NOLINT(build/namespaces)
57
58 using vixl::ExactAssemblyScope;
59 using vixl::CodeBufferCheckScope;
60
GetAssembler()61 ArmVIXLAssembler* IntrinsicCodeGeneratorARMVIXL::GetAssembler() {
62 return codegen_->GetAssembler();
63 }
64
GetAllocator()65 ArenaAllocator* IntrinsicCodeGeneratorARMVIXL::GetAllocator() {
66 return codegen_->GetGraph()->GetAllocator();
67 }
68
69 using IntrinsicSlowPathARMVIXL = IntrinsicSlowPath<InvokeDexCallingConventionVisitorARMVIXL,
70 SlowPathCodeARMVIXL,
71 ArmVIXLAssembler>;
72
73 // Compute base address for the System.arraycopy intrinsic in `base`.
GenSystemArrayCopyBaseAddress(ArmVIXLAssembler * assembler,DataType::Type type,const vixl32::Register & array,const Location & pos,const vixl32::Register & base)74 static void GenSystemArrayCopyBaseAddress(ArmVIXLAssembler* assembler,
75 DataType::Type type,
76 const vixl32::Register& array,
77 const Location& pos,
78 const vixl32::Register& base) {
79 // This routine is only used by the SystemArrayCopy intrinsic at the
80 // moment. We can allow DataType::Type::kReference as `type` to implement
81 // the SystemArrayCopyChar intrinsic.
82 DCHECK_EQ(type, DataType::Type::kReference);
83 const int32_t element_size = DataType::Size(type);
84 const uint32_t element_size_shift = DataType::SizeShift(type);
85 const uint32_t data_offset = mirror::Array::DataOffset(element_size).Uint32Value();
86
87 if (pos.IsConstant()) {
88 int32_t constant = Int32ConstantFrom(pos);
89 __ Add(base, array, element_size * constant + data_offset);
90 } else {
91 __ Add(base, array, Operand(RegisterFrom(pos), vixl32::LSL, element_size_shift));
92 __ Add(base, base, data_offset);
93 }
94 }
95
96 // Compute end address for the System.arraycopy intrinsic in `end`.
GenSystemArrayCopyEndAddress(ArmVIXLAssembler * assembler,DataType::Type type,const Location & copy_length,const vixl32::Register & base,const vixl32::Register & end)97 static void GenSystemArrayCopyEndAddress(ArmVIXLAssembler* assembler,
98 DataType::Type type,
99 const Location& copy_length,
100 const vixl32::Register& base,
101 const vixl32::Register& end) {
102 // This routine is only used by the SystemArrayCopy intrinsic at the
103 // moment. We can allow DataType::Type::kReference as `type` to implement
104 // the SystemArrayCopyChar intrinsic.
105 DCHECK_EQ(type, DataType::Type::kReference);
106 const int32_t element_size = DataType::Size(type);
107 const uint32_t element_size_shift = DataType::SizeShift(type);
108
109 if (copy_length.IsConstant()) {
110 int32_t constant = Int32ConstantFrom(copy_length);
111 __ Add(end, base, element_size * constant);
112 } else {
113 __ Add(end, base, Operand(RegisterFrom(copy_length), vixl32::LSL, element_size_shift));
114 }
115 }
116
117 // Slow path implementing the SystemArrayCopy intrinsic copy loop with read barriers.
118 class ReadBarrierSystemArrayCopySlowPathARMVIXL : public SlowPathCodeARMVIXL {
119 public:
ReadBarrierSystemArrayCopySlowPathARMVIXL(HInstruction * instruction)120 explicit ReadBarrierSystemArrayCopySlowPathARMVIXL(HInstruction* instruction)
121 : SlowPathCodeARMVIXL(instruction) {
122 DCHECK(kEmitCompilerReadBarrier);
123 DCHECK(kUseBakerReadBarrier);
124 }
125
EmitNativeCode(CodeGenerator * codegen)126 void EmitNativeCode(CodeGenerator* codegen) override {
127 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
128 ArmVIXLAssembler* assembler = arm_codegen->GetAssembler();
129 LocationSummary* locations = instruction_->GetLocations();
130 DCHECK(locations->CanCall());
131 DCHECK(instruction_->IsInvokeStaticOrDirect())
132 << "Unexpected instruction in read barrier arraycopy slow path: "
133 << instruction_->DebugName();
134 DCHECK(instruction_->GetLocations()->Intrinsified());
135 DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kSystemArrayCopy);
136
137 DataType::Type type = DataType::Type::kReference;
138 const int32_t element_size = DataType::Size(type);
139
140 vixl32::Register dest = InputRegisterAt(instruction_, 2);
141 Location dest_pos = locations->InAt(3);
142 vixl32::Register src_curr_addr = RegisterFrom(locations->GetTemp(0));
143 vixl32::Register dst_curr_addr = RegisterFrom(locations->GetTemp(1));
144 vixl32::Register src_stop_addr = RegisterFrom(locations->GetTemp(2));
145 vixl32::Register tmp = RegisterFrom(locations->GetTemp(3));
146
147 __ Bind(GetEntryLabel());
148 // Compute the base destination address in `dst_curr_addr`.
149 GenSystemArrayCopyBaseAddress(assembler, type, dest, dest_pos, dst_curr_addr);
150
151 vixl32::Label loop;
152 __ Bind(&loop);
153 __ Ldr(tmp, MemOperand(src_curr_addr, element_size, PostIndex));
154 assembler->MaybeUnpoisonHeapReference(tmp);
155 // TODO: Inline the mark bit check before calling the runtime?
156 // tmp = ReadBarrier::Mark(tmp);
157 // No need to save live registers; it's taken care of by the
158 // entrypoint. Also, there is no need to update the stack mask,
159 // as this runtime call will not trigger a garbage collection.
160 // (See ReadBarrierMarkSlowPathARM::EmitNativeCode for more
161 // explanations.)
162 DCHECK(!tmp.IsSP());
163 DCHECK(!tmp.IsLR());
164 DCHECK(!tmp.IsPC());
165 // IP is used internally by the ReadBarrierMarkRegX entry point
166 // as a temporary (and not preserved). It thus cannot be used by
167 // any live register in this slow path.
168 DCHECK(!src_curr_addr.Is(ip));
169 DCHECK(!dst_curr_addr.Is(ip));
170 DCHECK(!src_stop_addr.Is(ip));
171 DCHECK(!tmp.Is(ip));
172 DCHECK(tmp.IsRegister()) << tmp;
173 // TODO: Load the entrypoint once before the loop, instead of
174 // loading it at every iteration.
175 int32_t entry_point_offset =
176 Thread::ReadBarrierMarkEntryPointsOffset<kArmPointerSize>(tmp.GetCode());
177 // This runtime call does not require a stack map.
178 arm_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this);
179 assembler->MaybePoisonHeapReference(tmp);
180 __ Str(tmp, MemOperand(dst_curr_addr, element_size, PostIndex));
181 __ Cmp(src_curr_addr, src_stop_addr);
182 __ B(ne, &loop, /* is_far_target= */ false);
183 __ B(GetExitLabel());
184 }
185
GetDescription() const186 const char* GetDescription() const override {
187 return "ReadBarrierSystemArrayCopySlowPathARMVIXL";
188 }
189
190 private:
191 DISALLOW_COPY_AND_ASSIGN(ReadBarrierSystemArrayCopySlowPathARMVIXL);
192 };
193
IntrinsicLocationsBuilderARMVIXL(CodeGeneratorARMVIXL * codegen)194 IntrinsicLocationsBuilderARMVIXL::IntrinsicLocationsBuilderARMVIXL(CodeGeneratorARMVIXL* codegen)
195 : allocator_(codegen->GetGraph()->GetAllocator()),
196 codegen_(codegen),
197 assembler_(codegen->GetAssembler()),
198 features_(codegen->GetInstructionSetFeatures()) {}
199
TryDispatch(HInvoke * invoke)200 bool IntrinsicLocationsBuilderARMVIXL::TryDispatch(HInvoke* invoke) {
201 Dispatch(invoke);
202 LocationSummary* res = invoke->GetLocations();
203 if (res == nullptr) {
204 return false;
205 }
206 return res->Intrinsified();
207 }
208
CreateFPToIntLocations(ArenaAllocator * allocator,HInvoke * invoke)209 static void CreateFPToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) {
210 LocationSummary* locations =
211 new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
212 locations->SetInAt(0, Location::RequiresFpuRegister());
213 locations->SetOut(Location::RequiresRegister());
214 }
215
CreateIntToFPLocations(ArenaAllocator * allocator,HInvoke * invoke)216 static void CreateIntToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) {
217 LocationSummary* locations =
218 new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
219 locations->SetInAt(0, Location::RequiresRegister());
220 locations->SetOut(Location::RequiresFpuRegister());
221 }
222
MoveFPToInt(LocationSummary * locations,bool is64bit,ArmVIXLAssembler * assembler)223 static void MoveFPToInt(LocationSummary* locations, bool is64bit, ArmVIXLAssembler* assembler) {
224 Location input = locations->InAt(0);
225 Location output = locations->Out();
226 if (is64bit) {
227 __ Vmov(LowRegisterFrom(output), HighRegisterFrom(output), DRegisterFrom(input));
228 } else {
229 __ Vmov(RegisterFrom(output), SRegisterFrom(input));
230 }
231 }
232
MoveIntToFP(LocationSummary * locations,bool is64bit,ArmVIXLAssembler * assembler)233 static void MoveIntToFP(LocationSummary* locations, bool is64bit, ArmVIXLAssembler* assembler) {
234 Location input = locations->InAt(0);
235 Location output = locations->Out();
236 if (is64bit) {
237 __ Vmov(DRegisterFrom(output), LowRegisterFrom(input), HighRegisterFrom(input));
238 } else {
239 __ Vmov(SRegisterFrom(output), RegisterFrom(input));
240 }
241 }
242
VisitDoubleDoubleToRawLongBits(HInvoke * invoke)243 void IntrinsicLocationsBuilderARMVIXL::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
244 CreateFPToIntLocations(allocator_, invoke);
245 }
VisitDoubleLongBitsToDouble(HInvoke * invoke)246 void IntrinsicLocationsBuilderARMVIXL::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
247 CreateIntToFPLocations(allocator_, invoke);
248 }
249
VisitDoubleDoubleToRawLongBits(HInvoke * invoke)250 void IntrinsicCodeGeneratorARMVIXL::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
251 MoveFPToInt(invoke->GetLocations(), /* is64bit= */ true, GetAssembler());
252 }
VisitDoubleLongBitsToDouble(HInvoke * invoke)253 void IntrinsicCodeGeneratorARMVIXL::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
254 MoveIntToFP(invoke->GetLocations(), /* is64bit= */ true, GetAssembler());
255 }
256
VisitFloatFloatToRawIntBits(HInvoke * invoke)257 void IntrinsicLocationsBuilderARMVIXL::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
258 CreateFPToIntLocations(allocator_, invoke);
259 }
VisitFloatIntBitsToFloat(HInvoke * invoke)260 void IntrinsicLocationsBuilderARMVIXL::VisitFloatIntBitsToFloat(HInvoke* invoke) {
261 CreateIntToFPLocations(allocator_, invoke);
262 }
263
VisitFloatFloatToRawIntBits(HInvoke * invoke)264 void IntrinsicCodeGeneratorARMVIXL::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
265 MoveFPToInt(invoke->GetLocations(), /* is64bit= */ false, GetAssembler());
266 }
VisitFloatIntBitsToFloat(HInvoke * invoke)267 void IntrinsicCodeGeneratorARMVIXL::VisitFloatIntBitsToFloat(HInvoke* invoke) {
268 MoveIntToFP(invoke->GetLocations(), /* is64bit= */ false, GetAssembler());
269 }
270
CreateIntToIntLocations(ArenaAllocator * allocator,HInvoke * invoke)271 static void CreateIntToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) {
272 LocationSummary* locations =
273 new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
274 locations->SetInAt(0, Location::RequiresRegister());
275 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
276 }
277
CreateLongToLongLocationsWithOverlap(ArenaAllocator * allocator,HInvoke * invoke)278 static void CreateLongToLongLocationsWithOverlap(ArenaAllocator* allocator, HInvoke* invoke) {
279 LocationSummary* locations =
280 new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
281 locations->SetInAt(0, Location::RequiresRegister());
282 locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
283 }
284
CreateFPToFPLocations(ArenaAllocator * allocator,HInvoke * invoke)285 static void CreateFPToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) {
286 LocationSummary* locations =
287 new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
288 locations->SetInAt(0, Location::RequiresFpuRegister());
289 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
290 }
291
GenNumberOfLeadingZeros(HInvoke * invoke,DataType::Type type,CodeGeneratorARMVIXL * codegen)292 static void GenNumberOfLeadingZeros(HInvoke* invoke,
293 DataType::Type type,
294 CodeGeneratorARMVIXL* codegen) {
295 ArmVIXLAssembler* assembler = codegen->GetAssembler();
296 LocationSummary* locations = invoke->GetLocations();
297 Location in = locations->InAt(0);
298 vixl32::Register out = RegisterFrom(locations->Out());
299
300 DCHECK((type == DataType::Type::kInt32) || (type == DataType::Type::kInt64));
301
302 if (type == DataType::Type::kInt64) {
303 vixl32::Register in_reg_lo = LowRegisterFrom(in);
304 vixl32::Register in_reg_hi = HighRegisterFrom(in);
305 vixl32::Label end;
306 vixl32::Label* final_label = codegen->GetFinalLabel(invoke, &end);
307 __ Clz(out, in_reg_hi);
308 __ CompareAndBranchIfNonZero(in_reg_hi, final_label, /* is_far_target= */ false);
309 __ Clz(out, in_reg_lo);
310 __ Add(out, out, 32);
311 if (end.IsReferenced()) {
312 __ Bind(&end);
313 }
314 } else {
315 __ Clz(out, RegisterFrom(in));
316 }
317 }
318
VisitIntegerNumberOfLeadingZeros(HInvoke * invoke)319 void IntrinsicLocationsBuilderARMVIXL::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
320 CreateIntToIntLocations(allocator_, invoke);
321 }
322
VisitIntegerNumberOfLeadingZeros(HInvoke * invoke)323 void IntrinsicCodeGeneratorARMVIXL::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
324 GenNumberOfLeadingZeros(invoke, DataType::Type::kInt32, codegen_);
325 }
326
VisitLongNumberOfLeadingZeros(HInvoke * invoke)327 void IntrinsicLocationsBuilderARMVIXL::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
328 CreateLongToLongLocationsWithOverlap(allocator_, invoke);
329 }
330
VisitLongNumberOfLeadingZeros(HInvoke * invoke)331 void IntrinsicCodeGeneratorARMVIXL::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
332 GenNumberOfLeadingZeros(invoke, DataType::Type::kInt64, codegen_);
333 }
334
GenNumberOfTrailingZeros(HInvoke * invoke,DataType::Type type,CodeGeneratorARMVIXL * codegen)335 static void GenNumberOfTrailingZeros(HInvoke* invoke,
336 DataType::Type type,
337 CodeGeneratorARMVIXL* codegen) {
338 DCHECK((type == DataType::Type::kInt32) || (type == DataType::Type::kInt64));
339
340 ArmVIXLAssembler* assembler = codegen->GetAssembler();
341 LocationSummary* locations = invoke->GetLocations();
342 vixl32::Register out = RegisterFrom(locations->Out());
343
344 if (type == DataType::Type::kInt64) {
345 vixl32::Register in_reg_lo = LowRegisterFrom(locations->InAt(0));
346 vixl32::Register in_reg_hi = HighRegisterFrom(locations->InAt(0));
347 vixl32::Label end;
348 vixl32::Label* final_label = codegen->GetFinalLabel(invoke, &end);
349 __ Rbit(out, in_reg_lo);
350 __ Clz(out, out);
351 __ CompareAndBranchIfNonZero(in_reg_lo, final_label, /* is_far_target= */ false);
352 __ Rbit(out, in_reg_hi);
353 __ Clz(out, out);
354 __ Add(out, out, 32);
355 if (end.IsReferenced()) {
356 __ Bind(&end);
357 }
358 } else {
359 vixl32::Register in = RegisterFrom(locations->InAt(0));
360 __ Rbit(out, in);
361 __ Clz(out, out);
362 }
363 }
364
VisitIntegerNumberOfTrailingZeros(HInvoke * invoke)365 void IntrinsicLocationsBuilderARMVIXL::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
366 CreateIntToIntLocations(allocator_, invoke);
367 }
368
VisitIntegerNumberOfTrailingZeros(HInvoke * invoke)369 void IntrinsicCodeGeneratorARMVIXL::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
370 GenNumberOfTrailingZeros(invoke, DataType::Type::kInt32, codegen_);
371 }
372
VisitLongNumberOfTrailingZeros(HInvoke * invoke)373 void IntrinsicLocationsBuilderARMVIXL::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
374 CreateLongToLongLocationsWithOverlap(allocator_, invoke);
375 }
376
VisitLongNumberOfTrailingZeros(HInvoke * invoke)377 void IntrinsicCodeGeneratorARMVIXL::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
378 GenNumberOfTrailingZeros(invoke, DataType::Type::kInt64, codegen_);
379 }
380
VisitMathSqrt(HInvoke * invoke)381 void IntrinsicLocationsBuilderARMVIXL::VisitMathSqrt(HInvoke* invoke) {
382 CreateFPToFPLocations(allocator_, invoke);
383 }
384
VisitMathSqrt(HInvoke * invoke)385 void IntrinsicCodeGeneratorARMVIXL::VisitMathSqrt(HInvoke* invoke) {
386 ArmVIXLAssembler* assembler = GetAssembler();
387 __ Vsqrt(OutputDRegister(invoke), InputDRegisterAt(invoke, 0));
388 }
389
VisitMathRint(HInvoke * invoke)390 void IntrinsicLocationsBuilderARMVIXL::VisitMathRint(HInvoke* invoke) {
391 if (features_.HasARMv8AInstructions()) {
392 CreateFPToFPLocations(allocator_, invoke);
393 }
394 }
395
VisitMathRint(HInvoke * invoke)396 void IntrinsicCodeGeneratorARMVIXL::VisitMathRint(HInvoke* invoke) {
397 DCHECK(codegen_->GetInstructionSetFeatures().HasARMv8AInstructions());
398 ArmVIXLAssembler* assembler = GetAssembler();
399 __ Vrintn(F64, OutputDRegister(invoke), InputDRegisterAt(invoke, 0));
400 }
401
VisitMathRoundFloat(HInvoke * invoke)402 void IntrinsicLocationsBuilderARMVIXL::VisitMathRoundFloat(HInvoke* invoke) {
403 if (features_.HasARMv8AInstructions()) {
404 LocationSummary* locations =
405 new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
406 locations->SetInAt(0, Location::RequiresFpuRegister());
407 locations->SetOut(Location::RequiresRegister());
408 locations->AddTemp(Location::RequiresFpuRegister());
409 }
410 }
411
VisitMathRoundFloat(HInvoke * invoke)412 void IntrinsicCodeGeneratorARMVIXL::VisitMathRoundFloat(HInvoke* invoke) {
413 DCHECK(codegen_->GetInstructionSetFeatures().HasARMv8AInstructions());
414
415 ArmVIXLAssembler* assembler = GetAssembler();
416 vixl32::SRegister in_reg = InputSRegisterAt(invoke, 0);
417 vixl32::Register out_reg = OutputRegister(invoke);
418 vixl32::SRegister temp1 = LowSRegisterFrom(invoke->GetLocations()->GetTemp(0));
419 vixl32::SRegister temp2 = HighSRegisterFrom(invoke->GetLocations()->GetTemp(0));
420 vixl32::Label done;
421 vixl32::Label* final_label = codegen_->GetFinalLabel(invoke, &done);
422
423 // Round to nearest integer, ties away from zero.
424 __ Vcvta(S32, F32, temp1, in_reg);
425 __ Vmov(out_reg, temp1);
426
427 // For positive, zero or NaN inputs, rounding is done.
428 __ Cmp(out_reg, 0);
429 __ B(ge, final_label, /* is_far_target= */ false);
430
431 // Handle input < 0 cases.
432 // If input is negative but not a tie, previous result (round to nearest) is valid.
433 // If input is a negative tie, change rounding direction to positive infinity, out_reg += 1.
