1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef ART_COMPILER_OPTIMIZING_NODES_H_
18 #define ART_COMPILER_OPTIMIZING_NODES_H_
19
20 #include <algorithm>
21 #include <array>
22 #include <type_traits>
23
24 #include "base/arena_bit_vector.h"
25 #include "base/arena_containers.h"
26 #include "base/arena_object.h"
27 #include "base/array_ref.h"
28 #include "base/intrusive_forward_list.h"
29 #include "base/iteration_range.h"
30 #include "base/mutex.h"
31 #include "base/quasi_atomic.h"
32 #include "base/stl_util.h"
33 #include "base/transform_array_ref.h"
34 #include "art_method.h"
35 #include "class_root.h"
36 #include "compilation_kind.h"
37 #include "data_type.h"
38 #include "deoptimization_kind.h"
39 #include "dex/dex_file.h"
40 #include "dex/dex_file_types.h"
41 #include "dex/invoke_type.h"
42 #include "dex/method_reference.h"
43 #include "entrypoints/quick/quick_entrypoints_enum.h"
44 #include "handle.h"
45 #include "handle_scope.h"
46 #include "intrinsics_enum.h"
47 #include "locations.h"
48 #include "mirror/class.h"
49 #include "mirror/method_type.h"
50 #include "offsets.h"
51
52 namespace art {
53
54 class ArenaStack;
55 class GraphChecker;
56 class HBasicBlock;
57 class HConstructorFence;
58 class HCurrentMethod;
59 class HDoubleConstant;
60 class HEnvironment;
61 class HFloatConstant;
62 class HGraphBuilder;
63 class HGraphVisitor;
64 class HInstruction;
65 class HIntConstant;
66 class HInvoke;
67 class HLongConstant;
68 class HNullConstant;
69 class HParameterValue;
70 class HPhi;
71 class HSuspendCheck;
72 class HTryBoundary;
73 class LiveInterval;
74 class LocationSummary;
75 class SlowPathCode;
76 class SsaBuilder;
77
78 namespace mirror {
79 class DexCache;
80 } // namespace mirror
81
82 static const int kDefaultNumberOfBlocks = 8;
83 static const int kDefaultNumberOfSuccessors = 2;
84 static const int kDefaultNumberOfPredecessors = 2;
85 static const int kDefaultNumberOfExceptionalPredecessors = 0;
86 static const int kDefaultNumberOfDominatedBlocks = 1;
87 static const int kDefaultNumberOfBackEdges = 1;
88
89 // The maximum (meaningful) distance (31) that can be used in an integer shift/rotate operation.
90 static constexpr int32_t kMaxIntShiftDistance = 0x1f;
91 // The maximum (meaningful) distance (63) that can be used in a long shift/rotate operation.
92 static constexpr int32_t kMaxLongShiftDistance = 0x3f;
93
94 static constexpr uint32_t kUnknownFieldIndex = static_cast<uint32_t>(-1);
95 static constexpr uint16_t kUnknownClassDefIndex = static_cast<uint16_t>(-1);
96
97 static constexpr InvokeType kInvalidInvokeType = static_cast<InvokeType>(-1);
98
99 static constexpr uint32_t kNoDexPc = -1;
100
IsSameDexFile(const DexFile & lhs,const DexFile & rhs)101 inline bool IsSameDexFile(const DexFile& lhs, const DexFile& rhs) {
102 // For the purposes of the compiler, the dex files must actually be the same object
103 // if we want to safely treat them as the same. This is especially important for JIT
104 // as custom class loaders can open the same underlying file (or memory) multiple
105 // times and provide different class resolution but no two class loaders should ever
106 // use the same DexFile object - doing so is an unsupported hack that can lead to
107 // all sorts of weird failures.
108 return &lhs == &rhs;
109 }
110
111 enum IfCondition {
112 // All types.
113 kCondEQ, // ==
114 kCondNE, // !=
115 // Signed integers and floating-point numbers.
116 kCondLT, // <
117 kCondLE, // <=
118 kCondGT, // >
119 kCondGE, // >=
120 // Unsigned integers.
121 kCondB, // <
122 kCondBE, // <=
123 kCondA, // >
124 kCondAE, // >=
125 // First and last aliases.
126 kCondFirst = kCondEQ,
127 kCondLast = kCondAE,
128 };
129
130 enum GraphAnalysisResult {
131 kAnalysisSkipped,
132 kAnalysisInvalidBytecode,
133 kAnalysisFailThrowCatchLoop,
134 kAnalysisFailAmbiguousArrayOp,
135 kAnalysisFailIrreducibleLoopAndStringInit,
136 kAnalysisFailPhiEquivalentInOsr,
137 kAnalysisSuccess,
138 };
139
140 template <typename T>
MakeUnsigned(T x)141 static inline typename std::make_unsigned<T>::type MakeUnsigned(T x) {
142 return static_cast<typename std::make_unsigned<T>::type>(x);
143 }
144
145 class HInstructionList : public ValueObject {
146 public:
HInstructionList()147 HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {}
148
149 void AddInstruction(HInstruction* instruction);
150 void RemoveInstruction(HInstruction* instruction);
151
152 // Insert `instruction` before/after an existing instruction `cursor`.
153 void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
154 void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
155
156 // Return true if this list contains `instruction`.
157 bool Contains(HInstruction* instruction) const;
158
159 // Return true if `instruction1` is found before `instruction2` in
160 // this instruction list and false otherwise. Abort if none
161 // of these instructions is found.
162 bool FoundBefore(const HInstruction* instruction1,
163 const HInstruction* instruction2) const;
164
IsEmpty()165 bool IsEmpty() const { return first_instruction_ == nullptr; }
Clear()166 void Clear() { first_instruction_ = last_instruction_ = nullptr; }
167
168 // Update the block of all instructions to be `block`.
169 void SetBlockOfInstructions(HBasicBlock* block) const;
170
171 void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list);
172 void AddBefore(HInstruction* cursor, const HInstructionList& instruction_list);
173 void Add(const HInstructionList& instruction_list);
174
175 // Return the number of instructions in the list. This is an expensive operation.
176 size_t CountSize() const;
177
178 private:
179 HInstruction* first_instruction_;
180 HInstruction* last_instruction_;
181
182 friend class HBasicBlock;
183 friend class HGraph;
184 friend class HInstruction;
185 friend class HInstructionIterator;
186 friend class HInstructionIteratorHandleChanges;
187 friend class HBackwardInstructionIterator;
188
189 DISALLOW_COPY_AND_ASSIGN(HInstructionList);
190 };
191
192 class ReferenceTypeInfo : ValueObject {
193 public:
194 typedef Handle<mirror::Class> TypeHandle;
195
196 static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact);
197
Create(TypeHandle type_handle)198 static ReferenceTypeInfo Create(TypeHandle type_handle) REQUIRES_SHARED(Locks::mutator_lock_) {
199 return Create(type_handle, type_handle->CannotBeAssignedFromOtherTypes());
200 }
201
CreateUnchecked(TypeHandle type_handle,bool is_exact)202 static ReferenceTypeInfo CreateUnchecked(TypeHandle type_handle, bool is_exact) {
203 return ReferenceTypeInfo(type_handle, is_exact);
204 }
205
CreateInvalid()206 static ReferenceTypeInfo CreateInvalid() { return ReferenceTypeInfo(); }
207
IsValidHandle(TypeHandle handle)208 static bool IsValidHandle(TypeHandle handle) {
209 return handle.GetReference() != nullptr;
210 }
211
IsValid()212 bool IsValid() const {
213 return IsValidHandle(type_handle_);
214 }
215
IsExact()216 bool IsExact() const { return is_exact_; }
217
IsObjectClass()218 bool IsObjectClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
219 DCHECK(IsValid());
220 return GetTypeHandle()->IsObjectClass();
221 }
222
IsStringClass()223 bool IsStringClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
224 DCHECK(IsValid());
225 return GetTypeHandle()->IsStringClass();
226 }
227
IsObjectArray()228 bool IsObjectArray() const REQUIRES_SHARED(Locks::mutator_lock_) {
229 DCHECK(IsValid());
230 return IsArrayClass() && GetTypeHandle()->GetComponentType()->IsObjectClass();
231 }
232
IsInterface()233 bool IsInterface() const REQUIRES_SHARED(Locks::mutator_lock_) {
234 DCHECK(IsValid());
235 return GetTypeHandle()->IsInterface();
236 }
237
IsArrayClass()238 bool IsArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
239 DCHECK(IsValid());
240 return GetTypeHandle()->IsArrayClass();
241 }
242
IsPrimitiveArrayClass()243 bool IsPrimitiveArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
244 DCHECK(IsValid());
245 return GetTypeHandle()->IsPrimitiveArray();
246 }
247
IsNonPrimitiveArrayClass()248 bool IsNonPrimitiveArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
249 DCHECK(IsValid());
250 return GetTypeHandle()->IsArrayClass() && !GetTypeHandle()->IsPrimitiveArray();
251 }
252
CanArrayHold(ReferenceTypeInfo rti)253 bool CanArrayHold(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) {
254 DCHECK(IsValid());
255 if (!IsExact()) return false;
256 if (!IsArrayClass()) return false;
257 return GetTypeHandle()->GetComponentType()->IsAssignableFrom(rti.GetTypeHandle().Get());
258 }
259
CanArrayHoldValuesOf(ReferenceTypeInfo rti)260 bool CanArrayHoldValuesOf(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) {
261 DCHECK(IsValid());
262 if (!IsExact()) return false;
263 if (!IsArrayClass()) return false;
264 if (!rti.IsArrayClass()) return false;
265 return GetTypeHandle()->GetComponentType()->IsAssignableFrom(
266 rti.GetTypeHandle()->GetComponentType());
267 }
268
GetTypeHandle()269 Handle<mirror::Class> GetTypeHandle() const { return type_handle_; }
270
IsSupertypeOf(ReferenceTypeInfo rti)271 bool IsSupertypeOf(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) {
272 DCHECK(IsValid());
273 DCHECK(rti.IsValid());
274 return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
275 }
276
277 // Returns true if the type information provide the same amount of details.
278 // Note that it does not mean that the instructions have the same actual type
279 // (because the type can be the result of a merge).
IsEqual(ReferenceTypeInfo rti)280 bool IsEqual(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) {
281 if (!IsValid() && !rti.IsValid()) {
282 // Invalid types are equal.
283 return true;
284 }
285 if (!IsValid() || !rti.IsValid()) {
286 // One is valid, the other not.
287 return false;
288 }
289 return IsExact() == rti.IsExact()
290 && GetTypeHandle().Get() == rti.GetTypeHandle().Get();
291 }
292
293 private:
ReferenceTypeInfo()294 ReferenceTypeInfo() : type_handle_(TypeHandle()), is_exact_(false) {}
ReferenceTypeInfo(TypeHandle type_handle,bool is_exact)295 ReferenceTypeInfo(TypeHandle type_handle, bool is_exact)
296 : type_handle_(type_handle), is_exact_(is_exact) { }
297
298 // The class of the object.
299 TypeHandle type_handle_;
300 // Whether or not the type is exact or a superclass of the actual type.
301 // Whether or not we have any information about this type.
302 bool is_exact_;
303 };
304
305 std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs);
306
307 class HandleCache {
308 public:
HandleCache(VariableSizedHandleScope * handles)309 explicit HandleCache(VariableSizedHandleScope* handles) : handles_(handles) { }
310
GetHandles()311 VariableSizedHandleScope* GetHandles() { return handles_; }
312
313 template <typename T>
NewHandle(T * object)314 MutableHandle<T> NewHandle(T* object) REQUIRES_SHARED(Locks::mutator_lock_) {
315 return handles_->NewHandle(object);
316 }
317
318 template <typename T>
NewHandle(ObjPtr<T> object)319 MutableHandle<T> NewHandle(ObjPtr<T> object) REQUIRES_SHARED(Locks::mutator_lock_) {
320 return handles_->NewHandle(object);
321 }
322
GetObjectClassHandle()323 ReferenceTypeInfo::TypeHandle GetObjectClassHandle() {
324 return GetRootHandle(ClassRoot::kJavaLangObject, &object_class_handle_);
325 }
326
GetClassClassHandle()327 ReferenceTypeInfo::TypeHandle GetClassClassHandle() {
328 return GetRootHandle(ClassRoot::kJavaLangClass, &class_class_handle_);
329 }
330
GetMethodHandleClassHandle()331 ReferenceTypeInfo::TypeHandle GetMethodHandleClassHandle() {
332 return GetRootHandle(ClassRoot::kJavaLangInvokeMethodHandleImpl, &method_handle_class_handle_);
333 }
334
GetMethodTypeClassHandle()335 ReferenceTypeInfo::TypeHandle GetMethodTypeClassHandle() {
336 return GetRootHandle(ClassRoot::kJavaLangInvokeMethodType, &method_type_class_handle_);
337 }
338
GetStringClassHandle()339 ReferenceTypeInfo::TypeHandle GetStringClassHandle() {
340 return GetRootHandle(ClassRoot::kJavaLangString, &string_class_handle_);
341 }
342
GetThrowableClassHandle()343 ReferenceTypeInfo::TypeHandle GetThrowableClassHandle() {
344 return GetRootHandle(ClassRoot::kJavaLangThrowable, &throwable_class_handle_);
345 }
346
347
348 private:
GetRootHandle(ClassRoot class_root,ReferenceTypeInfo::TypeHandle * cache)349 inline ReferenceTypeInfo::TypeHandle GetRootHandle(ClassRoot class_root,
350 ReferenceTypeInfo::TypeHandle* cache) {
351 if (UNLIKELY(!ReferenceTypeInfo::IsValidHandle(*cache))) {
352 *cache = CreateRootHandle(handles_, class_root);
353 }
354 return *cache;
355 }
356
357 static ReferenceTypeInfo::TypeHandle CreateRootHandle(VariableSizedHandleScope* handles,
358 ClassRoot class_root);
359
360 VariableSizedHandleScope* handles_;
361
362 ReferenceTypeInfo::TypeHandle object_class_handle_;
363 ReferenceTypeInfo::TypeHandle class_class_handle_;
364 ReferenceTypeInfo::TypeHandle method_handle_class_handle_;
365 ReferenceTypeInfo::TypeHandle method_type_class_handle_;
366 ReferenceTypeInfo::TypeHandle string_class_handle_;
367 ReferenceTypeInfo::TypeHandle throwable_class_handle_;
368 };
369
370 // Control-flow graph of a method. Contains a list of basic blocks.