434 __ Vrinta(F32, temp1, in_reg);
435 __ Vmov(temp2, 0.5);
436 __ Vsub(F32, temp1, in_reg, temp1);
437 __ Vcmp(F32, temp1, temp2);
438 __ Vmrs(RegisterOrAPSR_nzcv(kPcCode), FPSCR);
439 {
440 // Use ExactAsemblyScope here because we are using IT.
441 ExactAssemblyScope it_scope(assembler->GetVIXLAssembler(),
442 2 * kMaxInstructionSizeInBytes,
443 CodeBufferCheckScope::kMaximumSize);
444 __ it(eq);
445 __ add(eq, out_reg, out_reg, 1);
446 }
447
448 if (done.IsReferenced()) {
449 __ Bind(&done);
450 }
451 }
452
VisitMemoryPeekByte(HInvoke * invoke)453 void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPeekByte(HInvoke* invoke) {
454 CreateIntToIntLocations(allocator_, invoke);
455 }
456
VisitMemoryPeekByte(HInvoke * invoke)457 void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPeekByte(HInvoke* invoke) {
458 ArmVIXLAssembler* assembler = GetAssembler();
459 // Ignore upper 4B of long address.
460 __ Ldrsb(OutputRegister(invoke), MemOperand(LowRegisterFrom(invoke->GetLocations()->InAt(0))));
461 }
462
VisitMemoryPeekIntNative(HInvoke * invoke)463 void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPeekIntNative(HInvoke* invoke) {
464 CreateIntToIntLocations(allocator_, invoke);
465 }
466
VisitMemoryPeekIntNative(HInvoke * invoke)467 void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPeekIntNative(HInvoke* invoke) {
468 ArmVIXLAssembler* assembler = GetAssembler();
469 // Ignore upper 4B of long address.
470 __ Ldr(OutputRegister(invoke), MemOperand(LowRegisterFrom(invoke->GetLocations()->InAt(0))));
471 }
472
VisitMemoryPeekLongNative(HInvoke * invoke)473 void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPeekLongNative(HInvoke* invoke) {
474 CreateIntToIntLocations(allocator_, invoke);
475 }
476
VisitMemoryPeekLongNative(HInvoke * invoke)477 void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPeekLongNative(HInvoke* invoke) {
478 ArmVIXLAssembler* assembler = GetAssembler();
479 // Ignore upper 4B of long address.
480 vixl32::Register addr = LowRegisterFrom(invoke->GetLocations()->InAt(0));
481 // Worst case: Control register bit SCTLR.A = 0. Then unaligned accesses throw a processor
482 // exception. So we can't use ldrd as addr may be unaligned.
483 vixl32::Register lo = LowRegisterFrom(invoke->GetLocations()->Out());
484 vixl32::Register hi = HighRegisterFrom(invoke->GetLocations()->Out());
485 if (addr.Is(lo)) {
486 __ Ldr(hi, MemOperand(addr, 4));
487 __ Ldr(lo, MemOperand(addr));
488 } else {
489 __ Ldr(lo, MemOperand(addr));
490 __ Ldr(hi, MemOperand(addr, 4));
491 }
492 }
493
VisitMemoryPeekShortNative(HInvoke * invoke)494 void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPeekShortNative(HInvoke* invoke) {
495 CreateIntToIntLocations(allocator_, invoke);
496 }
497
VisitMemoryPeekShortNative(HInvoke * invoke)498 void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPeekShortNative(HInvoke* invoke) {
499 ArmVIXLAssembler* assembler = GetAssembler();
500 // Ignore upper 4B of long address.
501 __ Ldrsh(OutputRegister(invoke), MemOperand(LowRegisterFrom(invoke->GetLocations()->InAt(0))));
502 }
503
CreateIntIntToVoidLocations(ArenaAllocator * allocator,HInvoke * invoke)504 static void CreateIntIntToVoidLocations(ArenaAllocator* allocator, HInvoke* invoke) {
505 LocationSummary* locations =
506 new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
507 locations->SetInAt(0, Location::RequiresRegister());
508 locations->SetInAt(1, Location::RequiresRegister());
509 }
510
VisitMemoryPokeByte(HInvoke * invoke)511 void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPokeByte(HInvoke* invoke) {
512 CreateIntIntToVoidLocations(allocator_, invoke);
513 }
514
VisitMemoryPokeByte(HInvoke * invoke)515 void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPokeByte(HInvoke* invoke) {
516 ArmVIXLAssembler* assembler = GetAssembler();
517 __ Strb(InputRegisterAt(invoke, 1), MemOperand(LowRegisterFrom(invoke->GetLocations()->InAt(0))));
518 }
519
VisitMemoryPokeIntNative(HInvoke * invoke)520 void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPokeIntNative(HInvoke* invoke) {
521 CreateIntIntToVoidLocations(allocator_, invoke);
522 }
523
VisitMemoryPokeIntNative(HInvoke * invoke)524 void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPokeIntNative(HInvoke* invoke) {
525 ArmVIXLAssembler* assembler = GetAssembler();
526 __ Str(InputRegisterAt(invoke, 1), MemOperand(LowRegisterFrom(invoke->GetLocations()->InAt(0))));
527 }
528
VisitMemoryPokeLongNative(HInvoke * invoke)529 void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPokeLongNative(HInvoke* invoke) {
530 CreateIntIntToVoidLocations(allocator_, invoke);
531 }
532
VisitMemoryPokeLongNative(HInvoke * invoke)533 void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPokeLongNative(HInvoke* invoke) {
534 ArmVIXLAssembler* assembler = GetAssembler();
535 // Ignore upper 4B of long address.
536 vixl32::Register addr = LowRegisterFrom(invoke->GetLocations()->InAt(0));
537 // Worst case: Control register bit SCTLR.A = 0. Then unaligned accesses throw a processor
538 // exception. So we can't use ldrd as addr may be unaligned.
539 __ Str(LowRegisterFrom(invoke->GetLocations()->InAt(1)), MemOperand(addr));
540 __ Str(HighRegisterFrom(invoke->GetLocations()->InAt(1)), MemOperand(addr, 4));
541 }
542
VisitMemoryPokeShortNative(HInvoke * invoke)543 void IntrinsicLocationsBuilderARMVIXL::VisitMemoryPokeShortNative(HInvoke* invoke) {
544 CreateIntIntToVoidLocations(allocator_, invoke);
545 }
546
VisitMemoryPokeShortNative(HInvoke * invoke)547 void IntrinsicCodeGeneratorARMVIXL::VisitMemoryPokeShortNative(HInvoke* invoke) {
548 ArmVIXLAssembler* assembler = GetAssembler();
549 __ Strh(InputRegisterAt(invoke, 1), MemOperand(LowRegisterFrom(invoke->GetLocations()->InAt(0))));
550 }
551
VisitThreadCurrentThread(HInvoke * invoke)552 void IntrinsicLocationsBuilderARMVIXL::VisitThreadCurrentThread(HInvoke* invoke) {
553 LocationSummary* locations =
554 new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
555 locations->SetOut(Location::RequiresRegister());
556 }
557
VisitThreadCurrentThread(HInvoke * invoke)558 void IntrinsicCodeGeneratorARMVIXL::VisitThreadCurrentThread(HInvoke* invoke) {
559 ArmVIXLAssembler* assembler = GetAssembler();
560 __ Ldr(OutputRegister(invoke),
561 MemOperand(tr, Thread::PeerOffset<kArmPointerSize>().Int32Value()));
562 }
563
GenUnsafeGet(HInvoke * invoke,DataType::Type type,bool is_volatile,CodeGeneratorARMVIXL * codegen)564 static void GenUnsafeGet(HInvoke* invoke,
565 DataType::Type type,
566 bool is_volatile,
567 CodeGeneratorARMVIXL* codegen) {
568 LocationSummary* locations = invoke->GetLocations();
569 ArmVIXLAssembler* assembler = codegen->GetAssembler();
570 Location base_loc = locations->InAt(1);
571 vixl32::Register base = InputRegisterAt(invoke, 1); // Object pointer.
572 Location offset_loc = locations->InAt(2);
573 vixl32::Register offset = LowRegisterFrom(offset_loc); // Long offset, lo part only.
574 Location trg_loc = locations->Out();
575
576 switch (type) {
577 case DataType::Type::kInt32: {
578 vixl32::Register trg = RegisterFrom(trg_loc);
579 __ Ldr(trg, MemOperand(base, offset));
580 if (is_volatile) {
581 __ Dmb(vixl32::ISH);
582 }
583 break;
584 }
585
586 case DataType::Type::kReference: {
587 vixl32::Register trg = RegisterFrom(trg_loc);
588 if (kEmitCompilerReadBarrier) {
589 if (kUseBakerReadBarrier) {
590 Location temp = locations->GetTemp(0);
591 // Piggy-back on the field load path using introspection for the Baker read barrier.
592 __ Add(RegisterFrom(temp), base, Operand(offset));
593 MemOperand src(RegisterFrom(temp), 0);
594 codegen->GenerateFieldLoadWithBakerReadBarrier(
595 invoke, trg_loc, base, src, /* needs_null_check= */ false);
596 if (is_volatile) {
597 __ Dmb(vixl32::ISH);
598 }
599 } else {
600 __ Ldr(trg, MemOperand(base, offset));
601 if (is_volatile) {
602 __ Dmb(vixl32::ISH);
603 }
604 codegen->GenerateReadBarrierSlow(invoke, trg_loc, trg_loc, base_loc, 0U, offset_loc);
605 }
606 } else {
607 __ Ldr(trg, MemOperand(base, offset));
608 if (is_volatile) {
609 __ Dmb(vixl32::ISH);
610 }
611 assembler->MaybeUnpoisonHeapReference(trg);
612 }
613 break;
614 }
615
616 case DataType::Type::kInt64: {
617 vixl32::Register trg_lo = LowRegisterFrom(trg_loc);
618 vixl32::Register trg_hi = HighRegisterFrom(trg_loc);
619 if (is_volatile && !codegen->GetInstructionSetFeatures().HasAtomicLdrdAndStrd()) {
620 UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
621 const vixl32::Register temp_reg = temps.Acquire();
622 __ Add(temp_reg, base, offset);
623 __ Ldrexd(trg_lo, trg_hi, MemOperand(temp_reg));
624 } else {
625 __ Ldrd(trg_lo, trg_hi, MemOperand(base, offset));
626 }
627 if (is_volatile) {
628 __ Dmb(vixl32::ISH);
629 }
630 break;
631 }
632
633 default:
634 LOG(FATAL) << "Unexpected type " << type;
635 UNREACHABLE();
636 }
637 }
638
CreateIntIntIntToIntLocations(ArenaAllocator * allocator,HInvoke * invoke,DataType::Type type)639 static void CreateIntIntIntToIntLocations(ArenaAllocator* allocator,
640 HInvoke* invoke,
641 DataType::Type type) {
642 bool can_call = kEmitCompilerReadBarrier &&
643 (invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObject ||
644 invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile);
645 LocationSummary* locations =
646 new (allocator) LocationSummary(invoke,
647 can_call
648 ? LocationSummary::kCallOnSlowPath
649 : LocationSummary::kNoCall,
650 kIntrinsified);
651 if (can_call && kUseBakerReadBarrier) {
652 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
653 }
654 locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
655 locations->SetInAt(1, Location::RequiresRegister());
656 locations->SetInAt(2, Location::RequiresRegister());
657 locations->SetOut(Location::RequiresRegister(),
658 (can_call ? Location::kOutputOverlap : Location::kNoOutputOverlap));
659 if (type == DataType::Type::kReference && kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
660 // We need a temporary register for the read barrier marking slow
661 // path in CodeGeneratorARMVIXL::GenerateReferenceLoadWithBakerReadBarrier.
662 locations->AddTemp(Location::RequiresRegister());
663 }
664 }
665
VisitUnsafeGet(HInvoke * invoke)666 void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGet(HInvoke* invoke) {
667 CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kInt32);
668 }
VisitUnsafeGetVolatile(HInvoke * invoke)669 void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGetVolatile(HInvoke* invoke) {
670 CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kInt32);
671 }
VisitUnsafeGetLong(HInvoke * invoke)672 void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGetLong(HInvoke* invoke) {
673 CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kInt64);
674 }
VisitUnsafeGetLongVolatile(HInvoke * invoke)675 void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGetLongVolatile(HInvoke* invoke) {
676 CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kInt64);
677 }
VisitUnsafeGetObject(HInvoke * invoke)678 void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGetObject(HInvoke* invoke) {
679 CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kReference);
680 }
VisitUnsafeGetObjectVolatile(HInvoke * invoke)681 void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
682 CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kReference);
683 }
684
VisitUnsafeGet(HInvoke * invoke)685 void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGet(HInvoke* invoke) {
686 GenUnsafeGet(invoke, DataType::Type::kInt32, /* is_volatile= */ false, codegen_);
687 }
VisitUnsafeGetVolatile(HInvoke * invoke)688 void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGetVolatile(HInvoke* invoke) {
689 GenUnsafeGet(invoke, DataType::Type::kInt32, /* is_volatile= */ true, codegen_);
690 }
VisitUnsafeGetLong(HInvoke * invoke)691 void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGetLong(HInvoke* invoke) {
692 GenUnsafeGet(invoke, DataType::Type::kInt64, /* is_volatile= */ false, codegen_);
693 }
VisitUnsafeGetLongVolatile(HInvoke * invoke)694 void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGetLongVolatile(HInvoke* invoke) {
695 GenUnsafeGet(invoke, DataType::Type::kInt64, /* is_volatile= */ true, codegen_);
696 }
VisitUnsafeGetObject(HInvoke * invoke)697 void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGetObject(HInvoke* invoke) {
698 GenUnsafeGet(invoke, DataType::Type::kReference, /* is_volatile= */ false, codegen_);
699 }
VisitUnsafeGetObjectVolatile(HInvoke * invoke)700 void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
701 GenUnsafeGet(invoke, DataType::Type::kReference, /* is_volatile= */ true, codegen_);
702 }
703
CreateIntIntIntIntToVoid(ArenaAllocator * allocator,const ArmInstructionSetFeatures & features,DataType::Type type,bool is_volatile,HInvoke * invoke)704 static void CreateIntIntIntIntToVoid(ArenaAllocator* allocator,
705 const ArmInstructionSetFeatures& features,
706 DataType::Type type,
707 bool is_volatile,
708 HInvoke* invoke) {
709 LocationSummary* locations =
710 new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
711 locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
712 locations->SetInAt(1, Location::RequiresRegister());
713 locations->SetInAt(2, Location::RequiresRegister());
714 locations->SetInAt(3, Location::RequiresRegister());
715
716 if (type == DataType::Type::kInt64) {
717 // Potentially need temps for ldrexd-strexd loop.
718 if (is_volatile && !features.HasAtomicLdrdAndStrd()) {
719 locations->AddTemp(Location::RequiresRegister()); // Temp_lo.
720 locations->AddTemp(Location::RequiresRegister()); // Temp_hi.
721 }
722 } else if (type == DataType::Type::kReference) {
723 // Temps for card-marking.
724 locations->AddTemp(Location::RequiresRegister()); // Temp.
725 locations->AddTemp(Location::RequiresRegister()); // Card.
726 }
727 }
728
VisitUnsafePut(HInvoke * invoke)729 void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePut(HInvoke* invoke) {
730 CreateIntIntIntIntToVoid(
731 allocator_, features_, DataType::Type::kInt32, /* is_volatile= */ false, invoke);
732 }
VisitUnsafePutOrdered(HInvoke * invoke)733 void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutOrdered(HInvoke* invoke) {
734 CreateIntIntIntIntToVoid(
735 allocator_, features_, DataType::Type::kInt32, /* is_volatile= */ false, invoke);
736 }
VisitUnsafePutVolatile(HInvoke * invoke)737 void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutVolatile(HInvoke* invoke) {
738 CreateIntIntIntIntToVoid(
739 allocator_, features_, DataType::Type::kInt32, /* is_volatile= */ true, invoke);
740 }
VisitUnsafePutObject(HInvoke * invoke)741 void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutObject(HInvoke* invoke) {
742 CreateIntIntIntIntToVoid(
743 allocator_, features_, DataType::Type::kReference, /* is_volatile= */ false, invoke);
744 }
VisitUnsafePutObjectOrdered(HInvoke * invoke)745 void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
746 CreateIntIntIntIntToVoid(
747 allocator_, features_, DataType::Type::kReference, /* is_volatile= */ false, invoke);
748 }
VisitUnsafePutObjectVolatile(HInvoke * invoke)749 void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
750 CreateIntIntIntIntToVoid(
751 allocator_, features_, DataType::Type::kReference, /* is_volatile= */ true, invoke);
752 }
VisitUnsafePutLong(HInvoke * invoke)753 void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutLong(HInvoke* invoke) {
754 CreateIntIntIntIntToVoid(
755 allocator_, features_, DataType::Type::kInt64, /* is_volatile= */ false, invoke);
756 }
VisitUnsafePutLongOrdered(HInvoke * invoke)757 void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutLongOrdered(HInvoke* invoke) {
758 CreateIntIntIntIntToVoid(
759 allocator_, features_, DataType::Type::kInt64, /* is_volatile= */ false, invoke);
760 }
VisitUnsafePutLongVolatile(HInvoke * invoke)761 void IntrinsicLocationsBuilderARMVIXL::VisitUnsafePutLongVolatile(HInvoke* invoke) {
762 CreateIntIntIntIntToVoid(
763 allocator_, features_, DataType::Type::kInt64, /* is_volatile= */ true, invoke);
764 }
765
GenUnsafePut(LocationSummary * locations,DataType::Type type,bool is_volatile,bool is_ordered,CodeGeneratorARMVIXL * codegen)766 static void GenUnsafePut(LocationSummary* locations,
767 DataType::Type type,
768 bool is_volatile,
769 bool is_ordered,
770 CodeGeneratorARMVIXL* codegen) {
771 ArmVIXLAssembler* assembler = codegen->GetAssembler();
772
773 vixl32::Register base = RegisterFrom(locations->InAt(1)); // Object pointer.
774 vixl32::Register offset = LowRegisterFrom(locations->InAt(2)); // Long offset, lo part only.
775 vixl32::Register value;
776
777 if (is_volatile || is_ordered) {
778 __ Dmb(vixl32::ISH);
779 }
780
781 if (type == DataType::Type::kInt64) {
782 vixl32::Register value_lo = LowRegisterFrom(locations->InAt(3));
783 vixl32::Register value_hi = HighRegisterFrom(locations->InAt(3));
784 value = value_lo;
785 if (is_volatile && !codegen->GetInstructionSetFeatures().HasAtomicLdrdAndStrd()) {
786 vixl32::Register temp_lo = RegisterFrom(locations->GetTemp(0));
787 vixl32::Register temp_hi = RegisterFrom(locations->GetTemp(1));
788 UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
789 const vixl32::Register temp_reg = temps.Acquire();
790
791 __ Add(temp_reg, base, offset);
792 vixl32::Label loop_head;
793 __ Bind(&loop_head);
794 __ Ldrexd(temp_lo, temp_hi, MemOperand(temp_reg));
795 __ Strexd(temp_lo, value_lo, value_hi, MemOperand(temp_reg));
796 __ Cmp(temp_lo, 0);
797 __ B(ne, &loop_head, /* is_far_target= */ false);
798 } else {
799 __ Strd(value_lo, value_hi, MemOperand(base, offset));
800 }
801 } else {
802 value = RegisterFrom(locations->InAt(3));
803 vixl32::Register source = value;
804 if (kPoisonHeapReferences && type == DataType::Type::kReference) {
805 vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
806 __ Mov(temp, value);
807 assembler->PoisonHeapReference(temp);
808 source = temp;
809 }
810 __ Str(source, MemOperand(base, offset));
811 }
812
813 if (is_volatile) {
814 __ Dmb(vixl32::ISH);
815 }
816
817 if (type == DataType::Type::kReference) {
818 vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
819 vixl32::Register card = RegisterFrom(locations->GetTemp(1));
820 bool value_can_be_null = true; // TODO: Worth finding out this information?