371 class HGraph : public ArenaObject<kArenaAllocGraph> {
372 public:
373 HGraph(ArenaAllocator* allocator,
374 ArenaStack* arena_stack,
375 VariableSizedHandleScope* handles,
376 const DexFile& dex_file,
377 uint32_t method_idx,
378 InstructionSet instruction_set,
379 InvokeType invoke_type = kInvalidInvokeType,
380 bool dead_reference_safe = false,
381 bool debuggable = false,
382 CompilationKind compilation_kind = CompilationKind::kOptimized,
383 int start_instruction_id = 0)
allocator_(allocator)384 : allocator_(allocator),
385 arena_stack_(arena_stack),
386 handle_cache_(handles),
387 blocks_(allocator->Adapter(kArenaAllocBlockList)),
388 reverse_post_order_(allocator->Adapter(kArenaAllocReversePostOrder)),
389 linear_order_(allocator->Adapter(kArenaAllocLinearOrder)),
390 entry_block_(nullptr),
391 exit_block_(nullptr),
392 maximum_number_of_out_vregs_(0),
393 number_of_vregs_(0),
394 number_of_in_vregs_(0),
395 temporaries_vreg_slots_(0),
396 has_bounds_checks_(false),
397 has_try_catch_(false),
398 has_monitor_operations_(false),
399 has_simd_(false),
400 has_loops_(false),
401 has_irreducible_loops_(false),
402 dead_reference_safe_(dead_reference_safe),
403 debuggable_(debuggable),
404 current_instruction_id_(start_instruction_id),
405 dex_file_(dex_file),
406 method_idx_(method_idx),
407 invoke_type_(invoke_type),
408 in_ssa_form_(false),
409 number_of_cha_guards_(0),
410 instruction_set_(instruction_set),
411 cached_null_constant_(nullptr),
412 cached_int_constants_(std::less<int32_t>(), allocator->Adapter(kArenaAllocConstantsMap)),
413 cached_float_constants_(std::less<int32_t>(), allocator->Adapter(kArenaAllocConstantsMap)),
414 cached_long_constants_(std::less<int64_t>(), allocator->Adapter(kArenaAllocConstantsMap)),
415 cached_double_constants_(std::less<int64_t>(), allocator->Adapter(kArenaAllocConstantsMap)),
416 cached_current_method_(nullptr),
417 art_method_(nullptr),
418 compilation_kind_(compilation_kind),
419 cha_single_implementation_list_(allocator->Adapter(kArenaAllocCHA)) {
420 blocks_.reserve(kDefaultNumberOfBlocks);
421 }
422
GetAllocator()423 ArenaAllocator* GetAllocator() const { return allocator_; }
GetArenaStack()424 ArenaStack* GetArenaStack() const { return arena_stack_; }
425
GetHandleCache()426 HandleCache* GetHandleCache() { return &handle_cache_; }
427
GetBlocks()428 const ArenaVector<HBasicBlock*>& GetBlocks() const { return blocks_; }
429
IsInSsaForm()430 bool IsInSsaForm() const { return in_ssa_form_; }
SetInSsaForm()431 void SetInSsaForm() { in_ssa_form_ = true; }
432
GetEntryBlock()433 HBasicBlock* GetEntryBlock() const { return entry_block_; }
GetExitBlock()434 HBasicBlock* GetExitBlock() const { return exit_block_; }
HasExitBlock()435 bool HasExitBlock() const { return exit_block_ != nullptr; }
436
SetEntryBlock(HBasicBlock * block)437 void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; }
SetExitBlock(HBasicBlock * block)438 void SetExitBlock(HBasicBlock* block) { exit_block_ = block; }
439
440 void AddBlock(HBasicBlock* block);
441
442 void ComputeDominanceInformation();
443 void ClearDominanceInformation();
444 void ClearLoopInformation();
445 void FindBackEdges(ArenaBitVector* visited);
446 GraphAnalysisResult BuildDominatorTree();
447 void SimplifyCFG();
448 void SimplifyCatchBlocks();
449
450 // Analyze all natural loops in this graph. Returns a code specifying that it
451 // was successful or the reason for failure. The method will fail if a loop
452 // is a throw-catch loop, i.e. the header is a catch block.
453 GraphAnalysisResult AnalyzeLoops() const;
454
455 // Iterate over blocks to compute try block membership. Needs reverse post
456 // order and loop information.
457 void ComputeTryBlockInformation();
458
459 // Inline this graph in `outer_graph`, replacing the given `invoke` instruction.
460 // Returns the instruction to replace the invoke expression or null if the
461 // invoke is for a void method. Note that the caller is responsible for replacing
462 // and removing the invoke instruction.
463 HInstruction* InlineInto(HGraph* outer_graph, HInvoke* invoke);
464
465 // Update the loop and try membership of `block`, which was spawned from `reference`.
466 // In case `reference` is a back edge, `replace_if_back_edge` notifies whether `block`
467 // should be the new back edge.
468 void UpdateLoopAndTryInformationOfNewBlock(HBasicBlock* block,
469 HBasicBlock* reference,
470 bool replace_if_back_edge);
471
472 // Need to add a couple of blocks to test if the loop body is entered and
473 // put deoptimization instructions, etc.
474 void TransformLoopHeaderForBCE(HBasicBlock* header);
475
476 // Adds a new loop directly after the loop with the given header and exit.
477 // Returns the new preheader.
478 HBasicBlock* TransformLoopForVectorization(HBasicBlock* header,
479 HBasicBlock* body,
480 HBasicBlock* exit);
481
482 // Removes `block` from the graph. Assumes `block` has been disconnected from
483 // other blocks and has no instructions or phis.
484 void DeleteDeadEmptyBlock(HBasicBlock* block);
485
486 // Splits the edge between `block` and `successor` while preserving the
487 // indices in the predecessor/successor lists. If there are multiple edges
488 // between the blocks, the lowest indices are used.
489 // Returns the new block which is empty and has the same dex pc as `successor`.
490 HBasicBlock* SplitEdge(HBasicBlock* block, HBasicBlock* successor);
491
492 void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor);
493 void OrderLoopHeaderPredecessors(HBasicBlock* header);
494
495 // Transform a loop into a format with a single preheader.
496 //
497 // Each phi in the header should be split: original one in the header should only hold
498 // inputs reachable from the back edges and a single input from the preheader. The newly created
499 // phi in the preheader should collate the inputs from the original multiple incoming blocks.
500 //
501 // Loops in the graph typically have a single preheader, so this method is used to "repair" loops
502 // that no longer have this property.
503 void TransformLoopToSinglePreheaderFormat(HBasicBlock* header);
504
505 void SimplifyLoop(HBasicBlock* header);
506
GetNextInstructionId()507 int32_t GetNextInstructionId() {
508 CHECK_NE(current_instruction_id_, INT32_MAX);
509 return current_instruction_id_++;
510 }
511
GetCurrentInstructionId()512 int32_t GetCurrentInstructionId() const {
513 return current_instruction_id_;
514 }
515
SetCurrentInstructionId(int32_t id)516 void SetCurrentInstructionId(int32_t id) {
517 CHECK_GE(id, current_instruction_id_);
518 current_instruction_id_ = id;
519 }
520
GetMaximumNumberOfOutVRegs()521 uint16_t GetMaximumNumberOfOutVRegs() const {
522 return maximum_number_of_out_vregs_;
523 }
524
SetMaximumNumberOfOutVRegs(uint16_t new_value)525 void SetMaximumNumberOfOutVRegs(uint16_t new_value) {
526 maximum_number_of_out_vregs_ = new_value;
527 }
528
UpdateMaximumNumberOfOutVRegs(uint16_t other_value)529 void UpdateMaximumNumberOfOutVRegs(uint16_t other_value) {
530 maximum_number_of_out_vregs_ = std::max(maximum_number_of_out_vregs_, other_value);
531 }
532
UpdateTemporariesVRegSlots(size_t slots)533 void UpdateTemporariesVRegSlots(size_t slots) {
534 temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_);
535 }
536
GetTemporariesVRegSlots()537 size_t GetTemporariesVRegSlots() const {
538 DCHECK(!in_ssa_form_);
539 return temporaries_vreg_slots_;
540 }
541
SetNumberOfVRegs(uint16_t number_of_vregs)542 void SetNumberOfVRegs(uint16_t number_of_vregs) {
543 number_of_vregs_ = number_of_vregs;
544 }
545
GetNumberOfVRegs()546 uint16_t GetNumberOfVRegs() const {
547 return number_of_vregs_;
548 }
549
SetNumberOfInVRegs(uint16_t value)550 void SetNumberOfInVRegs(uint16_t value) {
551 number_of_in_vregs_ = value;
552 }
553
GetNumberOfInVRegs()554 uint16_t GetNumberOfInVRegs() const {
555 return number_of_in_vregs_;
556 }
557
GetNumberOfLocalVRegs()558 uint16_t GetNumberOfLocalVRegs() const {
559 DCHECK(!in_ssa_form_);
560 return number_of_vregs_ - number_of_in_vregs_;
561 }
562
GetReversePostOrder()563 const ArenaVector<HBasicBlock*>& GetReversePostOrder() const {
564 return reverse_post_order_;
565 }
566
GetReversePostOrderSkipEntryBlock()567 ArrayRef<HBasicBlock* const> GetReversePostOrderSkipEntryBlock() const {
568 DCHECK(GetReversePostOrder()[0] == entry_block_);
569 return ArrayRef<HBasicBlock* const>(GetReversePostOrder()).SubArray(1);
570 }
571
GetPostOrder()572 IterationRange<ArenaVector<HBasicBlock*>::const_reverse_iterator> GetPostOrder() const {
573 return ReverseRange(GetReversePostOrder());
574 }
575
GetLinearOrder()576 const ArenaVector<HBasicBlock*>& GetLinearOrder() const {
577 return linear_order_;
578 }
579
GetLinearPostOrder()580 IterationRange<ArenaVector<HBasicBlock*>::const_reverse_iterator> GetLinearPostOrder() const {
581 return ReverseRange(GetLinearOrder());
582 }
583
HasBoundsChecks()584 bool HasBoundsChecks() const {
585 return has_bounds_checks_;
586 }
587
SetHasBoundsChecks(bool value)588 void SetHasBoundsChecks(bool value) {
589 has_bounds_checks_ = value;
590 }
591
592 // Is the code known to be robust against eliminating dead references
593 // and the effects of early finalization?
IsDeadReferenceSafe()594 bool IsDeadReferenceSafe() const { return dead_reference_safe_; }
595
MarkDeadReferenceUnsafe()596 void MarkDeadReferenceUnsafe() { dead_reference_safe_ = false; }
597
IsDebuggable()598 bool IsDebuggable() const { return debuggable_; }
599
600 // Returns a constant of the given type and value. If it does not exist
601 // already, it is created and inserted into the graph. This method is only for
602 // integral types.
603 HConstant* GetConstant(DataType::Type type, int64_t value, uint32_t dex_pc = kNoDexPc);
604
605 // TODO: This is problematic for the consistency of reference type propagation
606 // because it can be created anytime after the pass and thus it will be left
607 // with an invalid type.