821 codegen->MarkGCCard(temp, card, base, value, value_can_be_null);
822 }
823 }
824
VisitUnsafePut(HInvoke * invoke)825 void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePut(HInvoke* invoke) {
826 GenUnsafePut(invoke->GetLocations(),
827 DataType::Type::kInt32,
828 /* is_volatile= */ false,
829 /* is_ordered= */ false,
830 codegen_);
831 }
VisitUnsafePutOrdered(HInvoke * invoke)832 void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutOrdered(HInvoke* invoke) {
833 GenUnsafePut(invoke->GetLocations(),
834 DataType::Type::kInt32,
835 /* is_volatile= */ false,
836 /* is_ordered= */ true,
837 codegen_);
838 }
VisitUnsafePutVolatile(HInvoke * invoke)839 void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutVolatile(HInvoke* invoke) {
840 GenUnsafePut(invoke->GetLocations(),
841 DataType::Type::kInt32,
842 /* is_volatile= */ true,
843 /* is_ordered= */ false,
844 codegen_);
845 }
VisitUnsafePutObject(HInvoke * invoke)846 void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutObject(HInvoke* invoke) {
847 GenUnsafePut(invoke->GetLocations(),
848 DataType::Type::kReference,
849 /* is_volatile= */ false,
850 /* is_ordered= */ false,
851 codegen_);
852 }
VisitUnsafePutObjectOrdered(HInvoke * invoke)853 void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
854 GenUnsafePut(invoke->GetLocations(),
855 DataType::Type::kReference,
856 /* is_volatile= */ false,
857 /* is_ordered= */ true,
858 codegen_);
859 }
VisitUnsafePutObjectVolatile(HInvoke * invoke)860 void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
861 GenUnsafePut(invoke->GetLocations(),
862 DataType::Type::kReference,
863 /* is_volatile= */ true,
864 /* is_ordered= */ false,
865 codegen_);
866 }
VisitUnsafePutLong(HInvoke * invoke)867 void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutLong(HInvoke* invoke) {
868 GenUnsafePut(invoke->GetLocations(),
869 DataType::Type::kInt64,
870 /* is_volatile= */ false,
871 /* is_ordered= */ false,
872 codegen_);
873 }
VisitUnsafePutLongOrdered(HInvoke * invoke)874 void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutLongOrdered(HInvoke* invoke) {
875 GenUnsafePut(invoke->GetLocations(),
876 DataType::Type::kInt64,
877 /* is_volatile= */ false,
878 /* is_ordered= */ true,
879 codegen_);
880 }
VisitUnsafePutLongVolatile(HInvoke * invoke)881 void IntrinsicCodeGeneratorARMVIXL::VisitUnsafePutLongVolatile(HInvoke* invoke) {
882 GenUnsafePut(invoke->GetLocations(),
883 DataType::Type::kInt64,
884 /* is_volatile= */ true,
885 /* is_ordered= */ false,
886 codegen_);
887 }
888
CreateIntIntIntIntIntToIntPlusTemps(ArenaAllocator * allocator,HInvoke * invoke)889 static void CreateIntIntIntIntIntToIntPlusTemps(ArenaAllocator* allocator, HInvoke* invoke) {
890 bool can_call = kEmitCompilerReadBarrier &&
891 kUseBakerReadBarrier &&
892 (invoke->GetIntrinsic() == Intrinsics::kUnsafeCASObject);
893 LocationSummary* locations =
894 new (allocator) LocationSummary(invoke,
895 can_call
896 ? LocationSummary::kCallOnSlowPath
897 : LocationSummary::kNoCall,
898 kIntrinsified);
899 if (can_call) {
900 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
901 }
902 locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
903 locations->SetInAt(1, Location::RequiresRegister());
904 locations->SetInAt(2, Location::RequiresRegister());
905 locations->SetInAt(3, Location::RequiresRegister());
906 locations->SetInAt(4, Location::RequiresRegister());
907
908 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
909
910 // Temporary registers used in CAS. In the object case
911 // (UnsafeCASObject intrinsic), these are also used for
912 // card-marking, and possibly for (Baker) read barrier.
913 locations->AddTemp(Location::RequiresRegister()); // Pointer.
914 locations->AddTemp(Location::RequiresRegister()); // Temp 1.
915 }
916
917 class BakerReadBarrierCasSlowPathARMVIXL : public SlowPathCodeARMVIXL {
918 public:
BakerReadBarrierCasSlowPathARMVIXL(HInvoke * invoke)919 explicit BakerReadBarrierCasSlowPathARMVIXL(HInvoke* invoke)
920 : SlowPathCodeARMVIXL(invoke) {}
921
GetDescription() const922 const char* GetDescription() const override { return "BakerReadBarrierCasSlowPathARMVIXL"; }
923
EmitNativeCode(CodeGenerator * codegen)924 void EmitNativeCode(CodeGenerator* codegen) override {
925 CodeGeneratorARMVIXL* arm_codegen = down_cast<CodeGeneratorARMVIXL*>(codegen);
926 ArmVIXLAssembler* assembler = arm_codegen->GetAssembler();
927 __ Bind(GetEntryLabel());
928
929 LocationSummary* locations = instruction_->GetLocations();
930 vixl32::Register base = InputRegisterAt(instruction_, 1); // Object pointer.
931 vixl32::Register offset = LowRegisterFrom(locations->InAt(2)); // Offset (discard high 4B).
932 vixl32::Register expected = InputRegisterAt(instruction_, 3); // Expected.
933 vixl32::Register value = InputRegisterAt(instruction_, 4); // Value.
934
935 vixl32::Register tmp_ptr = RegisterFrom(locations->GetTemp(0)); // Pointer to actual memory.
936 vixl32::Register tmp = RegisterFrom(locations->GetTemp(1)); // Temporary.
937
938 // The `tmp` is initialized to `[tmp_ptr] - expected` in the main path. Reconstruct
939 // and mark the old value and compare with `expected`. We clobber `tmp_ptr` in the
940 // process due to lack of other temps suitable for the read barrier.
941 arm_codegen->GenerateUnsafeCasOldValueAddWithBakerReadBarrier(tmp_ptr, tmp, expected);
942 __ Cmp(tmp_ptr, expected);
943 __ B(ne, GetExitLabel());
944
945 // The old value we have read did not match `expected` (which is always a to-space reference)
946 // but after the read barrier in GenerateUnsafeCasOldValueAddWithBakerReadBarrier() the marked
947 // to-space value matched, so the old value must be a from-space reference to the same object.
948 // Do the same CAS loop as the main path but check for both `expected` and the unmarked
949 // old value representing the to-space and from-space references for the same object.
950
951 UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
952 vixl32::Register adjusted_old_value = temps.Acquire(); // For saved `tmp` from main path.
953
954 // Recalculate the `tmp_ptr` clobbered above and store the `adjusted_old_value`, i.e. IP.
955 __ Add(tmp_ptr, base, offset);
956 __ Mov(adjusted_old_value, tmp);
957
958 // do {
959 // tmp = [r_ptr] - expected;
960 // } while ((tmp == 0 || tmp == adjusted_old_value) && failure([r_ptr] <- r_new_value));
961 // result = (tmp == 0 || tmp == adjusted_old_value);
962
963 vixl32::Label loop_head;
964 __ Bind(&loop_head);
965 __ Ldrex(tmp, MemOperand(tmp_ptr)); // This can now load null stored by another thread.
966 assembler->MaybeUnpoisonHeapReference(tmp);
967 __ Subs(tmp, tmp, expected); // Use SUBS to get non-zero value if both compares fail.
968 {
969 // If the newly loaded value did not match `expected`, compare with `adjusted_old_value`.
970 ExactAssemblyScope aas(assembler->GetVIXLAssembler(), 2 * k16BitT32InstructionSizeInBytes);
971 __ it(ne);
972 __ cmp(ne, tmp, adjusted_old_value);
973 }
974 __ B(ne, GetExitLabel());
975 assembler->MaybePoisonHeapReference(value);
976 __ Strex(tmp, value, MemOperand(tmp_ptr));
977 assembler->MaybeUnpoisonHeapReference(value);
978 __ Cmp(tmp, 0);
979 __ B(ne, &loop_head, /* is_far_target= */ false);
980 __ B(GetExitLabel());
981 }
982 };
983
GenCas(HInvoke * invoke,DataType::Type type,CodeGeneratorARMVIXL * codegen)984 static void GenCas(HInvoke* invoke, DataType::Type type, CodeGeneratorARMVIXL* codegen) {
985 DCHECK_NE(type, DataType::Type::kInt64);
986
987 ArmVIXLAssembler* assembler = codegen->GetAssembler();
988 LocationSummary* locations = invoke->GetLocations();
989
990 vixl32::Register out = OutputRegister(invoke); // Boolean result.
991
992 vixl32::Register base = InputRegisterAt(invoke, 1); // Object pointer.
993 vixl32::Register offset = LowRegisterFrom(locations->InAt(2)); // Offset (discard high 4B).
994 vixl32::Register expected = InputRegisterAt(invoke, 3); // Expected.
995 vixl32::Register value = InputRegisterAt(invoke, 4); // Value.
996
997 vixl32::Register tmp_ptr = RegisterFrom(locations->GetTemp(0)); // Pointer to actual memory.
998 vixl32::Register tmp = RegisterFrom(locations->GetTemp(1)); // Temporary.
999
1000 vixl32::Label loop_exit_label;
1001 vixl32::Label* loop_exit = &loop_exit_label;
1002 vixl32::Label* failure = &loop_exit_label;
1003
1004 if (type == DataType::Type::kReference) {
1005 // The only read barrier implementation supporting the
1006 // UnsafeCASObject intrinsic is the Baker-style read barriers.
1007 DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
1008
1009 // Mark card for object assuming new value is stored. Worst case we will mark an unchanged
1010 // object and scan the receiver at the next GC for nothing.
1011 bool value_can_be_null = true; // TODO: Worth finding out this information?
1012 codegen->MarkGCCard(tmp_ptr, tmp, base, value, value_can_be_null);
1013
1014 if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
1015 // If marking, check if the stored reference is a from-space reference to the same
1016 // object as the to-space reference `expected`. If so, perform a custom CAS loop.
1017 BakerReadBarrierCasSlowPathARMVIXL* slow_path =
1018 new (codegen->GetScopedAllocator()) BakerReadBarrierCasSlowPathARMVIXL(invoke);
1019 codegen->AddSlowPath(slow_path);
1020 failure = slow_path->GetEntryLabel();
1021 loop_exit = slow_path->GetExitLabel();
1022 }
1023 }
1024
1025 // Prevent reordering with prior memory operations.
1026 // Emit a DMB ISH instruction instead of an DMB ISHST one, as the
1027 // latter allows a preceding load to be delayed past the STREX
1028 // instruction below.
1029 __ Dmb(vixl32::ISH);
1030
1031 __ Add(tmp_ptr, base, offset);
1032
1033 // do {
1034 // tmp = [r_ptr] - expected;
1035 // } while (tmp == 0 && failure([r_ptr] <- r_new_value));
1036 // result = tmp == 0;
1037
1038 vixl32::Label loop_head;
1039 __ Bind(&loop_head);
1040 __ Ldrex(tmp, MemOperand(tmp_ptr));
1041 if (type == DataType::Type::kReference) {
1042 assembler->MaybeUnpoisonHeapReference(tmp);
1043 }
1044 __ Subs(tmp, tmp, expected);
1045 static_cast<vixl32::MacroAssembler*>(assembler->GetVIXLAssembler())->
1046 B(ne, failure, /* hint= */ (failure == loop_exit) ? kNear : kBranchWithoutHint);
1047 if (type == DataType::Type::kReference) {
1048 assembler->MaybePoisonHeapReference(value);
1049 }
1050 __ Strex(tmp, value, MemOperand(tmp_ptr));
1051 if (type == DataType::Type::kReference) {
1052 assembler->MaybeUnpoisonHeapReference(value);
1053 }
1054 __ Cmp(tmp, 0);
1055 __ B(ne, &loop_head, /* is_far_target= */ false);
1056
1057 __ Bind(loop_exit);
1058
1059 __ Dmb(vixl32::ISH);
1060
1061 // out = tmp == 0.
1062 __ Clz(out, tmp);
1063 __ Lsr(out, out, WhichPowerOf2(out.GetSizeInBits()));
1064
1065 if (type == DataType::Type::kReference) {
1066 codegen->MaybeGenerateMarkingRegisterCheck(/* code= */ 128);
1067 }
1068 }
1069
VisitUnsafeCASInt(HInvoke * invoke)1070 void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeCASInt(HInvoke* invoke) {
1071 CreateIntIntIntIntIntToIntPlusTemps(allocator_, invoke);
1072 }
VisitUnsafeCASObject(HInvoke * invoke)1073 void IntrinsicLocationsBuilderARMVIXL::VisitUnsafeCASObject(HInvoke* invoke) {
1074 // The only read barrier implementation supporting the
1075 // UnsafeCASObject intrinsic is the Baker-style read barriers.
1076 if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) {
1077 return;
1078 }
1079
1080 CreateIntIntIntIntIntToIntPlusTemps(allocator_, invoke);
1081 }
VisitUnsafeCASInt(HInvoke * invoke)1082 void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeCASInt(HInvoke* invoke) {
1083 GenCas(invoke, DataType::Type::kInt32, codegen_);
1084 }
VisitUnsafeCASObject(HInvoke * invoke)1085 void IntrinsicCodeGeneratorARMVIXL::VisitUnsafeCASObject(HInvoke* invoke) {
1086 // The only read barrier implementation supporting the
1087 // UnsafeCASObject intrinsic is the Baker-style read barriers.
1088 DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
1089
1090 GenCas(invoke, DataType::Type::kReference, codegen_);
1091 }
1092
VisitStringCompareTo(HInvoke * invoke)1093 void IntrinsicLocationsBuilderARMVIXL::VisitStringCompareTo(HInvoke* invoke) {
1094 // The inputs plus one temp.
1095 LocationSummary* locations =
1096 new (allocator_) LocationSummary(invoke,
1097 invoke->InputAt(1)->CanBeNull()
1098 ? LocationSummary::kCallOnSlowPath
1099 : LocationSummary::kNoCall,
1100 kIntrinsified);
1101 locations->SetInAt(0, Location::RequiresRegister());
1102 locations->SetInAt(1, Location::RequiresRegister());
1103 locations->AddTemp(Location::RequiresRegister());
1104 locations->AddTemp(Location::RequiresRegister());
1105 locations->AddTemp(Location::RequiresRegister());
1106 // Need temporary registers for String compression's feature.
1107 if (mirror::kUseStringCompression) {
1108 locations->AddTemp(Location::RequiresRegister());
1109 }
1110 locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
1111 }
1112
1113 // Forward declaration.
1114 //
1115 // ART build system imposes a size limit (deviceFrameSizeLimit) on the stack frames generated
1116 // by the compiler for every C++ function, and if this function gets inlined in
1117 // IntrinsicCodeGeneratorARMVIXL::VisitStringCompareTo, the limit will be exceeded, resulting in a
1118 // build failure. That is the reason why NO_INLINE attribute is used.
1119 static void NO_INLINE GenerateStringCompareToLoop(ArmVIXLAssembler* assembler,
1120 HInvoke* invoke,
1121 vixl32::Label* end,
1122 vixl32::Label* different_compression);
1123
VisitStringCompareTo(HInvoke * invoke)1124 void IntrinsicCodeGeneratorARMVIXL::VisitStringCompareTo(HInvoke* invoke) {
1125 ArmVIXLAssembler* assembler = GetAssembler();
1126 LocationSummary* locations = invoke->GetLocations();
1127
1128 const vixl32::Register str = InputRegisterAt(invoke, 0);
1129 const vixl32::Register arg = InputRegisterAt(invoke, 1);
1130 const vixl32::Register out = OutputRegister(invoke);
1131
1132 const vixl32::Register temp0 = RegisterFrom(locations->GetTemp(0));
1133 const vixl32::Register temp1 = RegisterFrom(locations->GetTemp(1));
1134 const vixl32::Register temp2 = RegisterFrom(locations->GetTemp(2));
1135 vixl32::Register temp3;
1136 if (mirror::kUseStringCompression) {
1137 temp3 = RegisterFrom(locations->GetTemp(3));
1138 }
1139
1140 vixl32::Label end;
1141 vixl32::Label different_compression;
1142
1143 // Get offsets of count and value fields within a string object.
1144 const int32_t count_offset = mirror::String::CountOffset().Int32Value();
1145
1146 // Note that the null check must have been done earlier.
1147 DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
1148
1149 // Take slow path and throw if input can be and is null.
1150 SlowPathCodeARMVIXL* slow_path = nullptr;
1151 const bool can_slow_path = invoke->InputAt(1)->CanBeNull();
1152 if (can_slow_path) {
1153 slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathARMVIXL(invoke);
1154 codegen_->AddSlowPath(slow_path);
1155 __ CompareAndBranchIfZero(arg, slow_path->GetEntryLabel());
1156 }
1157
1158 // Reference equality check, return 0 if same reference.
1159 __ Subs(out, str, arg);
1160 __ B(eq, &end);
1161
1162 if (mirror::kUseStringCompression) {
1163 // Load `count` fields of this and argument strings.
1164 __ Ldr(temp3, MemOperand(str, count_offset));
1165 __ Ldr(temp2, MemOperand(arg, count_offset));
1166 // Extract lengths from the `count` fields.
1167 __ Lsr(temp0, temp3, 1u);
1168 __ Lsr(temp1, temp2, 1u);
1169 } else {
1170 // Load lengths of this and argument strings.
1171 __ Ldr(temp0, MemOperand(str, count_offset));
1172 __ Ldr(temp1, MemOperand(arg, count_offset));
1173 }
1174 // out = length diff.
1175 __ Subs(out, temp0, temp1);
1176 // temp0 = min(len(str), len(arg)).
1177
1178 {
1179 ExactAssemblyScope aas(assembler->GetVIXLAssembler(),
1180 2 * kMaxInstructionSizeInBytes,
1181 CodeBufferCheckScope::kMaximumSize);
1182
1183 __ it(gt);
1184 __ mov(gt, temp0, temp1);
1185 }
1186
1187 // Shorter string is empty?
1188 // Note that mirror::kUseStringCompression==true introduces lots of instructions,
1189 // which makes &end label far away from this branch and makes it not 'CBZ-encodable'.
1190 __ CompareAndBranchIfZero(temp0, &end, mirror::kUseStringCompression);
1191
1192 if (mirror::kUseStringCompression) {
1193 // Check if both strings using same compression style to use this comparison loop.
1194 __ Eors(temp2, temp2, temp3);
1195 __ Lsrs(temp2, temp2, 1u);
1196 __ B(cs, &different_compression);
1197 // For string compression, calculate the number of bytes to compare (not chars).
1198 // This could in theory exceed INT32_MAX, so treat temp0 as unsigned.
1199 __ Lsls(temp3, temp3, 31u); // Extract purely the compression flag.
1200
1201 ExactAssemblyScope aas(assembler->GetVIXLAssembler(),
1202 2 * kMaxInstructionSizeInBytes,
1203 CodeBufferCheckScope::kMaximumSize);
1204
1205 __ it(ne);
1206 __ add(ne, temp0, temp0, temp0);
1207 }
1208
1209
1210 GenerateStringCompareToLoop(assembler, invoke, &end, &different_compression);
1211
1212 __ Bind(&end);
1213
1214 if (can_slow_path) {
1215 __ Bind(slow_path->GetExitLabel());
1216 }
1217 }
1218
GenerateStringCompareToLoop(ArmVIXLAssembler * assembler,HInvoke * invoke,vixl32::Label * end,vixl32::Label * different_compression)1219 static void GenerateStringCompareToLoop(ArmVIXLAssembler* assembler,
1220 HInvoke* invoke,
1221 vixl32::Label* end,
1222 vixl32::Label* different_compression) {
1223 LocationSummary* locations = invoke->GetLocations();
1224
1225 const vixl32::Register str = InputRegisterAt(invoke, 0);
1226 const vixl32::Register arg = InputRegisterAt(invoke, 1);
1227 const vixl32::Register out = OutputRegister(invoke);
1228
1229 const vixl32::Register temp0 = RegisterFrom(locations->GetTemp(0));
1230 const vixl32::Register temp1 = RegisterFrom(locations->GetTemp(1));
1231 const vixl32::Register temp2 = RegisterFrom(locations->GetTemp(2));
1232 vixl32::Register temp3;
1233 if (mirror::kUseStringCompression) {
1234 temp3 = RegisterFrom(locations->GetTemp(3));
1235 }
1236
1237 vixl32::Label loop;
1238 vixl32::Label find_char_diff;
1239
1240 const int32_t value_offset = mirror::String::ValueOffset().Int32Value();
1241 // Store offset of string value in preparation for comparison loop.