608 HNullConstant* GetNullConstant(uint32_t dex_pc = kNoDexPc);
609
610 HIntConstant* GetIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc) {
611 return CreateConstant(value, &cached_int_constants_, dex_pc);
612 }
613 HLongConstant* GetLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc) {
614 return CreateConstant(value, &cached_long_constants_, dex_pc);
615 }
616 HFloatConstant* GetFloatConstant(float value, uint32_t dex_pc = kNoDexPc) {
617 return CreateConstant(bit_cast<int32_t, float>(value), &cached_float_constants_, dex_pc);
618 }
619 HDoubleConstant* GetDoubleConstant(double value, uint32_t dex_pc = kNoDexPc) {
620 return CreateConstant(bit_cast<int64_t, double>(value), &cached_double_constants_, dex_pc);
621 }
622
623 HCurrentMethod* GetCurrentMethod();
624
GetDexFile()625 const DexFile& GetDexFile() const {
626 return dex_file_;
627 }
628
GetMethodIdx()629 uint32_t GetMethodIdx() const {
630 return method_idx_;
631 }
632
633 // Get the method name (without the signature), e.g. "<init>"
634 const char* GetMethodName() const;
635
636 // Get the pretty method name (class + name + optionally signature).
637 std::string PrettyMethod(bool with_signature = true) const;
638
GetInvokeType()639 InvokeType GetInvokeType() const {
640 return invoke_type_;
641 }
642
GetInstructionSet()643 InstructionSet GetInstructionSet() const {
644 return instruction_set_;
645 }
646
IsCompilingOsr()647 bool IsCompilingOsr() const { return compilation_kind_ == CompilationKind::kOsr; }
648
IsCompilingBaseline()649 bool IsCompilingBaseline() const { return compilation_kind_ == CompilationKind::kBaseline; }
650
GetCompilationKind()651 CompilationKind GetCompilationKind() const { return compilation_kind_; }
652
GetCHASingleImplementationList()653 ArenaSet<ArtMethod*>& GetCHASingleImplementationList() {
654 return cha_single_implementation_list_;
655 }
656
AddCHASingleImplementationDependency(ArtMethod * method)657 void AddCHASingleImplementationDependency(ArtMethod* method) {
658 cha_single_implementation_list_.insert(method);
659 }
660
HasShouldDeoptimizeFlag()661 bool HasShouldDeoptimizeFlag() const {
662 return number_of_cha_guards_ != 0;
663 }
664
HasTryCatch()665 bool HasTryCatch() const { return has_try_catch_; }
SetHasTryCatch(bool value)666 void SetHasTryCatch(bool value) { has_try_catch_ = value; }
667
HasMonitorOperations()668 bool HasMonitorOperations() const { return has_monitor_operations_; }
SetHasMonitorOperations(bool value)669 void SetHasMonitorOperations(bool value) { has_monitor_operations_ = value; }
670
HasSIMD()671 bool HasSIMD() const { return has_simd_; }
SetHasSIMD(bool value)672 void SetHasSIMD(bool value) { has_simd_ = value; }
673
HasLoops()674 bool HasLoops() const { return has_loops_; }
SetHasLoops(bool value)675 void SetHasLoops(bool value) { has_loops_ = value; }
676
HasIrreducibleLoops()677 bool HasIrreducibleLoops() const { return has_irreducible_loops_; }
SetHasIrreducibleLoops(bool value)678 void SetHasIrreducibleLoops(bool value) { has_irreducible_loops_ = value; }
679
GetArtMethod()680 ArtMethod* GetArtMethod() const { return art_method_; }
SetArtMethod(ArtMethod * method)681 void SetArtMethod(ArtMethod* method) { art_method_ = method; }
682
683 // Returns an instruction with the opposite Boolean value from 'cond'.
684 // The instruction has been inserted into the graph, either as a constant, or
685 // before cursor.
686 HInstruction* InsertOppositeCondition(HInstruction* cond, HInstruction* cursor);
687
GetInexactObjectRti()688 ReferenceTypeInfo GetInexactObjectRti() {
689 return ReferenceTypeInfo::Create(handle_cache_.GetObjectClassHandle(), /* is_exact= */ false);
690 }
691
GetNumberOfCHAGuards()692 uint32_t GetNumberOfCHAGuards() { return number_of_cha_guards_; }
SetNumberOfCHAGuards(uint32_t num)693 void SetNumberOfCHAGuards(uint32_t num) { number_of_cha_guards_ = num; }
IncrementNumberOfCHAGuards()694 void IncrementNumberOfCHAGuards() { number_of_cha_guards_++; }
695
696 private:
697 void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const;
698 void RemoveDeadBlocks(const ArenaBitVector& visited);
699
700 template <class InstructionType, typename ValueType>
701 InstructionType* CreateConstant(ValueType value,
702 ArenaSafeMap<ValueType, InstructionType*>* cache,
703 uint32_t dex_pc = kNoDexPc) {
704 // Try to find an existing constant of the given value.
705 InstructionType* constant = nullptr;
706 auto cached_constant = cache->find(value);
707 if (cached_constant != cache->end()) {
708 constant = cached_constant->second;
709 }
710
711 // If not found or previously deleted, create and cache a new instruction.
712 // Don't bother reviving a previously deleted instruction, for simplicity.
713 if (constant == nullptr || constant->GetBlock() == nullptr) {
714 constant = new (allocator_) InstructionType(value, dex_pc);
715 cache->Overwrite(value, constant);
716 InsertConstant(constant);
717 }
718 return constant;
719 }
720
721 void InsertConstant(HConstant* instruction);
722
723 // Cache a float constant into the graph. This method should only be
724 // called by the SsaBuilder when creating "equivalent" instructions.
725 void CacheFloatConstant(HFloatConstant* constant);
726
727 // See CacheFloatConstant comment.
728 void CacheDoubleConstant(HDoubleConstant* constant);
729
730 ArenaAllocator* const allocator_;
731 ArenaStack* const arena_stack_;
732
733 HandleCache handle_cache_;
734
735 // List of blocks in insertion order.
736 ArenaVector<HBasicBlock*> blocks_;
737
738 // List of blocks to perform a reverse post order tree traversal.
739 ArenaVector<HBasicBlock*> reverse_post_order_;
740
741 // List of blocks to perform a linear order tree traversal. Unlike the reverse
742 // post order, this order is not incrementally kept up-to-date.
743 ArenaVector<HBasicBlock*> linear_order_;
744
745 HBasicBlock* entry_block_;
746 HBasicBlock* exit_block_;
747
748 // The maximum number of virtual registers arguments passed to a HInvoke in this graph.
749 uint16_t maximum_number_of_out_vregs_;
750
751 // The number of virtual registers in this method. Contains the parameters.
752 uint16_t number_of_vregs_;
753
754 // The number of virtual registers used by parameters of this method.