1242 __ Mov(temp1, value_offset);
1243
1244 // Assertions that must hold in order to compare multiple characters at a time.
1245 CHECK_ALIGNED(value_offset, 8);
1246 static_assert(IsAligned<8>(kObjectAlignment),
1247 "String data must be 8-byte aligned for unrolled CompareTo loop.");
1248
1249 const unsigned char_size = DataType::Size(DataType::Type::kUint16);
1250 DCHECK_EQ(char_size, 2u);
1251
1252 UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
1253
1254 vixl32::Label find_char_diff_2nd_cmp;
1255 // Unrolled loop comparing 4x16-bit chars per iteration (ok because of string data alignment).
1256 __ Bind(&loop);
1257 vixl32::Register temp_reg = temps.Acquire();
1258 __ Ldr(temp_reg, MemOperand(str, temp1));
1259 __ Ldr(temp2, MemOperand(arg, temp1));
1260 __ Cmp(temp_reg, temp2);
1261 __ B(ne, &find_char_diff, /* is_far_target= */ false);
1262 __ Add(temp1, temp1, char_size * 2);
1263
1264 __ Ldr(temp_reg, MemOperand(str, temp1));
1265 __ Ldr(temp2, MemOperand(arg, temp1));
1266 __ Cmp(temp_reg, temp2);
1267 __ B(ne, &find_char_diff_2nd_cmp, /* is_far_target= */ false);
1268 __ Add(temp1, temp1, char_size * 2);
1269 // With string compression, we have compared 8 bytes, otherwise 4 chars.
1270 __ Subs(temp0, temp0, (mirror::kUseStringCompression ? 8 : 4));
1271 __ B(hi, &loop, /* is_far_target= */ false);
1272 __ B(end);
1273
1274 __ Bind(&find_char_diff_2nd_cmp);
1275 if (mirror::kUseStringCompression) {
1276 __ Subs(temp0, temp0, 4); // 4 bytes previously compared.
1277 __ B(ls, end, /* is_far_target= */ false); // Was the second comparison fully beyond the end?
1278 } else {
1279 // Without string compression, we can start treating temp0 as signed
1280 // and rely on the signed comparison below.
1281 __ Sub(temp0, temp0, 2);
1282 }
1283
1284 // Find the single character difference.
1285 __ Bind(&find_char_diff);
1286 // Get the bit position of the first character that differs.
1287 __ Eor(temp1, temp2, temp_reg);
1288 __ Rbit(temp1, temp1);
1289 __ Clz(temp1, temp1);
1290
1291 // temp0 = number of characters remaining to compare.
1292 // (Without string compression, it could be < 1 if a difference is found by the second CMP
1293 // in the comparison loop, and after the end of the shorter string data).
1294
1295 // Without string compression (temp1 >> 4) = character where difference occurs between the last
1296 // two words compared, in the interval [0,1].
1297 // (0 for low half-word different, 1 for high half-word different).
1298 // With string compression, (temp1 << 3) = byte where the difference occurs,
1299 // in the interval [0,3].
1300
1301 // If temp0 <= (temp1 >> (kUseStringCompression ? 3 : 4)), the difference occurs outside
1302 // the remaining string data, so just return length diff (out).
1303 // The comparison is unsigned for string compression, otherwise signed.
1304 __ Cmp(temp0, Operand(temp1, vixl32::LSR, (mirror::kUseStringCompression ? 3 : 4)));
1305 __ B((mirror::kUseStringCompression ? ls : le), end, /* is_far_target= */ false);
1306
1307 // Extract the characters and calculate the difference.
1308 if (mirror::kUseStringCompression) {
1309 // For compressed strings we need to clear 0x7 from temp1, for uncompressed we need to clear
1310 // 0xf. We also need to prepare the character extraction mask `uncompressed ? 0xffffu : 0xffu`.
1311 // The compression flag is now in the highest bit of temp3, so let's play some tricks.
1312 __ Orr(temp3, temp3, 0xffu << 23); // uncompressed ? 0xff800000u : 0x7ff80000u
1313 __ Bic(temp1, temp1, Operand(temp3, vixl32::LSR, 31 - 3)); // &= ~(uncompressed ? 0xfu : 0x7u)
1314 __ Asr(temp3, temp3, 7u); // uncompressed ? 0xffff0000u : 0xff0000u.
1315 __ Lsr(temp2, temp2, temp1); // Extract second character.
1316 __ Lsr(temp3, temp3, 16u); // uncompressed ? 0xffffu : 0xffu
1317 __ Lsr(out, temp_reg, temp1); // Extract first character.
1318 __ And(temp2, temp2, temp3);
1319 __ And(out, out, temp3);
1320 } else {
1321 __ Bic(temp1, temp1, 0xf);
1322 __ Lsr(temp2, temp2, temp1);
1323 __ Lsr(out, temp_reg, temp1);
1324 __ Movt(temp2, 0);
1325 __ Movt(out, 0);
1326 }
1327
1328 __ Sub(out, out, temp2);
1329 temps.Release(temp_reg);
1330
1331 if (mirror::kUseStringCompression) {
1332 __ B(end);
1333 __ Bind(different_compression);
1334
1335 // Comparison for different compression style.
1336 const size_t c_char_size = DataType::Size(DataType::Type::kInt8);
1337 DCHECK_EQ(c_char_size, 1u);
1338
1339 // We want to free up the temp3, currently holding `str.count`, for comparison.
1340 // So, we move it to the bottom bit of the iteration count `temp0` which we tnen
1341 // need to treat as unsigned. Start by freeing the bit with an ADD and continue
1342 // further down by a LSRS+SBC which will flip the meaning of the flag but allow
1343 // `subs temp0, #2; bhi different_compression_loop` to serve as the loop condition.
1344 __ Add(temp0, temp0, temp0); // Unlike LSL, this ADD is always 16-bit.
1345 // `temp1` will hold the compressed data pointer, `temp2` the uncompressed data pointer.
1346 __ Mov(temp1, str);
1347 __ Mov(temp2, arg);
1348 __ Lsrs(temp3, temp3, 1u); // Continue the move of the compression flag.
1349 {
1350 ExactAssemblyScope aas(assembler->GetVIXLAssembler(),
1351 3 * kMaxInstructionSizeInBytes,
1352 CodeBufferCheckScope::kMaximumSize);
1353 __ itt(cs); // Interleave with selection of temp1 and temp2.
1354 __ mov(cs, temp1, arg); // Preserves flags.
1355 __ mov(cs, temp2, str); // Preserves flags.
1356 }
1357 __ Sbc(temp0, temp0, 0); // Complete the move of the compression flag.
1358
1359 // Adjust temp1 and temp2 from string pointers to data pointers.
1360 __ Add(temp1, temp1, value_offset);
1361 __ Add(temp2, temp2, value_offset);
1362
1363 vixl32::Label different_compression_loop;
1364 vixl32::Label different_compression_diff;
1365
1366 // Main loop for different compression.
1367 temp_reg = temps.Acquire();
1368 __ Bind(&different_compression_loop);
1369 __ Ldrb(temp_reg, MemOperand(temp1, c_char_size, PostIndex));
1370 __ Ldrh(temp3, MemOperand(temp2, char_size, PostIndex));
1371 __ Cmp(temp_reg, temp3);
1372 __ B(ne, &different_compression_diff, /* is_far_target= */ false);
1373 __ Subs(temp0, temp0, 2);
1374 __ B(hi, &different_compression_loop, /* is_far_target= */ false);
1375 __ B(end);
1376
1377 // Calculate the difference.
1378 __ Bind(&different_compression_diff);
1379 __ Sub(out, temp_reg, temp3);
1380 temps.Release(temp_reg);
1381 // Flip the difference if the `arg` is compressed.
1382 // `temp0` contains inverted `str` compression flag, i.e the same as `arg` compression flag.
1383 __ Lsrs(temp0, temp0, 1u);
1384 static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
1385 "Expecting 0=compressed, 1=uncompressed");
1386
1387 ExactAssemblyScope aas(assembler->GetVIXLAssembler(),
1388 2 * kMaxInstructionSizeInBytes,
1389 CodeBufferCheckScope::kMaximumSize);
1390 __ it(cc);
1391 __ rsb(cc, out, out, 0);
1392 }
1393 }
1394
1395 // The cut off for unrolling the loop in String.equals() intrinsic for const strings.
1396 // The normal loop plus the pre-header is 9 instructions (18-26 bytes) without string compression
1397 // and 12 instructions (24-32 bytes) with string compression. We can compare up to 4 bytes in 4
1398 // instructions (LDR+LDR+CMP+BNE) and up to 8 bytes in 6 instructions (LDRD+LDRD+CMP+BNE+CMP+BNE).
1399 // Allow up to 12 instructions (32 bytes) for the unrolled loop.
1400 constexpr size_t kShortConstStringEqualsCutoffInBytes = 16;
1401
GetConstString(HInstruction * candidate,uint32_t * utf16_length)1402 static const char* GetConstString(HInstruction* candidate, uint32_t* utf16_length) {
1403 if (candidate->IsLoadString()) {
1404 HLoadString* load_string = candidate->AsLoadString();
1405 const DexFile& dex_file = load_string->GetDexFile();
1406 return dex_file.StringDataAndUtf16LengthByIdx(load_string->GetStringIndex(), utf16_length);
1407 }
1408 return nullptr;
1409 }
1410
VisitStringEquals(HInvoke * invoke)1411 void IntrinsicLocationsBuilderARMVIXL::VisitStringEquals(HInvoke* invoke) {
1412 LocationSummary* locations =
1413 new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
1414 InvokeRuntimeCallingConventionARMVIXL calling_convention;
1415 locations->SetInAt(0, Location::RequiresRegister());
1416 locations->SetInAt(1, Location::RequiresRegister());
1417
1418 // Temporary registers to store lengths of strings and for calculations.
1419 // Using instruction cbz requires a low register, so explicitly set a temp to be R0.
1420 locations->AddTemp(LocationFrom(r0));
1421
1422 // For the generic implementation and for long const strings we need an extra temporary.
1423 // We do not need it for short const strings, up to 4 bytes, see code generation below.
1424 uint32_t const_string_length = 0u;
1425 const char* const_string = GetConstString(invoke->InputAt(0), &const_string_length);
1426 if (const_string == nullptr) {
1427 const_string = GetConstString(invoke->InputAt(1), &const_string_length);
1428 }
1429 bool is_compressed =
1430 mirror::kUseStringCompression &&
1431 const_string != nullptr &&
1432 mirror::String::DexFileStringAllASCII(const_string, const_string_length);
1433 if (const_string == nullptr || const_string_length > (is_compressed ? 4u : 2u)) {
1434 locations->AddTemp(Location::RequiresRegister());
1435 }
1436
1437 // TODO: If the String.equals() is used only for an immediately following HIf, we can
1438 // mark it as emitted-at-use-site and emit branches directly to the appropriate blocks.
1439 // Then we shall need an extra temporary register instead of the output register.
1440 locations->SetOut(Location::RequiresRegister());
1441 }
1442
VisitStringEquals(HInvoke * invoke)1443 void IntrinsicCodeGeneratorARMVIXL::VisitStringEquals(HInvoke* invoke) {
1444 ArmVIXLAssembler* assembler = GetAssembler();
1445 LocationSummary* locations = invoke->GetLocations();
1446
1447 vixl32::Register str = InputRegisterAt(invoke, 0);
1448 vixl32::Register arg = InputRegisterAt(invoke, 1);
1449 vixl32::Register out = OutputRegister(invoke);
1450
1451 vixl32::Register temp = RegisterFrom(locations->GetTemp(0));
1452
1453 vixl32::Label loop;
1454 vixl32::Label end;
1455 vixl32::Label return_true;
1456 vixl32::Label return_false;
1457 vixl32::Label* final_label = codegen_->GetFinalLabel(invoke, &end);
1458
1459 // Get offsets of count, value, and class fields within a string object.
1460 const uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
1461 const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value();
1462 const uint32_t class_offset = mirror::Object::ClassOffset().Uint32Value();
1463
1464 // Note that the null check must have been done earlier.
1465 DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
1466
1467 StringEqualsOptimizations optimizations(invoke);
1468 if (!optimizations.GetArgumentNotNull()) {
1469 // Check if input is null, return false if it is.
1470 __ CompareAndBranchIfZero(arg, &return_false, /* is_far_target= */ false);
1471 }
1472
1473 // Reference equality check, return true if same reference.
1474 __ Cmp(str, arg);
1475 __ B(eq, &return_true, /* is_far_target= */ false);
1476
1477 if (!optimizations.GetArgumentIsString()) {
1478 // Instanceof check for the argument by comparing class fields.
1479 // All string objects must have the same type since String cannot be subclassed.
1480 // Receiver must be a string object, so its class field is equal to all strings' class fields.
1481 // If the argument is a string object, its class field must be equal to receiver's class field.
1482 //
1483 // As the String class is expected to be non-movable, we can read the class
1484 // field from String.equals' arguments without read barriers.
1485 AssertNonMovableStringClass();
1486 // /* HeapReference<Class> */ temp = str->klass_
1487 __ Ldr(temp, MemOperand(str, class_offset));
1488 // /* HeapReference<Class> */ out = arg->klass_
1489 __ Ldr(out, MemOperand(arg, class_offset));
1490 // Also, because we use the previously loaded class references only in the
1491 // following comparison, we don't need to unpoison them.
1492 __ Cmp(temp, out);
1493 __ B(ne, &return_false, /* is_far_target= */ false);
1494 }
1495
1496 // Check if one of the inputs is a const string. Do not special-case both strings
1497 // being const, such cases should be handled by constant folding if needed.
1498 uint32_t const_string_length = 0u;
1499 const char* const_string = GetConstString(invoke->InputAt(0), &const_string_length);
1500 if (const_string == nullptr) {
1501 const_string = GetConstString(invoke->InputAt(1), &const_string_length);
1502 if (const_string != nullptr) {
1503 std::swap(str, arg); // Make sure the const string is in `str`.
1504 }
1505 }
1506 bool is_compressed =
1507 mirror::kUseStringCompression &&
1508 const_string != nullptr &&
1509 mirror::String::DexFileStringAllASCII(const_string, const_string_length);
1510
1511 if (const_string != nullptr) {
1512 // Load `count` field of the argument string and check if it matches the const string.
1513 // Also compares the compression style, if differs return false.
1514 __ Ldr(temp, MemOperand(arg, count_offset));
1515 __ Cmp(temp, Operand(mirror::String::GetFlaggedCount(const_string_length, is_compressed)));
1516 __ B(ne, &return_false, /* is_far_target= */ false);
1517 } else {
1518 // Load `count` fields of this and argument strings.
1519 __ Ldr(temp, MemOperand(str, count_offset));
1520 __ Ldr(out, MemOperand(arg, count_offset));
1521 // Check if `count` fields are equal, return false if they're not.
1522 // Also compares the compression style, if differs return false.
1523 __ Cmp(temp, out);
1524 __ B(ne, &return_false, /* is_far_target= */ false);
1525 }
1526
1527 // Assertions that must hold in order to compare strings 4 bytes at a time.
1528 // Ok to do this because strings are zero-padded to kObjectAlignment.
1529 DCHECK_ALIGNED(value_offset, 4);
1530 static_assert(IsAligned<4>(kObjectAlignment), "String data must be aligned for fast compare.");
1531
1532 if (const_string != nullptr &&
1533 const_string_length <= (is_compressed ? kShortConstStringEqualsCutoffInBytes
1534 : kShortConstStringEqualsCutoffInBytes / 2u)) {
1535 // Load and compare the contents. Though we know the contents of the short const string
1536 // at compile time, materializing constants may be more code than loading from memory.
1537 int32_t offset = value_offset;
1538 size_t remaining_bytes =
1539 RoundUp(is_compressed ? const_string_length : const_string_length * 2u, 4u);
1540 while (remaining_bytes > sizeof(uint32_t)) {
1541 vixl32::Register temp1 = RegisterFrom(locations->GetTemp(1));
1542 UseScratchRegisterScope scratch_scope(assembler->GetVIXLAssembler());
1543 vixl32::Register temp2 = scratch_scope.Acquire();
1544 __ Ldrd(temp, temp1, MemOperand(str, offset));
1545 __ Ldrd(temp2, out, MemOperand(arg, offset));
1546 __ Cmp(temp, temp2);
1547 __ B(ne, &return_false, /* is_far_target= */ false);
1548 __ Cmp(temp1, out);
1549 __ B(ne, &return_false, /* is_far_target= */ false);
1550 offset += 2u * sizeof(uint32_t);
1551 remaining_bytes -= 2u * sizeof(uint32_t);
1552 }
1553 if (remaining_bytes != 0u) {
1554 __ Ldr(temp, MemOperand(str, offset));
1555 __ Ldr(out, MemOperand(arg, offset));
1556 __ Cmp(temp, out);
1557 __ B(ne, &return_false, /* is_far_target= */ false);
1558 }
1559 } else {
1560 // Return true if both strings are empty. Even with string compression `count == 0` means empty.
1561 static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
1562 "Expecting 0=compressed, 1=uncompressed");
1563 __ CompareAndBranchIfZero(temp, &return_true, /* is_far_target= */ false);
1564
1565 if (mirror::kUseStringCompression) {
1566 // For string compression, calculate the number of bytes to compare (not chars).
1567 // This could in theory exceed INT32_MAX, so treat temp as unsigned.
1568 __ Lsrs(temp, temp, 1u); // Extract length and check compression flag.
1569 ExactAssemblyScope aas(assembler->GetVIXLAssembler(),
1570 2 * kMaxInstructionSizeInBytes,
1571 CodeBufferCheckScope::kMaximumSize);
1572 __ it(cs); // If uncompressed,
1573 __ add(cs, temp, temp, temp); // double the byte count.
1574 }
1575
1576 vixl32::Register temp1 = RegisterFrom(locations->GetTemp(1));
1577 UseScratchRegisterScope scratch_scope(assembler->GetVIXLAssembler());
1578 vixl32::Register temp2 = scratch_scope.Acquire();
1579
1580 // Store offset of string value in preparation for comparison loop.
1581 __ Mov(temp1, value_offset);
1582
1583 // Loop to compare strings 4 bytes at a time starting at the front of the string.
1584 __ Bind(&loop);
1585 __ Ldr(out, MemOperand(str, temp1));
1586 __ Ldr(temp2, MemOperand(arg, temp1));
1587 __ Add(temp1, temp1, Operand::From(sizeof(uint32_t)));
1588 __ Cmp(out, temp2);
1589 __ B(ne, &return_false, /* is_far_target= */ false);
1590 // With string compression, we have compared 4 bytes, otherwise 2 chars.
1591 __ Subs(temp, temp, mirror::kUseStringCompression ? 4 : 2);
1592 __ B(hi, &loop, /* is_far_target= */ false);
1593 }
1594
1595 // Return true and exit the function.
1596 // If loop does not result in returning false, we return true.
1597 __ Bind(&return_true);
1598 __ Mov(out, 1);
1599 __ B(final_label);
1600
1601 // Return false and exit the function.
1602 __ Bind(&return_false);
1603 __ Mov(out, 0);
1604
1605 if (end.IsReferenced()) {
1606 __ Bind(&end);
1607 }
1608 }
1609
GenerateVisitStringIndexOf(HInvoke * invoke,ArmVIXLAssembler * assembler,CodeGeneratorARMVIXL * codegen,bool start_at_zero)1610 static void GenerateVisitStringIndexOf(HInvoke* invoke,
1611 ArmVIXLAssembler* assembler,
1612 CodeGeneratorARMVIXL* codegen,
1613 bool start_at_zero) {
1614 LocationSummary* locations = invoke->GetLocations();
1615
1616 // Note that the null check must have been done earlier.
1617 DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
1618
1619 // Check for code points > 0xFFFF. Either a slow-path check when we don't know statically,
1620 // or directly dispatch for a large constant, or omit slow-path for a small constant or a char.
1621 SlowPathCodeARMVIXL* slow_path = nullptr;
1622 HInstruction* code_point = invoke->InputAt(1);
1623 if (code_point->IsIntConstant()) {
1624 if (static_cast<uint32_t>(Int32ConstantFrom(code_point)) >
1625 std::numeric_limits<uint16_t>::max()) {
1626 // Always needs the slow-path. We could directly dispatch to it, but this case should be
1627 // rare, so for simplicity just put the full slow-path down and branch unconditionally.
1628 slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathARMVIXL(invoke);
1629 codegen->AddSlowPath(slow_path);
1630 __ B(slow_path->GetEntryLabel());
1631 __ Bind(slow_path->GetExitLabel());
1632 return;
1633 }
1634 } else if (code_point->GetType() != DataType::Type::kUint16) {
1635 vixl32::Register char_reg = InputRegisterAt(invoke, 1);
1636 // 0xffff is not modified immediate but 0x10000 is, so use `>= 0x10000` instead of `> 0xffff`.
1637 __ Cmp(char_reg, static_cast<uint32_t>(std::numeric_limits<uint16_t>::max()) + 1);
1638 slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathARMVIXL(invoke);
1639 codegen->AddSlowPath(slow_path);
1640 __ B(hs, slow_path->GetEntryLabel());
1641 }
1642
1643 if (start_at_zero) {
1644 vixl32::Register tmp_reg = RegisterFrom(locations->GetTemp(0));
1645 DCHECK(tmp_reg.Is(r2));
1646 // Start-index = 0.
1647 __ Mov(tmp_reg, 0);
1648 }
1649
1650 codegen->InvokeRuntime(kQuickIndexOf, invoke, invoke->GetDexPc(), slow_path);
1651 CheckEntrypointTypes<kQuickIndexOf, int32_t, void*, uint32_t, uint32_t>();
1652
1653 if (slow_path != nullptr) {
1654 __ Bind(slow_path->GetExitLabel());
1655 }
1656 }
1657
VisitStringIndexOf(HInvoke * invoke)1658 void IntrinsicLocationsBuilderARMVIXL::VisitStringIndexOf(HInvoke* invoke) {
1659 LocationSummary* locations = new (allocator_) LocationSummary(
1660 invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified);
1661 // We have a hand-crafted assembly stub that follows the runtime calling convention. So it's
1662 // best to align the inputs accordingly.
1663 InvokeRuntimeCallingConventionARMVIXL calling_convention;
1664 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
1665 locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
1666 locations->SetOut(LocationFrom(r0));
1667
1668 // Need to send start-index=0.
1669 locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(2)));
1670 }
1671
VisitStringIndexOf(HInvoke * invoke)1672 void IntrinsicCodeGeneratorARMVIXL::VisitStringIndexOf(HInvoke* invoke) {
1673 GenerateVisitStringIndexOf(invoke, GetAssembler(), codegen_, /* start_at_zero= */ true);
1674 }
1675
VisitStringIndexOfAfter(HInvoke * invoke)1676 void IntrinsicLocationsBuilderARMVIXL::VisitStringIndexOfAfter(HInvoke* invoke) {
1677 LocationSummary* locations = new (allocator_) LocationSummary(
1678 invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified);
1679 // We have a hand-crafted assembly stub that follows the runtime calling convention. So it's
1680 // best to align the inputs accordingly.
1681 InvokeRuntimeCallingConventionARMVIXL calling_convention;
1682 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
1683 locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
1684 locations->SetInAt(2, LocationFrom(calling_convention.GetRegisterAt(2)));
1685 locations->SetOut(LocationFrom(r0));
1686 }
1687
VisitStringIndexOfAfter(HInvoke * invoke)1688 void IntrinsicCodeGeneratorARMVIXL::VisitStringIndexOfAfter(HInvoke* invoke) {
1689 GenerateVisitStringIndexOf(invoke, GetAssembler(), codegen_, /* start_at_zero= */ false);
1690 }
1691
VisitStringNewStringFromBytes(HInvoke * invoke)1692 void IntrinsicLocationsBuilderARMVIXL::VisitStringNewStringFromBytes(HInvoke* invoke) {
1693 LocationSummary* locations = new (allocator_) LocationSummary(
1694 invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified);
1695 InvokeRuntimeCallingConventionARMVIXL calling_convention;
1696 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
1697 locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
1698 locations->SetInAt(2, LocationFrom(calling_convention.GetRegisterAt(2)));
1699 locations->SetInAt(3, LocationFrom(calling_convention.GetRegisterAt(3)));
1700 locations->SetOut(LocationFrom(r0));
1701 }
1702
VisitStringNewStringFromBytes(HInvoke * invoke)1703 void IntrinsicCodeGeneratorARMVIXL::VisitStringNewStringFromBytes(HInvoke* invoke) {
1704 ArmVIXLAssembler* assembler = GetAssembler();
1705 vixl32::Register byte_array = InputRegisterAt(invoke, 0);
1706 __ Cmp(byte_array, 0);
1707 SlowPathCodeARMVIXL* slow_path =
1708 new (codegen_->GetScopedAllocator()) IntrinsicSlowPathARMVIXL(invoke);
1709 codegen_->AddSlowPath(slow_path);
1710 __ B(eq, slow_path->GetEntryLabel());
1711
1712 codegen_->InvokeRuntime(kQuickAllocStringFromBytes, invoke, invoke->GetDexPc(), slow_path);
1713 CheckEntrypointTypes<kQuickAllocStringFromBytes, void*, void*, int32_t, int32_t, int32_t>();
1714 __ Bind(slow_path->GetExitLabel());
1715 }
1716
VisitStringNewStringFromChars(HInvoke * invoke)1717 void IntrinsicLocationsBuilderARMVIXL::VisitStringNewStringFromChars(HInvoke* invoke) {
1718 LocationSummary* locations =
1719 new (allocator_) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified);
1720 InvokeRuntimeCallingConventionARMVIXL calling_convention;
1721 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
1722 locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
1723 locations->SetInAt(2, LocationFrom(calling_convention.GetRegisterAt(2)));
1724 locations->SetOut(LocationFrom(r0));
1725 }
1726
VisitStringNewStringFromChars(HInvoke * invoke)1727 void IntrinsicCodeGeneratorARMVIXL::VisitStringNewStringFromChars(HInvoke* invoke) {
1728 // No need to emit code checking whether `locations->InAt(2)` is a null
1729 // pointer, as callers of the native method
1730 //
1731 // java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data)
1732 //
1733 // all include a null check on `data` before calling that method.
1734 codegen_->InvokeRuntime(kQuickAllocStringFromChars, invoke, invoke->GetDexPc());
1735 CheckEntrypointTypes<kQuickAllocStringFromChars, void*, int32_t, int32_t, void*>();
1736 }
1737
VisitStringNewStringFromString(HInvoke * invoke)1738 void IntrinsicLocationsBuilderARMVIXL::VisitStringNewStringFromString(HInvoke* invoke) {
1739 LocationSummary* locations = new (allocator_) LocationSummary(
1740 invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified);
1741 InvokeRuntimeCallingConventionARMVIXL calling_convention;
1742 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
1743 locations->SetOut(LocationFrom(r0));
1744 }
1745
VisitStringNewStringFromString(HInvoke * invoke)1746 void IntrinsicCodeGeneratorARMVIXL::VisitStringNewStringFromString(HInvoke* invoke) {
1747 ArmVIXLAssembler* assembler = GetAssembler();
1748 vixl32::Register string_to_copy = InputRegisterAt(invoke, 0);
1749 __ Cmp(string_to_copy, 0);
1750 SlowPathCodeARMVIXL* slow_path =
1751 new (codegen_->GetScopedAllocator()) IntrinsicSlowPathARMVIXL(invoke);
1752 codegen_->AddSlowPath(slow_path);
1753 __ B(eq, slow_path->GetEntryLabel());
1754
1755 codegen_->InvokeRuntime(kQuickAllocStringFromString, invoke, invoke->GetDexPc(), slow_path);
1756 CheckEntrypointTypes<kQuickAllocStringFromString, void*, void*>();
1757
1758 __ Bind(slow_path->GetExitLabel());
1759 }
1760
VisitSystemArrayCopy(HInvoke * invoke)1761 void IntrinsicLocationsBuilderARMVIXL::VisitSystemArrayCopy(HInvoke* invoke) {
1762 // The only read barrier implementation supporting the
1763 // SystemArrayCopy intrinsic is the Baker-style read barriers.
1764 if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) {
1765 return;
1766 }
1767
1768 CodeGenerator::CreateSystemArrayCopyLocationSummary(invoke);
1769 LocationSummary* locations = invoke->GetLocations();
1770 if (locations == nullptr) {
1771 return;
1772 }
1773
1774 HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant();
1775 HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant();
1776 HIntConstant* length = invoke->InputAt(4)->AsIntConstant();
1777
1778 if (src_pos != nullptr && !assembler_->ShifterOperandCanAlwaysHold(src_pos->GetValue())) {
1779 locations->SetInAt(1, Location::RequiresRegister());
1780 }
1781 if (dest_pos != nullptr && !assembler_->ShifterOperandCanAlwaysHold(dest_pos->GetValue())) {
1782 locations->SetInAt(3, Location::RequiresRegister());
1783 }
1784 if (length != nullptr && !assembler_->ShifterOperandCanAlwaysHold(length->GetValue())) {
1785 locations->SetInAt(4, Location::RequiresRegister());
1786 }
1787 if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
1788 // Temporary register IP cannot be used in
1789 // ReadBarrierSystemArrayCopySlowPathARM (because that register
1790 // is clobbered by ReadBarrierMarkRegX entry points). Get an extra
1791 // temporary register from the register allocator.
1792 locations->AddTemp(Location::RequiresRegister());
1793 }
1794 }
1795
CheckPosition(ArmVIXLAssembler * assembler,Location pos,vixl32::Register input,Location length,SlowPathCodeARMVIXL * slow_path,vixl32::Register temp,bool length_is_input_length=false)1796 static void CheckPosition(ArmVIXLAssembler* assembler,
1797 Location pos,
1798 vixl32::Register input,
1799 Location length,
1800 SlowPathCodeARMVIXL* slow_path,
1801 vixl32::Register temp,
1802 bool length_is_input_length = false) {
1803 // Where is the length in the Array?
1804 const uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value();
1805
1806 if (pos.IsConstant()) {
1807 int32_t pos_const = Int32ConstantFrom(pos);
1808 if (pos_const == 0) {
1809 if (!length_is_input_length) {
1810 // Check that length(input) >= length.
1811 __ Ldr(temp, MemOperand(input, length_offset));
1812 if (length.IsConstant()) {
1813 __ Cmp(temp, Int32ConstantFrom(length));
1814 } else {
1815 __ Cmp(temp, RegisterFrom(length));
1816 }
1817 __ B(lt, slow_path->GetEntryLabel());
1818 }
1819 } else {
1820 // Check that length(input) >= pos.
1821 __ Ldr(temp, MemOperand(input, length_offset));
1822 __ Subs(temp, temp, pos_const);
1823 __ B(lt, slow_path->GetEntryLabel());
1824
1825 // Check that (length(input) - pos) >= length.
1826 if (length.IsConstant()) {
1827 __ Cmp(temp, Int32ConstantFrom(length));
1828 } else {
1829 __ Cmp(temp, RegisterFrom(length));
1830 }
1831 __ B(lt, slow_path->GetEntryLabel());
1832 }
1833 } else if (length_is_input_length) {
1834 // The only way the copy can succeed is if pos is zero.
1835 vixl32::Register pos_reg = RegisterFrom(pos);
1836 __ CompareAndBranchIfNonZero(pos_reg, slow_path->GetEntryLabel());
1837 } else {
1838 // Check that pos >= 0.
1839 vixl32::Register pos_reg = RegisterFrom(pos);
1840 __ Cmp(pos_reg, 0);
1841 __ B(lt, slow_path->GetEntryLabel());
1842
1843 // Check that pos <= length(input).
1844 __ Ldr(temp, MemOperand(input, length_offset));
1845 __ Subs(temp, temp, pos_reg);
1846 __ B(lt, slow_path->GetEntryLabel());
1847
1848 // Check that (length(input) - pos) >= length.
1849 if (length.IsConstant()) {
1850 __ Cmp(temp, Int32ConstantFrom(length));
1851 } else {
1852 __ Cmp(temp, RegisterFrom(length));
1853 }
1854 __ B(lt, slow_path->GetEntryLabel());
1855 }
1856 }
1857
VisitSystemArrayCopy(HInvoke * invoke)1858 void IntrinsicCodeGeneratorARMVIXL::VisitSystemArrayCopy(HInvoke* invoke) {
1859 // The only read barrier implementation supporting the
1860 // SystemArrayCopy intrinsic is the Baker-style read barriers.
1861 DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
1862
1863 ArmVIXLAssembler* assembler = GetAssembler();
1864 LocationSummary* locations = invoke->GetLocations();
1865
1866 uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
1867 uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
1868 uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
1869 uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
1870 uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
1871
1872 vixl32::Register src = InputRegisterAt(invoke, 0);
1873 Location src_pos = locations->InAt(1);
1874 vixl32::Register dest = InputRegisterAt(invoke, 2);
1875 Location dest_pos = locations->InAt(3);
1876 Location length = locations->InAt(4);
1877 Location temp1_loc = locations->GetTemp(0);
1878 vixl32::Register temp1 = RegisterFrom(temp1_loc);
1879 Location temp2_loc = locations->GetTemp(1);
1880 vixl32::Register temp2 = RegisterFrom(temp2_loc);
1881 Location temp3_loc = locations->GetTemp(2);
1882 vixl32::Register temp3 = RegisterFrom(temp3_loc);
1883
1884 SlowPathCodeARMVIXL* intrinsic_slow_path =
1885 new (codegen_->GetScopedAllocator()) IntrinsicSlowPathARMVIXL(invoke);
1886 codegen_->AddSlowPath(intrinsic_slow_path);
1887
1888 vixl32::Label conditions_on_positions_validated;
1889 SystemArrayCopyOptimizations optimizations(invoke);
1890
1891 // If source and destination are the same, we go to slow path if we need to do
1892 // forward copying.
1893 if (src_pos.IsConstant()) {
1894 int32_t src_pos_constant = Int32ConstantFrom(src_pos);
1895 if (dest_pos.IsConstant()) {
1896 int32_t dest_pos_constant = Int32ConstantFrom(dest_pos);
1897 if (optimizations.GetDestinationIsSource()) {
1898 // Checked when building locations.
1899 DCHECK_GE(src_pos_constant, dest_pos_constant);
1900 } else if (src_pos_constant < dest_pos_constant) {
1901 __ Cmp(src, dest);
1902 __ B(eq, intrinsic_slow_path->GetEntryLabel());
1903 }
1904
1905 // Checked when building locations.
1906 DCHECK(!optimizations.GetDestinationIsSource()
1907 || (src_pos_constant >= Int32ConstantFrom(dest_pos)));
1908 } else {
1909 if (!optimizations.GetDestinationIsSource()) {
1910 __ Cmp(src, dest);
1911 __ B(ne, &conditions_on_positions_validated, /* is_far_target= */ false);
1912 }
1913 __ Cmp(RegisterFrom(dest_pos), src_pos_constant);
1914 __ B(gt, intrinsic_slow_path->GetEntryLabel());
1915 }
1916 } else {
1917 if (!optimizations.GetDestinationIsSource()) {
1918 __ Cmp(src, dest);
1919 __ B(ne, &conditions_on_positions_validated, /* is_far_target= */ false);
1920 }
1921 if (dest_pos.IsConstant()) {
1922 int32_t dest_pos_constant = Int32ConstantFrom(dest_pos);
1923 __ Cmp(RegisterFrom(src_pos), dest_pos_constant);
1924 } else {
1925 __ Cmp(RegisterFrom(src_pos), RegisterFrom(dest_pos));
1926 }
1927 __ B(lt, intrinsic_slow_path->GetEntryLabel());
1928 }
1929
1930 __ Bind(&conditions_on_positions_validated);
1931
1932 if (!optimizations.GetSourceIsNotNull()) {
1933 // Bail out if the source is null.
1934 __ CompareAndBranchIfZero(src, intrinsic_slow_path->GetEntryLabel());
1935 }
1936
1937 if (!optimizations.GetDestinationIsNotNull() && !optimizations.GetDestinationIsSource()) {
1938 // Bail out if the destination is null.
1939 __ CompareAndBranchIfZero(dest, intrinsic_slow_path->GetEntryLabel());
1940 }
1941
1942 // If the length is negative, bail out.
1943 // We have already checked in the LocationsBuilder for the constant case.
1944 if (!length.IsConstant() &&
1945 !optimizations.GetCountIsSourceLength() &&
1946 !optimizations.GetCountIsDestinationLength()) {
1947 __ Cmp(RegisterFrom(length), 0);
1948 __ B(lt, intrinsic_slow_path->GetEntryLabel());
1949 }
1950
1951 // Validity checks: source.
1952 CheckPosition(assembler,
1953 src_pos,
1954 src,
1955 length,
1956 intrinsic_slow_path,
1957 temp1,
1958 optimizations.GetCountIsSourceLength());
1959
1960 // Validity checks: dest.
1961 CheckPosition(assembler,
1962 dest_pos,
1963 dest,
1964 length,
1965 intrinsic_slow_path,
1966 temp1,
1967 optimizations.GetCountIsDestinationLength());
1968
1969 if (!optimizations.GetDoesNotNeedTypeCheck()) {
1970 // Check whether all elements of the source array are assignable to the component
1971 // type of the destination array. We do two checks: the classes are the same,
1972 // or the destination is Object[]. If none of these checks succeed, we go to the
1973 // slow path.
1974
1975 if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
1976 if (!optimizations.GetSourceIsNonPrimitiveArray()) {
1977 // /* HeapReference<Class> */ temp1 = src->klass_
1978 codegen_->GenerateFieldLoadWithBakerReadBarrier(
1979 invoke, temp1_loc, src, class_offset, temp2_loc, /* needs_null_check= */ false);
1980 // Bail out if the source is not a non primitive array.
1981 // /* HeapReference<Class> */ temp1 = temp1->component_type_
1982 codegen_->GenerateFieldLoadWithBakerReadBarrier(
1983 invoke, temp1_loc, temp1, component_offset, temp2_loc, /* needs_null_check= */ false);
1984 __ CompareAndBranchIfZero(temp1, intrinsic_slow_path->GetEntryLabel());
1985 // If heap poisoning is enabled, `temp1` has been unpoisoned
1986 // by the the previous call to GenerateFieldLoadWithBakerReadBarrier.
1987 // /* uint16_t */ temp1 = static_cast<uint16>(temp1->primitive_type_);
1988 __ Ldrh(temp1, MemOperand(temp1, primitive_offset));
1989 static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
1990 __ CompareAndBranchIfNonZero(temp1, intrinsic_slow_path->GetEntryLabel());
1991 }
1992
1993 // /* HeapReference<Class> */ temp1 = dest->klass_
1994 codegen_->GenerateFieldLoadWithBakerReadBarrier(
1995 invoke, temp1_loc, dest, class_offset, temp2_loc, /* needs_null_check= */ false);
1996
1997 if (!optimizations.GetDestinationIsNonPrimitiveArray()) {
1998 // Bail out if the destination is not a non primitive array.
1999 //
2000 // Register `temp1` is not trashed by the read barrier emitted
2001 // by GenerateFieldLoadWithBakerReadBarrier below, as that
2002 // method produces a call to a ReadBarrierMarkRegX entry point,
2003 // which saves all potentially live registers, including
2004 // temporaries such a `temp1`.
2005 // /* HeapReference<Class> */ temp2 = temp1->component_type_
2006 codegen_->GenerateFieldLoadWithBakerReadBarrier(
2007 invoke, temp2_loc, temp1, component_offset, temp3_loc, /* needs_null_check= */ false);
2008 __ CompareAndBranchIfZero(temp2, intrinsic_slow_path->GetEntryLabel());
2009 // If heap poisoning is enabled, `temp2` has been unpoisoned
2010 // by the the previous call to GenerateFieldLoadWithBakerReadBarrier.
2011 // /* uint16_t */ temp2 = static_cast<uint16>(temp2->primitive_type_);
2012 __ Ldrh(temp2, MemOperand(temp2, primitive_offset));
2013 static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
2014 __ CompareAndBranchIfNonZero(temp2, intrinsic_slow_path->GetEntryLabel());
2015 }
2016
2017 // For the same reason given earlier, `temp1` is not trashed by the
2018 // read barrier emitted by GenerateFieldLoadWithBakerReadBarrier below.
2019 // /* HeapReference<Class> */ temp2 = src->klass_
2020 codegen_->GenerateFieldLoadWithBakerReadBarrier(
2021 invoke, temp2_loc, src, class_offset, temp3_loc, /* needs_null_check= */ false);
2022 // Note: if heap poisoning is on, we are comparing two unpoisoned references here.