755 uint16_t number_of_in_vregs_;
756
757 // Number of vreg size slots that the temporaries use (used in baseline compiler).
758 size_t temporaries_vreg_slots_;
759
760 // Flag whether there are bounds checks in the graph. We can skip
761 // BCE if it's false. It's only best effort to keep it up to date in
762 // the presence of code elimination so there might be false positives.
763 bool has_bounds_checks_;
764
765 // Flag whether there are try/catch blocks in the graph. We will skip
766 // try/catch-related passes if it's false. It's only best effort to keep
767 // it up to date in the presence of code elimination so there might be
768 // false positives.
769 bool has_try_catch_;
770
771 // Flag whether there are any HMonitorOperation in the graph. If yes this will mandate
772 // DexRegisterMap to be present to allow deadlock analysis for non-debuggable code.
773 bool has_monitor_operations_;
774
775 // Flag whether SIMD instructions appear in the graph. If true, the
776 // code generators may have to be more careful spilling the wider
777 // contents of SIMD registers.
778 bool has_simd_;
779
780 // Flag whether there are any loops in the graph. We can skip loop
781 // optimization if it's false. It's only best effort to keep it up
782 // to date in the presence of code elimination so there might be false
783 // positives.
784 bool has_loops_;
785
786 // Flag whether there are any irreducible loops in the graph. It's only
787 // best effort to keep it up to date in the presence of code elimination
788 // so there might be false positives.
789 bool has_irreducible_loops_;
790
791 // Is the code known to be robust against eliminating dead references
792 // and the effects of early finalization? If false, dead reference variables
793 // are kept if they might be visible to the garbage collector.
794 // Currently this means that the class was declared to be dead-reference-safe,
795 // the method accesses no reachability-sensitive fields or data, and the same
796 // is true for any methods that were inlined into the current one.
797 bool dead_reference_safe_;
798
799 // Indicates whether the graph should be compiled in a way that
800 // ensures full debuggability. If false, we can apply more
801 // aggressive optimizations that may limit the level of debugging.
802 const bool debuggable_;
803
804 // The current id to assign to a newly added instruction. See HInstruction.id_.
805 int32_t current_instruction_id_;
806
807 // The dex file from which the method is from.
808 const DexFile& dex_file_;
809
810 // The method index in the dex file.
811 const uint32_t method_idx_;
812
813 // If inlined, this encodes how the callee is being invoked.
814 const InvokeType invoke_type_;
815
816 // Whether the graph has been transformed to SSA form. Only used
817 // in debug mode to ensure we are not using properties only valid
818 // for non-SSA form (like the number of temporaries).
819 bool in_ssa_form_;
820
821 // Number of CHA guards in the graph. Used to short-circuit the
822 // CHA guard optimization pass when there is no CHA guard left.
823 uint32_t number_of_cha_guards_;
824
825 const InstructionSet instruction_set_;
826
827 // Cached constants.
828 HNullConstant* cached_null_constant_;
829 ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_;
830 ArenaSafeMap<int32_t, HFloatConstant*> cached_float_constants_;
831 ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_;
832 ArenaSafeMap<int64_t, HDoubleConstant*> cached_double_constants_;
833
834 HCurrentMethod* cached_current_method_;
835
836 // The ArtMethod this graph is for. Note that for AOT, it may be null,
837 // for example for methods whose declaring class could not be resolved
838 // (such as when the superclass could not be found).
839 ArtMethod* art_method_;
840
841 // How we are compiling the graph: either optimized, osr, or baseline.
842 // For osr, we will make all loops seen as irreducible and emit special
843 // stack maps to mark compiled code entries which the interpreter can
844 // directly jump to.
845 const CompilationKind compilation_kind_;
846
847 // List of methods that are assumed to have single implementation.
848 ArenaSet<ArtMethod*> cha_single_implementation_list_;
849
850 friend class SsaBuilder; // For caching constants.
851 friend class SsaLivenessAnalysis; // For the linear order.
852 friend class HInliner; // For the reverse post order.
853 ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1);
854 DISALLOW_COPY_AND_ASSIGN(HGraph);
855 };
856
857 class HLoopInformation : public ArenaObject<kArenaAllocLoopInfo> {
858 public:
HLoopInformation(HBasicBlock * header,HGraph * graph)859 HLoopInformation(HBasicBlock* header, HGraph* graph)
860 : header_(header),
861 suspend_check_(nullptr),
862 irreducible_(false),
863 contains_irreducible_loop_(false),
864 back_edges_(graph->GetAllocator()->Adapter(kArenaAllocLoopInfoBackEdges)),
865 // Make bit vector growable, as the number of blocks may change.
866 blocks_(graph->GetAllocator(),
867 graph->GetBlocks().size(),
868 true,
869 kArenaAllocLoopInfoBackEdges) {
870 back_edges_.reserve(kDefaultNumberOfBackEdges);
871 }
872
IsIrreducible()873 bool IsIrreducible() const { return irreducible_; }
ContainsIrreducibleLoop()874 bool ContainsIrreducibleLoop() const { return contains_irreducible_loop_; }
875
876 void Dump(std::ostream& os);
877
GetHeader()878 HBasicBlock* GetHeader() const {
879 return header_;
880 }
881
SetHeader(HBasicBlock * block)882 void SetHeader(HBasicBlock* block) {
883 header_ = block;
884 }
885
GetSuspendCheck()886 HSuspendCheck* GetSuspendCheck() const { return suspend_check_; }
SetSuspendCheck(HSuspendCheck * check)887 void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; }
HasSuspendCheck()888 bool HasSuspendCheck() const { return suspend_check_ != nullptr; }
889
AddBackEdge(HBasicBlock * back_edge)890 void AddBackEdge(HBasicBlock* back_edge) {
891 back_edges_.push_back(back_edge);
892 }
893
RemoveBackEdge(HBasicBlock * back_edge)894 void RemoveBackEdge(HBasicBlock* back_edge) {
895 RemoveElement(back_edges_, back_edge);
896 }
897
IsBackEdge(const HBasicBlock & block)898 bool IsBackEdge(const HBasicBlock& block) const {
899 return ContainsElement(back_edges_, &block);
900 }
901
NumberOfBackEdges()902 size_t NumberOfBackEdges() const {
903 return back_edges_.size();
904 }
905
906 HBasicBlock* GetPreHeader() const;
907
GetBackEdges()908 const ArenaVector<HBasicBlock*>& GetBackEdges() const {
909 return back_edges_;
910 }
911
912 // Returns the lifetime position of the back edge that has the
913 // greatest lifetime position.