2023 __ Cmp(temp1, temp2);
2024
2025 if (optimizations.GetDestinationIsTypedObjectArray()) {
2026 vixl32::Label do_copy;
2027 __ B(eq, &do_copy, /* is_far_target= */ false);
2028 // /* HeapReference<Class> */ temp1 = temp1->component_type_
2029 codegen_->GenerateFieldLoadWithBakerReadBarrier(
2030 invoke, temp1_loc, temp1, component_offset, temp2_loc, /* needs_null_check= */ false);
2031 // /* HeapReference<Class> */ temp1 = temp1->super_class_
2032 // We do not need to emit a read barrier for the following
2033 // heap reference load, as `temp1` is only used in a
2034 // comparison with null below, and this reference is not
2035 // kept afterwards.
2036 __ Ldr(temp1, MemOperand(temp1, super_offset));
2037 __ CompareAndBranchIfNonZero(temp1, intrinsic_slow_path->GetEntryLabel());
2038 __ Bind(&do_copy);
2039 } else {
2040 __ B(ne, intrinsic_slow_path->GetEntryLabel());
2041 }
2042 } else {
2043 // Non read barrier code.
2044
2045 // /* HeapReference<Class> */ temp1 = dest->klass_
2046 __ Ldr(temp1, MemOperand(dest, class_offset));
2047 // /* HeapReference<Class> */ temp2 = src->klass_
2048 __ Ldr(temp2, MemOperand(src, class_offset));
2049 bool did_unpoison = false;
2050 if (!optimizations.GetDestinationIsNonPrimitiveArray() ||
2051 !optimizations.GetSourceIsNonPrimitiveArray()) {
2052 // One or two of the references need to be unpoisoned. Unpoison them
2053 // both to make the identity check valid.
2054 assembler->MaybeUnpoisonHeapReference(temp1);
2055 assembler->MaybeUnpoisonHeapReference(temp2);
2056 did_unpoison = true;
2057 }
2058
2059 if (!optimizations.GetDestinationIsNonPrimitiveArray()) {
2060 // Bail out if the destination is not a non primitive array.
2061 // /* HeapReference<Class> */ temp3 = temp1->component_type_
2062 __ Ldr(temp3, MemOperand(temp1, component_offset));
2063 __ CompareAndBranchIfZero(temp3, intrinsic_slow_path->GetEntryLabel());
2064 assembler->MaybeUnpoisonHeapReference(temp3);
2065 // /* uint16_t */ temp3 = static_cast<uint16>(temp3->primitive_type_);
2066 __ Ldrh(temp3, MemOperand(temp3, primitive_offset));
2067 static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
2068 __ CompareAndBranchIfNonZero(temp3, intrinsic_slow_path->GetEntryLabel());
2069 }
2070
2071 if (!optimizations.GetSourceIsNonPrimitiveArray()) {
2072 // Bail out if the source is not a non primitive array.
2073 // /* HeapReference<Class> */ temp3 = temp2->component_type_
2074 __ Ldr(temp3, MemOperand(temp2, component_offset));
2075 __ CompareAndBranchIfZero(temp3, intrinsic_slow_path->GetEntryLabel());
2076 assembler->MaybeUnpoisonHeapReference(temp3);
2077 // /* uint16_t */ temp3 = static_cast<uint16>(temp3->primitive_type_);
2078 __ Ldrh(temp3, MemOperand(temp3, primitive_offset));
2079 static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
2080 __ CompareAndBranchIfNonZero(temp3, intrinsic_slow_path->GetEntryLabel());
2081 }
2082
2083 __ Cmp(temp1, temp2);
2084
2085 if (optimizations.GetDestinationIsTypedObjectArray()) {
2086 vixl32::Label do_copy;
2087 __ B(eq, &do_copy, /* is_far_target= */ false);
2088 if (!did_unpoison) {
2089 assembler->MaybeUnpoisonHeapReference(temp1);
2090 }
2091 // /* HeapReference<Class> */ temp1 = temp1->component_type_
2092 __ Ldr(temp1, MemOperand(temp1, component_offset));
2093 assembler->MaybeUnpoisonHeapReference(temp1);
2094 // /* HeapReference<Class> */ temp1 = temp1->super_class_
2095 __ Ldr(temp1, MemOperand(temp1, super_offset));
2096 // No need to unpoison the result, we're comparing against null.
2097 __ CompareAndBranchIfNonZero(temp1, intrinsic_slow_path->GetEntryLabel());
2098 __ Bind(&do_copy);
2099 } else {
2100 __ B(ne, intrinsic_slow_path->GetEntryLabel());
2101 }
2102 }
2103 } else if (!optimizations.GetSourceIsNonPrimitiveArray()) {
2104 DCHECK(optimizations.GetDestinationIsNonPrimitiveArray());
2105 // Bail out if the source is not a non primitive array.
2106 if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
2107 // /* HeapReference<Class> */ temp1 = src->klass_
2108 codegen_->GenerateFieldLoadWithBakerReadBarrier(
2109 invoke, temp1_loc, src, class_offset, temp2_loc, /* needs_null_check= */ false);
2110 // /* HeapReference<Class> */ temp3 = temp1->component_type_
2111 codegen_->GenerateFieldLoadWithBakerReadBarrier(
2112 invoke, temp3_loc, temp1, component_offset, temp2_loc, /* needs_null_check= */ false);
2113 __ CompareAndBranchIfZero(temp3, intrinsic_slow_path->GetEntryLabel());
2114 // If heap poisoning is enabled, `temp3` has been unpoisoned
2115 // by the the previous call to GenerateFieldLoadWithBakerReadBarrier.
2116 } else {
2117 // /* HeapReference<Class> */ temp1 = src->klass_
2118 __ Ldr(temp1, MemOperand(src, class_offset));
2119 assembler->MaybeUnpoisonHeapReference(temp1);
2120 // /* HeapReference<Class> */ temp3 = temp1->component_type_
2121 __ Ldr(temp3, MemOperand(temp1, component_offset));
2122 __ CompareAndBranchIfZero(temp3, intrinsic_slow_path->GetEntryLabel());
2123 assembler->MaybeUnpoisonHeapReference(temp3);
2124 }
2125 // /* uint16_t */ temp3 = static_cast<uint16>(temp3->primitive_type_);
2126 __ Ldrh(temp3, MemOperand(temp3, primitive_offset));
2127 static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
2128 __ CompareAndBranchIfNonZero(temp3, intrinsic_slow_path->GetEntryLabel());
2129 }
2130
2131 if (length.IsConstant() && Int32ConstantFrom(length) == 0) {
2132 // Null constant length: not need to emit the loop code at all.
2133 } else {
2134 vixl32::Label done;
2135 const DataType::Type type = DataType::Type::kReference;
2136 const int32_t element_size = DataType::Size(type);
2137
2138 if (length.IsRegister()) {
2139 // Don't enter the copy loop if the length is null.
2140 __ CompareAndBranchIfZero(RegisterFrom(length), &done, /* is_far_target= */ false);
2141 }
2142
2143 if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
2144 // TODO: Also convert this intrinsic to the IsGcMarking strategy?
2145
2146 // SystemArrayCopy implementation for Baker read barriers (see
2147 // also CodeGeneratorARMVIXL::GenerateReferenceLoadWithBakerReadBarrier):
2148 //
2149 // uint32_t rb_state = Lockword(src->monitor_).ReadBarrierState();
2150 // lfence; // Load fence or artificial data dependency to prevent load-load reordering
2151 // bool is_gray = (rb_state == ReadBarrier::GrayState());
2152 // if (is_gray) {
2153 // // Slow-path copy.
2154 // do {
2155 // *dest_ptr++ = MaybePoison(ReadBarrier::Mark(MaybeUnpoison(*src_ptr++)));
2156 // } while (src_ptr != end_ptr)
2157 // } else {
2158 // // Fast-path copy.
2159 // do {
2160 // *dest_ptr++ = *src_ptr++;
2161 // } while (src_ptr != end_ptr)
2162 // }
2163
2164 // /* int32_t */ monitor = src->monitor_
2165 __ Ldr(temp2, MemOperand(src, monitor_offset));
2166 // /* LockWord */ lock_word = LockWord(monitor)
2167 static_assert(sizeof(LockWord) == sizeof(int32_t),
2168 "art::LockWord and int32_t have different sizes.");
2169
2170 // Introduce a dependency on the lock_word including the rb_state,
2171 // which shall prevent load-load reordering without using
2172 // a memory barrier (which would be more expensive).
2173 // `src` is unchanged by this operation, but its value now depends
2174 // on `temp2`.
2175 __ Add(src, src, Operand(temp2, vixl32::LSR, 32));
2176
2177 // Compute the base source address in `temp1`.
2178 // Note that `temp1` (the base source address) is computed from
2179 // `src` (and `src_pos`) here, and thus honors the artificial
2180 // dependency of `src` on `temp2`.
2181 GenSystemArrayCopyBaseAddress(GetAssembler(), type, src, src_pos, temp1);
2182 // Compute the end source address in `temp3`.
2183 GenSystemArrayCopyEndAddress(GetAssembler(), type, length, temp1, temp3);
2184 // The base destination address is computed later, as `temp2` is
2185 // used for intermediate computations.
2186
2187 // Slow path used to copy array when `src` is gray.
2188 // Note that the base destination address is computed in `temp2`
2189 // by the slow path code.
2190 SlowPathCodeARMVIXL* read_barrier_slow_path =
2191 new (codegen_->GetScopedAllocator()) ReadBarrierSystemArrayCopySlowPathARMVIXL(invoke);
2192 codegen_->AddSlowPath(read_barrier_slow_path);
2193
2194 // Given the numeric representation, it's enough to check the low bit of the
2195 // rb_state. We do that by shifting the bit out of the lock word with LSRS
2196 // which can be a 16-bit instruction unlike the TST immediate.
2197 static_assert(ReadBarrier::NonGrayState() == 0, "Expecting non-gray to have value 0");
2198 static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
2199 __ Lsrs(temp2, temp2, LockWord::kReadBarrierStateShift + 1);
2200 // Carry flag is the last bit shifted out by LSRS.
2201 __ B(cs, read_barrier_slow_path->GetEntryLabel());
2202
2203 // Fast-path copy.
2204 // Compute the base destination address in `temp2`.
2205 GenSystemArrayCopyBaseAddress(GetAssembler(), type, dest, dest_pos, temp2);
2206 // Iterate over the arrays and do a raw copy of the objects. We don't need to
2207 // poison/unpoison.
2208 vixl32::Label loop;
2209 __ Bind(&loop);
2210 {
2211 UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
2212 const vixl32::Register temp_reg = temps.Acquire();
2213 __ Ldr(temp_reg, MemOperand(temp1, element_size, PostIndex));
2214 __ Str(temp_reg, MemOperand(temp2, element_size, PostIndex));
2215 }
2216 __ Cmp(temp1, temp3);
2217 __ B(ne, &loop, /* is_far_target= */ false);
2218
2219 __ Bind(read_barrier_slow_path->GetExitLabel());
2220 } else {
2221 // Non read barrier code.
2222 // Compute the base source address in `temp1`.
2223 GenSystemArrayCopyBaseAddress(GetAssembler(), type, src, src_pos, temp1);
2224 // Compute the base destination address in `temp2`.
2225 GenSystemArrayCopyBaseAddress(GetAssembler(), type, dest, dest_pos, temp2);
2226 // Compute the end source address in `temp3`.
2227 GenSystemArrayCopyEndAddress(GetAssembler(), type, length, temp1, temp3);
2228 // Iterate over the arrays and do a raw copy of the objects. We don't need to
2229 // poison/unpoison.
2230 vixl32::Label loop;
2231 __ Bind(&loop);
2232 {
2233 UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
2234 const vixl32::Register temp_reg = temps.Acquire();
2235 __ Ldr(temp_reg, MemOperand(temp1, element_size, PostIndex));
2236 __ Str(temp_reg, MemOperand(temp2, element_size, PostIndex));
2237 }
2238 __ Cmp(temp1, temp3);
2239 __ B(ne, &loop, /* is_far_target= */ false);
2240 }
2241 __ Bind(&done);
2242 }
2243
2244 // We only need one card marking on the destination array.
2245 codegen_->MarkGCCard(temp1, temp2, dest, NoReg, /* can_be_null= */ false);
2246
2247 __ Bind(intrinsic_slow_path->GetExitLabel());
2248 }
2249
CreateFPToFPCallLocations(ArenaAllocator * allocator,HInvoke * invoke)2250 static void CreateFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) {
2251 // If the graph is debuggable, all callee-saved floating-point registers are blocked by
2252 // the code generator. Furthermore, the register allocator creates fixed live intervals
2253 // for all caller-saved registers because we are doing a function call. As a result, if
2254 // the input and output locations are unallocated, the register allocator runs out of
2255 // registers and fails; however, a debuggable graph is not the common case.
2256 if (invoke->GetBlock()->GetGraph()->IsDebuggable()) {
2257 return;
2258 }
2259
2260 DCHECK_EQ(invoke->GetNumberOfArguments(), 1U);
2261 DCHECK_EQ(invoke->InputAt(0)->GetType(), DataType::Type::kFloat64);
2262 DCHECK_EQ(invoke->GetType(), DataType::Type::kFloat64);
2263
2264 LocationSummary* const locations =
2265 new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified);
2266 const InvokeRuntimeCallingConventionARMVIXL calling_convention;
2267
2268 locations->SetInAt(0, Location::RequiresFpuRegister());
2269 locations->SetOut(Location::RequiresFpuRegister());
2270 // Native code uses the soft float ABI.
2271 locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(0)));
2272 locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(1)));
2273 }
2274
CreateFPFPToFPCallLocations(ArenaAllocator * allocator,HInvoke * invoke)2275 static void CreateFPFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) {
2276 // If the graph is debuggable, all callee-saved floating-point registers are blocked by
2277 // the code generator. Furthermore, the register allocator creates fixed live intervals
2278 // for all caller-saved registers because we are doing a function call. As a result, if
2279 // the input and output locations are unallocated, the register allocator runs out of
2280 // registers and fails; however, a debuggable graph is not the common case.
2281 if (invoke->GetBlock()->GetGraph()->IsDebuggable()) {
2282 return;
2283 }
2284
2285 DCHECK_EQ(invoke->GetNumberOfArguments(), 2U);
2286 DCHECK_EQ(invoke->InputAt(0)->GetType(), DataType::Type::kFloat64);
2287 DCHECK_EQ(invoke->InputAt(1)->GetType(), DataType::Type::kFloat64);
2288 DCHECK_EQ(invoke->GetType(), DataType::Type::kFloat64);
2289
2290 LocationSummary* const locations =
2291 new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified);
2292 const InvokeRuntimeCallingConventionARMVIXL calling_convention;
2293
2294 locations->SetInAt(0, Location::RequiresFpuRegister());
2295 locations->SetInAt(1, Location::RequiresFpuRegister());
2296 locations->SetOut(Location::RequiresFpuRegister());
2297 // Native code uses the soft float ABI.
2298 locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(0)));
2299 locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(1)));
2300 locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(2)));
2301 locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(3)));
2302 }
2303
GenFPToFPCall(HInvoke * invoke,ArmVIXLAssembler * assembler,CodeGeneratorARMVIXL * codegen,QuickEntrypointEnum entry)2304 static void GenFPToFPCall(HInvoke* invoke,
2305 ArmVIXLAssembler* assembler,
2306 CodeGeneratorARMVIXL* codegen,
2307 QuickEntrypointEnum entry) {
2308 LocationSummary* const locations = invoke->GetLocations();
2309
2310 DCHECK_EQ(invoke->GetNumberOfArguments(), 1U);
2311 DCHECK(locations->WillCall() && locations->Intrinsified());
2312
2313 // Native code uses the soft float ABI.
2314 __ Vmov(RegisterFrom(locations->GetTemp(0)),
2315 RegisterFrom(locations->GetTemp(1)),
2316 InputDRegisterAt(invoke, 0));
2317 codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc());
2318 __ Vmov(OutputDRegister(invoke),
2319 RegisterFrom(locations->GetTemp(0)),
2320 RegisterFrom(locations->GetTemp(1)));
2321 }
2322
GenFPFPToFPCall(HInvoke * invoke,ArmVIXLAssembler * assembler,CodeGeneratorARMVIXL * codegen,QuickEntrypointEnum entry)2323 static void GenFPFPToFPCall(HInvoke* invoke,
2324 ArmVIXLAssembler* assembler,
2325 CodeGeneratorARMVIXL* codegen,
2326 QuickEntrypointEnum entry) {
2327 LocationSummary* const locations = invoke->GetLocations();
2328
2329 DCHECK_EQ(invoke->GetNumberOfArguments(), 2U);
2330 DCHECK(locations->WillCall() && locations->Intrinsified());
2331
2332 // Native code uses the soft float ABI.
2333 __ Vmov(RegisterFrom(locations->GetTemp(0)),
2334 RegisterFrom(locations->GetTemp(1)),
2335 InputDRegisterAt(invoke, 0));
2336 __ Vmov(RegisterFrom(locations->GetTemp(2)),
2337 RegisterFrom(locations->GetTemp(3)),
2338 InputDRegisterAt(invoke, 1));
2339 codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc());
2340 __ Vmov(OutputDRegister(invoke),
2341 RegisterFrom(locations->GetTemp(0)),
2342 RegisterFrom(locations->GetTemp(1)));
2343 }
2344
VisitMathCos(HInvoke * invoke)2345 void IntrinsicLocationsBuilderARMVIXL::VisitMathCos(HInvoke* invoke) {
2346 CreateFPToFPCallLocations(allocator_, invoke);
2347 }
2348
VisitMathCos(HInvoke * invoke)2349 void IntrinsicCodeGeneratorARMVIXL::VisitMathCos(HInvoke* invoke) {
2350 GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickCos);
2351 }
2352
VisitMathSin(HInvoke * invoke)2353 void IntrinsicLocationsBuilderARMVIXL::VisitMathSin(HInvoke* invoke) {
2354 CreateFPToFPCallLocations(allocator_, invoke);
2355 }
2356
VisitMathSin(HInvoke * invoke)2357 void IntrinsicCodeGeneratorARMVIXL::VisitMathSin(HInvoke* invoke) {
2358 GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickSin);
2359 }
2360
VisitMathAcos(HInvoke * invoke)2361 void IntrinsicLocationsBuilderARMVIXL::VisitMathAcos(HInvoke* invoke) {
2362 CreateFPToFPCallLocations(allocator_, invoke);
2363 }
2364
VisitMathAcos(HInvoke * invoke)2365 void IntrinsicCodeGeneratorARMVIXL::VisitMathAcos(HInvoke* invoke) {
2366 GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickAcos);
2367 }
2368
VisitMathAsin(HInvoke * invoke)2369 void IntrinsicLocationsBuilderARMVIXL::VisitMathAsin(HInvoke* invoke) {
2370 CreateFPToFPCallLocations(allocator_, invoke);
2371 }
2372
VisitMathAsin(HInvoke * invoke)2373 void IntrinsicCodeGeneratorARMVIXL::VisitMathAsin(HInvoke* invoke) {
2374 GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickAsin);
2375 }
2376
VisitMathAtan(HInvoke * invoke)2377 void IntrinsicLocationsBuilderARMVIXL::VisitMathAtan(HInvoke* invoke) {
2378 CreateFPToFPCallLocations(allocator_, invoke);
2379 }
2380
VisitMathAtan(HInvoke * invoke)2381 void IntrinsicCodeGeneratorARMVIXL::VisitMathAtan(HInvoke* invoke) {
2382 GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickAtan);
2383 }
2384
VisitMathCbrt(HInvoke * invoke)2385 void IntrinsicLocationsBuilderARMVIXL::VisitMathCbrt(HInvoke* invoke) {
2386 CreateFPToFPCallLocations(allocator_, invoke);
2387 }
2388
VisitMathCbrt(HInvoke * invoke)2389 void IntrinsicCodeGeneratorARMVIXL::VisitMathCbrt(HInvoke* invoke) {
2390 GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickCbrt);
2391 }
2392
VisitMathCosh(HInvoke * invoke)2393 void IntrinsicLocationsBuilderARMVIXL::VisitMathCosh(HInvoke* invoke) {
2394 CreateFPToFPCallLocations(allocator_, invoke);
2395 }
2396
VisitMathCosh(HInvoke * invoke)2397 void IntrinsicCodeGeneratorARMVIXL::VisitMathCosh(HInvoke* invoke) {
2398 GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickCosh);
2399 }
2400
VisitMathExp(HInvoke * invoke)2401 void IntrinsicLocationsBuilderARMVIXL::VisitMathExp(HInvoke* invoke) {
2402 CreateFPToFPCallLocations(allocator_, invoke);
2403 }
2404
VisitMathExp(HInvoke * invoke)2405 void IntrinsicCodeGeneratorARMVIXL::VisitMathExp(HInvoke* invoke) {
2406 GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickExp);
2407 }
2408
VisitMathExpm1(HInvoke * invoke)2409 void IntrinsicLocationsBuilderARMVIXL::VisitMathExpm1(HInvoke* invoke) {
2410 CreateFPToFPCallLocations(allocator_, invoke);
2411 }
2412
VisitMathExpm1(HInvoke * invoke)2413 void IntrinsicCodeGeneratorARMVIXL::VisitMathExpm1(HInvoke* invoke) {
2414 GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickExpm1);
2415 }
2416
VisitMathLog(HInvoke * invoke)2417 void IntrinsicLocationsBuilderARMVIXL::VisitMathLog(HInvoke* invoke) {
2418 CreateFPToFPCallLocations(allocator_, invoke);
2419 }
2420
VisitMathLog(HInvoke * invoke)2421 void IntrinsicCodeGeneratorARMVIXL::VisitMathLog(HInvoke* invoke) {
2422 GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickLog);
2423 }
2424
VisitMathLog10(HInvoke * invoke)2425 void IntrinsicLocationsBuilderARMVIXL::VisitMathLog10(HInvoke* invoke) {
2426 CreateFPToFPCallLocations(allocator_, invoke);
2427 }
2428
VisitMathLog10(HInvoke * invoke)2429 void IntrinsicCodeGeneratorARMVIXL::VisitMathLog10(HInvoke* invoke) {
2430 GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickLog10);
2431 }
2432
VisitMathSinh(HInvoke * invoke)2433 void IntrinsicLocationsBuilderARMVIXL::VisitMathSinh(HInvoke* invoke) {
2434 CreateFPToFPCallLocations(allocator_, invoke);
2435 }
2436
VisitMathSinh(HInvoke * invoke)2437 void IntrinsicCodeGeneratorARMVIXL::VisitMathSinh(HInvoke* invoke) {
2438 GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickSinh);
2439 }
2440
VisitMathTan(HInvoke * invoke)2441 void IntrinsicLocationsBuilderARMVIXL::VisitMathTan(HInvoke* invoke) {
2442 CreateFPToFPCallLocations(allocator_, invoke);
2443 }
2444
VisitMathTan(HInvoke * invoke)2445 void IntrinsicCodeGeneratorARMVIXL::VisitMathTan(HInvoke* invoke) {
2446 GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickTan);
2447 }
2448
VisitMathTanh(HInvoke * invoke)2449 void IntrinsicLocationsBuilderARMVIXL::VisitMathTanh(HInvoke* invoke) {
2450 CreateFPToFPCallLocations(allocator_, invoke);
2451 }
2452
VisitMathTanh(HInvoke * invoke)2453 void IntrinsicCodeGeneratorARMVIXL::VisitMathTanh(HInvoke* invoke) {
2454 GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickTanh);
2455 }
2456
VisitMathAtan2(HInvoke * invoke)2457 void IntrinsicLocationsBuilderARMVIXL::VisitMathAtan2(HInvoke* invoke) {
2458 CreateFPFPToFPCallLocations(allocator_, invoke);
2459 }
2460
VisitMathAtan2(HInvoke * invoke)2461 void IntrinsicCodeGeneratorARMVIXL::VisitMathAtan2(HInvoke* invoke) {
2462 GenFPFPToFPCall(invoke, GetAssembler(), codegen_, kQuickAtan2);
2463 }
2464
VisitMathPow(HInvoke * invoke)2465 void IntrinsicLocationsBuilderARMVIXL::VisitMathPow(HInvoke* invoke) {
2466 CreateFPFPToFPCallLocations(allocator_, invoke);
2467 }
2468
VisitMathPow(HInvoke * invoke)2469 void IntrinsicCodeGeneratorARMVIXL::VisitMathPow(HInvoke* invoke) {
2470 GenFPFPToFPCall(invoke, GetAssembler(), codegen_, kQuickPow);
2471 }
2472
VisitMathHypot(HInvoke * invoke)2473 void IntrinsicLocationsBuilderARMVIXL::VisitMathHypot(HInvoke* invoke) {
2474 CreateFPFPToFPCallLocations(allocator_, invoke);
2475 }
2476
VisitMathHypot(HInvoke * invoke)2477 void IntrinsicCodeGeneratorARMVIXL::VisitMathHypot(HInvoke* invoke) {
2478 GenFPFPToFPCall(invoke, GetAssembler(), codegen_, kQuickHypot);
2479 }
2480
VisitMathNextAfter(HInvoke * invoke)2481 void IntrinsicLocationsBuilderARMVIXL::VisitMathNextAfter(HInvoke* invoke) {
2482 CreateFPFPToFPCallLocations(allocator_, invoke);
2483 }
2484
VisitMathNextAfter(HInvoke * invoke)2485 void IntrinsicCodeGeneratorARMVIXL::VisitMathNextAfter(HInvoke* invoke) {
2486 GenFPFPToFPCall(invoke, GetAssembler(), codegen_, kQuickNextAfter);
2487 }
2488
VisitIntegerReverse(HInvoke * invoke)2489 void IntrinsicLocationsBuilderARMVIXL::VisitIntegerReverse(HInvoke* invoke) {
2490 CreateIntToIntLocations(allocator_, invoke);
2491 }
2492
VisitIntegerReverse(HInvoke * invoke)2493 void IntrinsicCodeGeneratorARMVIXL::VisitIntegerReverse(HInvoke* invoke) {
2494 ArmVIXLAssembler* assembler = GetAssembler();
2495 __ Rbit(OutputRegister(invoke), InputRegisterAt(invoke, 0));
2496 }
2497
VisitLongReverse(HInvoke * invoke)2498 void IntrinsicLocationsBuilderARMVIXL::VisitLongReverse(HInvoke* invoke) {
2499 CreateLongToLongLocationsWithOverlap(allocator_, invoke);
2500 }
2501
VisitLongReverse(HInvoke * invoke)2502 void IntrinsicCodeGeneratorARMVIXL::VisitLongReverse(HInvoke* invoke) {
2503 ArmVIXLAssembler* assembler = GetAssembler();
2504 LocationSummary* locations = invoke->GetLocations();
2505
2506 vixl32::Register in_reg_lo = LowRegisterFrom(locations->InAt(0));
2507 vixl32::Register in_reg_hi = HighRegisterFrom(locations->InAt(0));
2508 vixl32::Register out_reg_lo = LowRegisterFrom(locations->Out());
2509 vixl32::Register out_reg_hi = HighRegisterFrom(locations->Out());
2510
2511 __ Rbit(out_reg_lo, in_reg_hi);
2512 __ Rbit(out_reg_hi, in_reg_lo);
2513 }
2514
VisitIntegerReverseBytes(HInvoke * invoke)2515 void IntrinsicLocationsBuilderARMVIXL::VisitIntegerReverseBytes(HInvoke* invoke) {
2516 CreateIntToIntLocations(allocator_, invoke);
2517 }
2518
VisitIntegerReverseBytes(HInvoke * invoke)2519 void IntrinsicCodeGeneratorARMVIXL::VisitIntegerReverseBytes(HInvoke* invoke) {
2520 ArmVIXLAssembler* assembler = GetAssembler();
2521 __ Rev(OutputRegister(invoke), InputRegisterAt(invoke, 0));
2522 }
2523
VisitLongReverseBytes(HInvoke * invoke)2524 void IntrinsicLocationsBuilderARMVIXL::VisitLongReverseBytes(HInvoke* invoke) {
2525 CreateLongToLongLocationsWithOverlap(allocator_, invoke);
2526 }
2527
VisitLongReverseBytes(HInvoke * invoke)2528 void IntrinsicCodeGeneratorARMVIXL::VisitLongReverseBytes(HInvoke* invoke) {
2529 ArmVIXLAssembler* assembler = GetAssembler();
2530 LocationSummary* locations = invoke->GetLocations();
2531
2532 vixl32::Register in_reg_lo = LowRegisterFrom(locations->InAt(0));
2533 vixl32::Register in_reg_hi = HighRegisterFrom(locations->InAt(0));
2534 vixl32::Register out_reg_lo = LowRegisterFrom(locations->Out());
2535 vixl32::Register out_reg_hi = HighRegisterFrom(locations->Out());
2536
2537 __ Rev(out_reg_lo, in_reg_hi);
2538 __ Rev(out_reg_hi, in_reg_lo);
2539 }
2540
VisitShortReverseBytes(HInvoke * invoke)2541 void IntrinsicLocationsBuilderARMVIXL::VisitShortReverseBytes(HInvoke* invoke) {
2542 CreateIntToIntLocations(allocator_, invoke);
2543 }
2544
VisitShortReverseBytes(HInvoke * invoke)2545 void IntrinsicCodeGeneratorARMVIXL::VisitShortReverseBytes(HInvoke* invoke) {
2546 ArmVIXLAssembler* assembler = GetAssembler();
2547 __ Revsh(OutputRegister(invoke), InputRegisterAt(invoke, 0));
2548 }
2549
GenBitCount(HInvoke * instr,DataType::Type type,ArmVIXLAssembler * assembler)2550 static void GenBitCount(HInvoke* instr, DataType::Type type, ArmVIXLAssembler* assembler) {
2551 DCHECK(DataType::IsIntOrLongType(type)) << type;
2552 DCHECK_EQ(instr->GetType(), DataType::Type::kInt32);
2553 DCHECK_EQ(DataType::Kind(instr->InputAt(0)->GetType()), type);
2554
2555 bool is_long = type == DataType::Type::kInt64;
2556 LocationSummary* locations = instr->GetLocations();
2557 Location in = locations->InAt(0);
2558 vixl32::Register src_0 = is_long ? LowRegisterFrom(in) : RegisterFrom(in);
2559 vixl32::Register src_1 = is_long ? HighRegisterFrom(in) : src_0;
2560 vixl32::SRegister tmp_s = LowSRegisterFrom(locations->GetTemp(0));
2561 vixl32::DRegister tmp_d = DRegisterFrom(locations->GetTemp(0));
2562 vixl32::Register out_r = OutputRegister(instr);
2563
2564 // Move data from core register(s) to temp D-reg for bit count calculation, then move back.
2565 // According to Cortex A57 and A72 optimization guides, compared to transferring to full D-reg,
2566 // transferring data from core reg to upper or lower half of vfp D-reg requires extra latency,
2567 // That's why for integer bit count, we use 'vmov d0, r0, r0' instead of 'vmov d0[0], r0'.
2568 __ Vmov(tmp_d, src_1, src_0); // Temp DReg |--src_1|--src_0|
2569 __ Vcnt(Untyped8, tmp_d, tmp_d); // Temp DReg |c|c|c|c|c|c|c|c|
2570 __ Vpaddl(U8, tmp_d, tmp_d); // Temp DReg |--c|--c|--c|--c|
2571 __ Vpaddl(U16, tmp_d, tmp_d); // Temp DReg |------c|------c|
2572 if (is_long) {
2573 __ Vpaddl(U32, tmp_d, tmp_d); // Temp DReg |--------------c|
2574 }
2575 __ Vmov(out_r, tmp_s);
2576 }
2577
VisitIntegerBitCount(HInvoke * invoke)2578 void IntrinsicLocationsBuilderARMVIXL::VisitIntegerBitCount(HInvoke* invoke) {
2579 CreateIntToIntLocations(allocator_, invoke);
2580 invoke->GetLocations()->AddTemp(Location::RequiresFpuRegister());
2581 }
2582
VisitIntegerBitCount(HInvoke * invoke)2583 void IntrinsicCodeGeneratorARMVIXL::VisitIntegerBitCount(HInvoke* invoke) {
2584 GenBitCount(invoke, DataType::Type::kInt32, GetAssembler());
2585 }
2586
VisitLongBitCount(HInvoke * invoke)2587 void IntrinsicLocationsBuilderARMVIXL::VisitLongBitCount(HInvoke* invoke) {
2588 VisitIntegerBitCount(invoke);
2589 }
2590
VisitLongBitCount(HInvoke * invoke)2591 void IntrinsicCodeGeneratorARMVIXL::VisitLongBitCount(HInvoke* invoke) {
2592 GenBitCount(invoke, DataType::Type::kInt64, GetAssembler());
2593 }
2594
GenHighestOneBit(HInvoke * invoke,DataType::Type type,CodeGeneratorARMVIXL * codegen)2595 static void GenHighestOneBit(HInvoke* invoke,
2596 DataType::Type type,
2597 CodeGeneratorARMVIXL* codegen) {
2598 DCHECK(DataType::IsIntOrLongType(type));
2599
2600 ArmVIXLAssembler* assembler = codegen->GetAssembler();
2601 UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
2602 const vixl32::Register temp = temps.Acquire();
2603
2604 if (type == DataType::Type::kInt64) {
2605 LocationSummary* locations = invoke->GetLocations();
2606 Location in = locations->InAt(0);
2607 Location out = locations->Out();
2608
2609 vixl32::Register in_reg_lo = LowRegisterFrom(in);
2610 vixl32::Register in_reg_hi = HighRegisterFrom(in);
2611 vixl32::Register out_reg_lo = LowRegisterFrom(out);
2612 vixl32::Register out_reg_hi = HighRegisterFrom(out);
2613
2614 __ Mov(temp, 0x80000000); // Modified immediate.
2615 __ Clz(out_reg_lo, in_reg_lo);
2616 __ Clz(out_reg_hi, in_reg_hi);
2617 __ Lsr(out_reg_lo, temp, out_reg_lo);
2618 __ Lsrs(out_reg_hi, temp, out_reg_hi);
2619
2620 // Discard result for lowest 32 bits if highest 32 bits are not zero.
2621 // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8,
2622 // we check that the output is in a low register, so that a 16-bit MOV
2623 // encoding can be used. If output is in a high register, then we generate
2624 // 4 more bytes of code to avoid a branch.
2625 Operand mov_src(0);
2626 if (!out_reg_lo.IsLow()) {
2627 __ Mov(LeaveFlags, temp, 0);
2628 mov_src = Operand(temp);
2629 }
2630 ExactAssemblyScope it_scope(codegen->GetVIXLAssembler(),
2631 2 * vixl32::k16BitT32InstructionSizeInBytes,
2632 CodeBufferCheckScope::kExactSize);
2633 __ it(ne);
2634 __ mov(ne, out_reg_lo, mov_src);
2635 } else {
2636 vixl32::Register out = OutputRegister(invoke);
2637 vixl32::Register in = InputRegisterAt(invoke, 0);
2638
2639 __ Mov(temp, 0x80000000); // Modified immediate.
2640 __ Clz(out, in);
2641 __ Lsr(out, temp, out);
2642 }
2643 }
2644
VisitIntegerHighestOneBit(HInvoke * invoke)2645 void IntrinsicLocationsBuilderARMVIXL::VisitIntegerHighestOneBit(HInvoke* invoke) {
2646 CreateIntToIntLocations(allocator_, invoke);
2647 }
2648
VisitIntegerHighestOneBit(HInvoke * invoke)2649 void IntrinsicCodeGeneratorARMVIXL::VisitIntegerHighestOneBit(HInvoke* invoke) {
2650 GenHighestOneBit(invoke, DataType::Type::kInt32, codegen_);
2651 }
2652
VisitLongHighestOneBit(HInvoke * invoke)2653 void IntrinsicLocationsBuilderARMVIXL::VisitLongHighestOneBit(HInvoke* invoke) {
2654 CreateLongToLongLocationsWithOverlap(allocator_, invoke);
2655 }
2656
VisitLongHighestOneBit(HInvoke * invoke)2657 void IntrinsicCodeGeneratorARMVIXL::VisitLongHighestOneBit(HInvoke* invoke) {
2658 GenHighestOneBit(invoke, DataType::Type::kInt64, codegen_);
2659 }
2660
GenLowestOneBit(HInvoke * invoke,DataType::Type type,CodeGeneratorARMVIXL * codegen)2661 static void GenLowestOneBit(HInvoke* invoke,
2662 DataType::Type type,
2663 CodeGeneratorARMVIXL* codegen) {
2664 DCHECK(DataType::IsIntOrLongType(type));
2665
2666 ArmVIXLAssembler* assembler = codegen->GetAssembler();
2667 UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
2668 const vixl32::Register temp = temps.Acquire();
2669
2670 if (type == DataType::Type::kInt64) {
2671 LocationSummary* locations = invoke->GetLocations();
2672 Location in = locations->InAt(0);
2673 Location out = locations->Out();
2674
2675 vixl32::Register in_reg_lo = LowRegisterFrom(in);
2676 vixl32::Register in_reg_hi = HighRegisterFrom(in);
2677 vixl32::Register out_reg_lo = LowRegisterFrom(out);
2678 vixl32::Register out_reg_hi = HighRegisterFrom(out);
2679
2680 __ Rsb(out_reg_hi, in_reg_hi, 0);
2681 __ Rsb(out_reg_lo, in_reg_lo, 0);
2682 __ And(out_reg_hi, out_reg_hi, in_reg_hi);
2683 // The result of this operation is 0 iff in_reg_lo is 0
2684 __ Ands(out_reg_lo, out_reg_lo, in_reg_lo);
2685
2686 // Discard result for highest 32 bits if lowest 32 bits are not zero.
2687 // Since IT blocks longer than a 16-bit instruction are deprecated by ARMv8,
2688 // we check that the output is in a low register, so that a 16-bit MOV
2689 // encoding can be used. If output is in a high register, then we generate
2690 // 4 more bytes of code to avoid a branch.
2691 Operand mov_src(0);
2692 if (!out_reg_lo.IsLow()) {
2693 __ Mov(LeaveFlags, temp, 0);
2694 mov_src = Operand(temp);
2695 }
2696 ExactAssemblyScope it_scope(codegen->GetVIXLAssembler(),
2697 2 * vixl32::k16BitT32InstructionSizeInBytes,
2698 CodeBufferCheckScope::kExactSize);
2699 __ it(ne);
2700 __ mov(ne, out_reg_hi, mov_src);
2701 } else {
2702 vixl32::Register out = OutputRegister(invoke);
2703 vixl32::Register in = InputRegisterAt(invoke, 0);
2704
2705 __ Rsb(temp, in, 0);
2706 __ And(out, temp, in);
2707 }
2708 }
2709
VisitIntegerLowestOneBit(HInvoke * invoke)2710 void IntrinsicLocationsBuilderARMVIXL::VisitIntegerLowestOneBit(HInvoke* invoke) {
2711 CreateIntToIntLocations(allocator_, invoke);
2712 }
2713
VisitIntegerLowestOneBit(HInvoke * invoke)2714 void IntrinsicCodeGeneratorARMVIXL::VisitIntegerLowestOneBit(HInvoke* invoke) {
2715 GenLowestOneBit(invoke, DataType::Type::kInt32, codegen_);
2716 }
2717
VisitLongLowestOneBit(HInvoke * invoke)2718 void IntrinsicLocationsBuilderARMVIXL::VisitLongLowestOneBit(HInvoke* invoke) {
2719 CreateLongToLongLocationsWithOverlap(allocator_, invoke);
2720 }
2721
VisitLongLowestOneBit(HInvoke * invoke)2722 void IntrinsicCodeGeneratorARMVIXL::VisitLongLowestOneBit(HInvoke* invoke) {
2723 GenLowestOneBit(invoke, DataType::Type::kInt64, codegen_);
2724 }
2725
VisitStringGetCharsNoCheck(HInvoke * invoke)2726 void IntrinsicLocationsBuilderARMVIXL::VisitStringGetCharsNoCheck(HInvoke* invoke) {
2727 LocationSummary* locations =
2728 new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
2729 locations->SetInAt(0, Location::RequiresRegister());
2730 locations->SetInAt(1, Location::RequiresRegister());
2731 locations->SetInAt(2, Location::RequiresRegister());
2732 locations->SetInAt(3, Location::RequiresRegister());
2733 locations->SetInAt(4, Location::RequiresRegister());
2734
2735 // Temporary registers to store lengths of strings and for calculations.