914 size_t GetLifetimeEnd() const;
915
ReplaceBackEdge(HBasicBlock * existing,HBasicBlock * new_back_edge)916 void ReplaceBackEdge(HBasicBlock* existing, HBasicBlock* new_back_edge) {
917 ReplaceElement(back_edges_, existing, new_back_edge);
918 }
919
920 // Finds blocks that are part of this loop.
921 void Populate();
922
923 // Updates blocks population of the loop and all of its outer' ones recursively after the
924 // population of the inner loop is updated.
925 void PopulateInnerLoopUpwards(HLoopInformation* inner_loop);
926
927 // Returns whether this loop information contains `block`.
928 // Note that this loop information *must* be populated before entering this function.
929 bool Contains(const HBasicBlock& block) const;
930
931 // Returns whether this loop information is an inner loop of `other`.
932 // Note that `other` *must* be populated before entering this function.
933 bool IsIn(const HLoopInformation& other) const;
934
935 // Returns true if instruction is not defined within this loop.
936 bool IsDefinedOutOfTheLoop(HInstruction* instruction) const;
937
GetBlocks()938 const ArenaBitVector& GetBlocks() const { return blocks_; }
939
940 void Add(HBasicBlock* block);
941 void Remove(HBasicBlock* block);
942
ClearAllBlocks()943 void ClearAllBlocks() {
944 blocks_.ClearAllBits();
945 }
946
947 bool HasBackEdgeNotDominatedByHeader() const;
948
IsPopulated()949 bool IsPopulated() const {
950 return blocks_.GetHighestBitSet() != -1;
951 }
952
953 bool DominatesAllBackEdges(HBasicBlock* block);
954
955 bool HasExitEdge() const;
956
957 // Resets back edge and blocks-in-loop data.
ResetBasicBlockData()958 void ResetBasicBlockData() {
959 back_edges_.clear();
960 ClearAllBlocks();
961 }
962
963 private:
964 // Internal recursive implementation of `Populate`.
965 void PopulateRecursive(HBasicBlock* block);
966 void PopulateIrreducibleRecursive(HBasicBlock* block, ArenaBitVector* finalized);
967
968 HBasicBlock* header_;
969 HSuspendCheck* suspend_check_;
970 bool irreducible_;
971 bool contains_irreducible_loop_;
972 ArenaVector<HBasicBlock*> back_edges_;
973 ArenaBitVector blocks_;
974
975 DISALLOW_COPY_AND_ASSIGN(HLoopInformation);
976 };
977
978 // Stores try/catch information for basic blocks.
979 // Note that HGraph is constructed so that catch blocks cannot simultaneously
980 // be try blocks.
981 class TryCatchInformation : public ArenaObject<kArenaAllocTryCatchInfo> {
982 public:
983 // Try block information constructor.
TryCatchInformation(const HTryBoundary & try_entry)984 explicit TryCatchInformation(const HTryBoundary& try_entry)
985 : try_entry_(&try_entry),
986 catch_dex_file_(nullptr),
987 catch_type_index_(dex::TypeIndex::Invalid()) {
988 DCHECK(try_entry_ != nullptr);
989 }
990
991 // Catch block information constructor.
TryCatchInformation(dex::TypeIndex catch_type_index,const DexFile & dex_file)992 TryCatchInformation(dex::TypeIndex catch_type_index, const DexFile& dex_file)
993 : try_entry_(nullptr),
994 catch_dex_file_(&dex_file),
995 catch_type_index_(catch_type_index) {}
996
IsTryBlock()997 bool IsTryBlock() const { return try_entry_ != nullptr; }
998
GetTryEntry()999 const HTryBoundary& GetTryEntry() const {
1000 DCHECK(IsTryBlock());
1001 return *try_entry_;
1002 }
1003
IsCatchBlock()1004 bool IsCatchBlock() const { return catch_dex_file_ != nullptr; }
1005
IsValidTypeIndex()1006 bool IsValidTypeIndex() const {
1007 DCHECK(IsCatchBlock());
1008 return catch_type_index_.IsValid();
1009 }
1010
GetCatchTypeIndex()1011 dex::TypeIndex GetCatchTypeIndex() const {
1012 DCHECK(IsCatchBlock());
1013 return catch_type_index_;
1014 }
1015
GetCatchDexFile()1016 const DexFile& GetCatchDexFile() const {
1017 DCHECK(IsCatchBlock());
1018 return *catch_dex_file_;
1019 }
1020
SetInvalidTypeIndex()1021 void SetInvalidTypeIndex() {
1022 catch_type_index_ = dex::TypeIndex::Invalid();
1023 }
1024
1025 private:
1026 // One of possibly several TryBoundary instructions entering the block's try.
1027 // Only set for try blocks.
1028 const HTryBoundary* try_entry_;
1029
1030 // Exception type information. Only set for catch blocks.
1031 const DexFile* catch_dex_file_;
1032 dex::TypeIndex catch_type_index_;
1033 };
1034
1035 static constexpr size_t kNoLifetime = -1;
1036 static constexpr uint32_t kInvalidBlockId = static_cast<uint32_t>(-1);
1037
1038 // A block in a method. Contains the list of instructions represented
1039 // as a double linked list. Each block knows its predecessors and
1040 // successors.
1041
1042 class HBasicBlock : public ArenaObject<kArenaAllocBasicBlock> {
1043 public:
1044 explicit HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc)
graph_(graph)1045 : graph_(graph),
1046 predecessors_(graph->GetAllocator()->Adapter(kArenaAllocPredecessors)),
1047 successors_(graph->GetAllocator()->Adapter(kArenaAllocSuccessors)),
1048 loop_information_(nullptr),
1049 dominator_(nullptr),
1050 dominated_blocks_(graph->GetAllocator()->Adapter(kArenaAllocDominated)),
1051 block_id_(kInvalidBlockId),
1052 dex_pc_(dex_pc),
1053 lifetime_start_(kNoLifetime),
1054 lifetime_end_(kNoLifetime),
1055 try_catch_information_(nullptr) {
1056 predecessors_.reserve(kDefaultNumberOfPredecessors);
1057 successors_.reserve(kDefaultNumberOfSuccessors);
1058 dominated_blocks_.reserve(kDefaultNumberOfDominatedBlocks);
1059 }
1060
GetPredecessors()1061 const ArenaVector<HBasicBlock*>& GetPredecessors() const {
1062 return predecessors_;
1063 }
1064
GetSuccessors()1065 const ArenaVector<HBasicBlock*>& GetSuccessors() const {
1066 return successors_;
1067 }
1068
1069 ArrayRef<HBasicBlock* const> GetNormalSuccessors() const;
1070 ArrayRef<HBasicBlock* const> GetExceptionalSuccessors() const;
1071
1072 bool HasSuccessor(const HBasicBlock* block, size_t start_from = 0u) {
1073 return ContainsElement(successors_, block, start_from);
1074 }
1075
GetDominatedBlocks()1076 const ArenaVector<HBasicBlock*>& GetDominatedBlocks() const {
1077 return dominated_blocks_;
1078 }
1079
IsEntryBlock()1080 bool IsEntryBlock() const {
1081 return graph_->GetEntryBlock() == this;
1082 }
1083
IsExitBlock()1084 bool IsExitBlock() const {
1085 return graph_->GetExitBlock() == this;
1086 }
1087
1088 bool IsSingleGoto() const;
1089 bool IsSingleReturn() const;
1090 bool IsSingleReturnOrReturnVoidAllowingPhis() const;
1091 bool IsSingleTryBoundary() const;
1092
1093 // Returns true if this block emits nothing but a jump.