2736 locations->AddTemp(Location::RequiresRegister());
2737 locations->AddTemp(Location::RequiresRegister());
2738 locations->AddTemp(Location::RequiresRegister());
2739 }
2740
VisitStringGetCharsNoCheck(HInvoke * invoke)2741 void IntrinsicCodeGeneratorARMVIXL::VisitStringGetCharsNoCheck(HInvoke* invoke) {
2742 ArmVIXLAssembler* assembler = GetAssembler();
2743 LocationSummary* locations = invoke->GetLocations();
2744
2745 // Check assumption that sizeof(Char) is 2 (used in scaling below).
2746 const size_t char_size = DataType::Size(DataType::Type::kUint16);
2747 DCHECK_EQ(char_size, 2u);
2748
2749 // Location of data in char array buffer.
2750 const uint32_t data_offset = mirror::Array::DataOffset(char_size).Uint32Value();
2751
2752 // Location of char array data in string.
2753 const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value();
2754
2755 // void getCharsNoCheck(int srcBegin, int srcEnd, char[] dst, int dstBegin);
2756 // Since getChars() calls getCharsNoCheck() - we use registers rather than constants.
2757 vixl32::Register srcObj = InputRegisterAt(invoke, 0);
2758 vixl32::Register srcBegin = InputRegisterAt(invoke, 1);
2759 vixl32::Register srcEnd = InputRegisterAt(invoke, 2);
2760 vixl32::Register dstObj = InputRegisterAt(invoke, 3);
2761 vixl32::Register dstBegin = InputRegisterAt(invoke, 4);
2762
2763 vixl32::Register num_chr = RegisterFrom(locations->GetTemp(0));
2764 vixl32::Register src_ptr = RegisterFrom(locations->GetTemp(1));
2765 vixl32::Register dst_ptr = RegisterFrom(locations->GetTemp(2));
2766
2767 vixl32::Label done, compressed_string_loop;
2768 vixl32::Label* final_label = codegen_->GetFinalLabel(invoke, &done);
2769 // dst to be copied.
2770 __ Add(dst_ptr, dstObj, data_offset);
2771 __ Add(dst_ptr, dst_ptr, Operand(dstBegin, vixl32::LSL, 1));
2772
2773 __ Subs(num_chr, srcEnd, srcBegin);
2774 // Early out for valid zero-length retrievals.
2775 __ B(eq, final_label, /* is_far_target= */ false);
2776
2777 // src range to copy.
2778 __ Add(src_ptr, srcObj, value_offset);
2779
2780 UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
2781 vixl32::Register temp;
2782 vixl32::Label compressed_string_preloop;
2783 if (mirror::kUseStringCompression) {
2784 // Location of count in string.
2785 const uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
2786 temp = temps.Acquire();
2787 // String's length.
2788 __ Ldr(temp, MemOperand(srcObj, count_offset));
2789 __ Tst(temp, 1);
2790 temps.Release(temp);
2791 __ B(eq, &compressed_string_preloop, /* is_far_target= */ false);
2792 }
2793 __ Add(src_ptr, src_ptr, Operand(srcBegin, vixl32::LSL, 1));
2794
2795 // Do the copy.
2796 vixl32::Label loop, remainder;
2797
2798 temp = temps.Acquire();
2799 // Save repairing the value of num_chr on the < 4 character path.
2800 __ Subs(temp, num_chr, 4);
2801 __ B(lt, &remainder, /* is_far_target= */ false);
2802
2803 // Keep the result of the earlier subs, we are going to fetch at least 4 characters.
2804 __ Mov(num_chr, temp);
2805
2806 // Main loop used for longer fetches loads and stores 4x16-bit characters at a time.
2807 // (LDRD/STRD fault on unaligned addresses and it's not worth inlining extra code
2808 // to rectify these everywhere this intrinsic applies.)
2809 __ Bind(&loop);
2810 __ Ldr(temp, MemOperand(src_ptr, char_size * 2));
2811 __ Subs(num_chr, num_chr, 4);
2812 __ Str(temp, MemOperand(dst_ptr, char_size * 2));
2813 __ Ldr(temp, MemOperand(src_ptr, char_size * 4, PostIndex));
2814 __ Str(temp, MemOperand(dst_ptr, char_size * 4, PostIndex));
2815 temps.Release(temp);
2816 __ B(ge, &loop, /* is_far_target= */ false);
2817
2818 __ Adds(num_chr, num_chr, 4);
2819 __ B(eq, final_label, /* is_far_target= */ false);
2820
2821 // Main loop for < 4 character case and remainder handling. Loads and stores one
2822 // 16-bit Java character at a time.
2823 __ Bind(&remainder);
2824 temp = temps.Acquire();
2825 __ Ldrh(temp, MemOperand(src_ptr, char_size, PostIndex));
2826 __ Subs(num_chr, num_chr, 1);
2827 __ Strh(temp, MemOperand(dst_ptr, char_size, PostIndex));
2828 temps.Release(temp);
2829 __ B(gt, &remainder, /* is_far_target= */ false);
2830
2831 if (mirror::kUseStringCompression) {
2832 __ B(final_label);
2833
2834 const size_t c_char_size = DataType::Size(DataType::Type::kInt8);
2835 DCHECK_EQ(c_char_size, 1u);
2836 // Copy loop for compressed src, copying 1 character (8-bit) to (16-bit) at a time.
2837 __ Bind(&compressed_string_preloop);
2838 __ Add(src_ptr, src_ptr, srcBegin);
2839 __ Bind(&compressed_string_loop);
2840 temp = temps.Acquire();
2841 __ Ldrb(temp, MemOperand(src_ptr, c_char_size, PostIndex));
2842 __ Strh(temp, MemOperand(dst_ptr, char_size, PostIndex));
2843 temps.Release(temp);
2844 __ Subs(num_chr, num_chr, 1);
2845 __ B(gt, &compressed_string_loop, /* is_far_target= */ false);
2846 }
2847
2848 if (done.IsReferenced()) {
2849 __ Bind(&done);
2850 }
2851 }
2852
VisitFloatIsInfinite(HInvoke * invoke)2853 void IntrinsicLocationsBuilderARMVIXL::VisitFloatIsInfinite(HInvoke* invoke) {
2854 CreateFPToIntLocations(allocator_, invoke);
2855 }
2856
VisitFloatIsInfinite(HInvoke * invoke)2857 void IntrinsicCodeGeneratorARMVIXL::VisitFloatIsInfinite(HInvoke* invoke) {
2858 ArmVIXLAssembler* const assembler = GetAssembler();
2859 const vixl32::Register out = OutputRegister(invoke);
2860 // Shifting left by 1 bit makes the value encodable as an immediate operand;
2861 // we don't care about the sign bit anyway.
2862 constexpr uint32_t infinity = kPositiveInfinityFloat << 1U;
2863
2864 __ Vmov(out, InputSRegisterAt(invoke, 0));
2865 // We don't care about the sign bit, so shift left.
2866 __ Lsl(out, out, 1);
2867 __ Eor(out, out, infinity);
2868 codegen_->GenerateConditionWithZero(kCondEQ, out, out);
2869 }
2870
VisitDoubleIsInfinite(HInvoke * invoke)2871 void IntrinsicLocationsBuilderARMVIXL::VisitDoubleIsInfinite(HInvoke* invoke) {
2872 CreateFPToIntLocations(allocator_, invoke);
2873 }
2874
VisitDoubleIsInfinite(HInvoke * invoke)2875 void IntrinsicCodeGeneratorARMVIXL::VisitDoubleIsInfinite(HInvoke* invoke) {
2876 ArmVIXLAssembler* const assembler = GetAssembler();
2877 const vixl32::Register out = OutputRegister(invoke);
2878 UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
2879 const vixl32::Register temp = temps.Acquire();
2880 // The highest 32 bits of double precision positive infinity separated into
2881 // two constants encodable as immediate operands.
2882 constexpr uint32_t infinity_high = 0x7f000000U;
2883 constexpr uint32_t infinity_high2 = 0x00f00000U;
2884
2885 static_assert((infinity_high | infinity_high2) ==
2886 static_cast<uint32_t>(kPositiveInfinityDouble >> 32U),
2887 "The constants do not add up to the high 32 bits of double "
2888 "precision positive infinity.");
2889 __ Vmov(temp, out, InputDRegisterAt(invoke, 0));
2890 __ Eor(out, out, infinity_high);
2891 __ Eor(out, out, infinity_high2);
2892 // We don't care about the sign bit, so shift left.
2893 __ Orr(out, temp, Operand(out, vixl32::LSL, 1));
2894 codegen_->GenerateConditionWithZero(kCondEQ, out, out);
2895 }
2896
VisitMathCeil(HInvoke * invoke)2897 void IntrinsicLocationsBuilderARMVIXL::VisitMathCeil(HInvoke* invoke) {
2898 if (features_.HasARMv8AInstructions()) {
2899 CreateFPToFPLocations(allocator_, invoke);
2900 }
2901 }
2902
VisitMathCeil(HInvoke * invoke)2903 void IntrinsicCodeGeneratorARMVIXL::VisitMathCeil(HInvoke* invoke) {
2904 ArmVIXLAssembler* assembler = GetAssembler();
2905 DCHECK(codegen_->GetInstructionSetFeatures().HasARMv8AInstructions());
2906 __ Vrintp(F64, OutputDRegister(invoke), InputDRegisterAt(invoke, 0));
2907 }
2908
VisitMathFloor(HInvoke * invoke)2909 void IntrinsicLocationsBuilderARMVIXL::VisitMathFloor(HInvoke* invoke) {
2910 if (features_.HasARMv8AInstructions()) {
2911 CreateFPToFPLocations(allocator_, invoke);
2912 }
2913 }
2914
VisitMathFloor(HInvoke * invoke)2915 void IntrinsicCodeGeneratorARMVIXL::VisitMathFloor(HInvoke* invoke) {
2916 ArmVIXLAssembler* assembler = GetAssembler();
2917 DCHECK(codegen_->GetInstructionSetFeatures().HasARMv8AInstructions());
2918 __ Vrintm(F64, OutputDRegister(invoke), InputDRegisterAt(invoke, 0));
2919 }
2920
VisitIntegerValueOf(HInvoke * invoke)2921 void IntrinsicLocationsBuilderARMVIXL::VisitIntegerValueOf(HInvoke* invoke) {
2922 InvokeRuntimeCallingConventionARMVIXL calling_convention;
2923 IntrinsicVisitor::ComputeIntegerValueOfLocations(
2924 invoke,
2925 codegen_,
2926 LocationFrom(r0),
2927 LocationFrom(calling_convention.GetRegisterAt(0)));
2928 }
2929
VisitIntegerValueOf(HInvoke * invoke)2930 void IntrinsicCodeGeneratorARMVIXL::VisitIntegerValueOf(HInvoke* invoke) {
2931 IntrinsicVisitor::IntegerValueOfInfo info =
2932 IntrinsicVisitor::ComputeIntegerValueOfInfo(invoke, codegen_->GetCompilerOptions());
2933 LocationSummary* locations = invoke->GetLocations();
2934 ArmVIXLAssembler* const assembler = GetAssembler();
2935
2936 vixl32::Register out = RegisterFrom(locations->Out());
2937 UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
2938 vixl32::Register temp = temps.Acquire();
2939 if (invoke->InputAt(0)->IsConstant()) {
2940 int32_t value = invoke->InputAt(0)->AsIntConstant()->GetValue();
2941 if (static_cast<uint32_t>(value - info.low) < info.length) {
2942 // Just embed the j.l.Integer in the code.
2943 DCHECK_NE(info.value_boot_image_reference, IntegerValueOfInfo::kInvalidReference);
2944 codegen_->LoadBootImageAddress(out, info.value_boot_image_reference);
2945 } else {
2946 DCHECK(locations->CanCall());
2947 // Allocate and initialize a new j.l.Integer.
2948 // TODO: If we JIT, we could allocate the j.l.Integer now, and store it in the
2949 // JIT object table.
2950 codegen_->AllocateInstanceForIntrinsic(invoke->AsInvokeStaticOrDirect(),
2951 info.integer_boot_image_offset);
2952 __ Mov(temp, value);
2953 assembler->StoreToOffset(kStoreWord, temp, out, info.value_offset);
2954 // `value` is a final field :-( Ideally, we'd merge this memory barrier with the allocation
2955 // one.
2956 codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore);
2957 }
2958 } else {
2959 DCHECK(locations->CanCall());
2960 vixl32::Register in = RegisterFrom(locations->InAt(0));
2961 // Check bounds of our cache.
2962 __ Add(out, in, -info.low);
2963 __ Cmp(out, info.length);
2964 vixl32::Label allocate, done;
2965 __ B(hs, &allocate, /* is_far_target= */ false);
2966 // If the value is within the bounds, load the j.l.Integer directly from the array.
2967 codegen_->LoadBootImageAddress(temp, info.array_data_boot_image_reference);
2968 codegen_->LoadFromShiftedRegOffset(DataType::Type::kReference, locations->Out(), temp, out);
2969 assembler->MaybeUnpoisonHeapReference(out);
2970 __ B(&done);
2971 __ Bind(&allocate);
2972 // Otherwise allocate and initialize a new j.l.Integer.
2973 codegen_->AllocateInstanceForIntrinsic(invoke->AsInvokeStaticOrDirect(),
2974 info.integer_boot_image_offset);
2975 assembler->StoreToOffset(kStoreWord, in, out, info.value_offset);
2976 // `value` is a final field :-( Ideally, we'd merge this memory barrier with the allocation
2977 // one.
2978 codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore);
2979 __ Bind(&done);
2980 }
2981 }
2982
VisitThreadInterrupted(HInvoke * invoke)2983 void IntrinsicLocationsBuilderARMVIXL::VisitThreadInterrupted(HInvoke* invoke) {
2984 LocationSummary* locations =
2985 new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
2986 locations->SetOut(Location::RequiresRegister());
2987 }
2988
VisitThreadInterrupted(HInvoke * invoke)2989 void IntrinsicCodeGeneratorARMVIXL::VisitThreadInterrupted(HInvoke* invoke) {
2990 ArmVIXLAssembler* assembler = GetAssembler();
2991 vixl32::Register out = RegisterFrom(invoke->GetLocations()->Out());
2992 int32_t offset = Thread::InterruptedOffset<kArmPointerSize>().Int32Value();
2993 __ Ldr(out, MemOperand(tr, offset));
2994 UseScratchRegisterScope temps(assembler->GetVIXLAssembler());
2995 vixl32::Register temp = temps.Acquire();
2996 vixl32::Label done;
2997 vixl32::Label* const final_label = codegen_->GetFinalLabel(invoke, &done);
2998 __ CompareAndBranchIfZero(out, final_label, /* is_far_target= */ false);
2999 __ Dmb(vixl32::ISH);
3000 __ Mov(temp, 0);
3001 assembler->StoreToOffset(kStoreWord, temp, tr, offset);
3002 __ Dmb(vixl32::ISH);
3003 if (done.IsReferenced()) {
3004 __ Bind(&done);
3005 }
3006 }
3007
VisitReachabilityFence(HInvoke * invoke)3008 void IntrinsicLocationsBuilderARMVIXL::VisitReachabilityFence(HInvoke* invoke) {
3009 LocationSummary* locations =
3010 new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
3011 locations->SetInAt(0, Location::Any());
3012 }
3013
VisitReachabilityFence(HInvoke * invoke ATTRIBUTE_UNUSED)3014 void IntrinsicCodeGeneratorARMVIXL::VisitReachabilityFence(HInvoke* invoke ATTRIBUTE_UNUSED) { }
3015
3016 UNIMPLEMENTED_INTRINSIC(ARMVIXL, MathRoundDouble) // Could be done by changing rounding mode, maybe?
3017 UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeCASLong) // High register pressure.
3018 UNIMPLEMENTED_INTRINSIC(ARMVIXL, SystemArrayCopyChar)
3019 UNIMPLEMENTED_INTRINSIC(ARMVIXL, ReferenceGetReferent)
3020 UNIMPLEMENTED_INTRINSIC(ARMVIXL, IntegerDivideUnsigned)
3021 UNIMPLEMENTED_INTRINSIC(ARMVIXL, CRC32Update)
3022 UNIMPLEMENTED_INTRINSIC(ARMVIXL, CRC32UpdateBytes)
3023 UNIMPLEMENTED_INTRINSIC(ARMVIXL, CRC32UpdateByteBuffer)
3024 UNIMPLEMENTED_INTRINSIC(ARMVIXL, FP16ToFloat)
3025 UNIMPLEMENTED_INTRINSIC(ARMVIXL, FP16ToHalf)
3026 UNIMPLEMENTED_INTRINSIC(ARMVIXL, FP16Floor)
3027 UNIMPLEMENTED_INTRINSIC(ARMVIXL, FP16Ceil)
3028 UNIMPLEMENTED_INTRINSIC(ARMVIXL, FP16Rint)
3029 UNIMPLEMENTED_INTRINSIC(ARMVIXL, FP16Greater)
3030 UNIMPLEMENTED_INTRINSIC(ARMVIXL, FP16GreaterEquals)
3031 UNIMPLEMENTED_INTRINSIC(ARMVIXL, FP16Less)
3032 UNIMPLEMENTED_INTRINSIC(ARMVIXL, FP16LessEquals)
3033
3034 UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringStringIndexOf);
3035 UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringStringIndexOfAfter);
3036 UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBufferAppend);
3037 UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBufferLength);
3038 UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBufferToString);
3039 UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderAppendObject);
3040 UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderAppendString);
3041 UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderAppendCharSequence);
3042 UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderAppendCharArray);
3043 UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderAppendBoolean);
3044 UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderAppendChar);
3045 UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderAppendInt);
3046 UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderAppendLong);
3047 UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderAppendFloat);
3048 UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderAppendDouble);
3049 UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderLength);
3050 UNIMPLEMENTED_INTRINSIC(ARMVIXL, StringBuilderToString);
3051
3052 // 1.8.
3053 UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeGetAndAddInt)
3054 UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeGetAndAddLong)
3055 UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeGetAndSetInt)
3056 UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeGetAndSetLong)
3057 UNIMPLEMENTED_INTRINSIC(ARMVIXL, UnsafeGetAndSetObject)
3058
3059 UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleFullFence)
3060 UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleAcquireFence)
3061 UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleReleaseFence)
3062 UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleLoadLoadFence)
3063 UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleStoreStoreFence)
3064 UNIMPLEMENTED_INTRINSIC(ARMVIXL, MethodHandleInvokeExact)
3065 UNIMPLEMENTED_INTRINSIC(ARMVIXL, MethodHandleInvoke)
3066 UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleCompareAndExchange)
3067 UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleCompareAndExchangeAcquire)
3068 UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleCompareAndExchangeRelease)
3069 UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleCompareAndSet)
3070 UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleGet)
3071 UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleGetAcquire)
3072 UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleGetAndAdd)
3073 UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleGetAndAddAcquire)
3074 UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleGetAndAddRelease)
3075 UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleGetAndBitwiseAnd)
3076 UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleGetAndBitwiseAndAcquire)
3077 UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleGetAndBitwiseAndRelease)
3078 UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleGetAndBitwiseOr)
3079 UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleGetAndBitwiseOrAcquire)
3080 UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleGetAndBitwiseOrRelease)
3081 UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleGetAndBitwiseXor)
3082 UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleGetAndBitwiseXorAcquire)
3083 UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleGetAndBitwiseXorRelease)
3084 UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleGetAndSet)
3085 UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleGetAndSetAcquire)
3086 UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleGetAndSetRelease)
3087 UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleGetOpaque)
3088 UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleGetVolatile)
3089 UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleSet)
3090 UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleSetOpaque)
3091 UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleSetRelease)
3092 UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleSetVolatile)
3093 UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleWeakCompareAndSet)
3094 UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleWeakCompareAndSetAcquire)
3095 UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleWeakCompareAndSetPlain)
3096 UNIMPLEMENTED_INTRINSIC(ARMVIXL, VarHandleWeakCompareAndSetRelease)
3097
3098 UNREACHABLE_INTRINSICS(ARMVIXL)
3099
3100 #undef __
3101
3102 } // namespace arm
3103 } // namespace art
3104