IsSingleJump()1094 bool IsSingleJump() const {
1095 HLoopInformation* loop_info = GetLoopInformation();
1096 return (IsSingleGoto() || IsSingleTryBoundary())
1097 // Back edges generate a suspend check.
1098 && (loop_info == nullptr || !loop_info->IsBackEdge(*this));
1099 }
1100
AddBackEdge(HBasicBlock * back_edge)1101 void AddBackEdge(HBasicBlock* back_edge) {
1102 if (loop_information_ == nullptr) {
1103 loop_information_ = new (graph_->GetAllocator()) HLoopInformation(this, graph_);
1104 }
1105 DCHECK_EQ(loop_information_->GetHeader(), this);
1106 loop_information_->AddBackEdge(back_edge);
1107 }
1108
1109 // Registers a back edge; if the block was not a loop header before the call associates a newly
1110 // created loop info with it.
1111 //
1112 // Used in SuperblockCloner to preserve LoopInformation object instead of reseting loop
1113 // info for all blocks during back edges recalculation.
AddBackEdgeWhileUpdating(HBasicBlock * back_edge)1114 void AddBackEdgeWhileUpdating(HBasicBlock* back_edge) {
1115 if (loop_information_ == nullptr || loop_information_->GetHeader() != this) {
1116 loop_information_ = new (graph_->GetAllocator()) HLoopInformation(this, graph_);
1117 }
1118 loop_information_->AddBackEdge(back_edge);
1119 }
1120
GetGraph()1121 HGraph* GetGraph() const { return graph_; }
SetGraph(HGraph * graph)1122 void SetGraph(HGraph* graph) { graph_ = graph; }
1123
GetBlockId()1124 uint32_t GetBlockId() const { return block_id_; }
SetBlockId(int id)1125 void SetBlockId(int id) { block_id_ = id; }
GetDexPc()1126 uint32_t GetDexPc() const { return dex_pc_; }
1127
GetDominator()1128 HBasicBlock* GetDominator() const { return dominator_; }
SetDominator(HBasicBlock * dominator)1129 void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; }
AddDominatedBlock(HBasicBlock * block)1130 void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.push_back(block); }
1131
RemoveDominatedBlock(HBasicBlock * block)1132 void RemoveDominatedBlock(HBasicBlock* block) {
1133 RemoveElement(dominated_blocks_, block);
1134 }
1135
ReplaceDominatedBlock(HBasicBlock * existing,HBasicBlock * new_block)1136 void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) {
1137 ReplaceElement(dominated_blocks_, existing, new_block);
1138 }
1139
1140 void ClearDominanceInformation();
1141
NumberOfBackEdges()1142 int NumberOfBackEdges() const {
1143 return IsLoopHeader() ? loop_information_->NumberOfBackEdges() : 0;
1144 }
1145
GetFirstInstruction()1146 HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; }
GetLastInstruction()1147 HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; }
GetInstructions()1148 const HInstructionList& GetInstructions() const { return instructions_; }
GetFirstPhi()1149 HInstruction* GetFirstPhi() const { return phis_.first_instruction_; }
GetLastPhi()1150 HInstruction* GetLastPhi() const { return phis_.last_instruction_; }
GetPhis()1151 const HInstructionList& GetPhis() const { return phis_; }
1152
1153 HInstruction* GetFirstInstructionDisregardMoves() const;
1154
AddSuccessor(HBasicBlock * block)1155 void AddSuccessor(HBasicBlock* block) {
1156 successors_.push_back(block);
1157 block->predecessors_.push_back(this);
1158 }
1159
ReplaceSuccessor(HBasicBlock * existing,HBasicBlock * new_block)1160 void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) {
1161 size_t successor_index = GetSuccessorIndexOf(existing);
1162 existing->RemovePredecessor(this);
1163 new_block->predecessors_.push_back(this);
1164 successors_[successor_index] = new_block;
1165 }
1166
ReplacePredecessor(HBasicBlock * existing,HBasicBlock * new_block)1167 void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) {
1168 size_t predecessor_index = GetPredecessorIndexOf(existing);
1169 existing->RemoveSuccessor(this);
1170 new_block->successors_.push_back(this);
1171 predecessors_[predecessor_index] = new_block;
1172 }
1173
1174 // Insert `this` between `predecessor` and `successor. This method
1175 // preserves the indices, and will update the first edge found between
1176 // `predecessor` and `successor`.
InsertBetween(HBasicBlock * predecessor,HBasicBlock * successor)1177 void InsertBetween(HBasicBlock* predecessor, HBasicBlock* successor) {
1178 size_t predecessor_index = successor->GetPredecessorIndexOf(predecessor);
1179 size_t successor_index = predecessor->GetSuccessorIndexOf(successor);
1180 successor->predecessors_[predecessor_index] = this;
1181 predecessor->successors_[successor_index] = this;
1182 successors_.push_back(successor);
1183 predecessors_.push_back(predecessor);
1184 }
1185
RemovePredecessor(HBasicBlock * block)1186 void RemovePredecessor(HBasicBlock* block) {
1187 predecessors_.erase(predecessors_.begin() + GetPredecessorIndexOf(block));
1188 }
1189
RemoveSuccessor(HBasicBlock * block)1190 void RemoveSuccessor(HBasicBlock* block) {
1191 successors_.erase(successors_.begin() + GetSuccessorIndexOf(block));
1192 }
1193
ClearAllPredecessors()1194 void ClearAllPredecessors() {
1195 predecessors_.clear();
1196 }
1197
AddPredecessor(HBasicBlock * block)1198 void AddPredecessor(HBasicBlock* block) {
1199 predecessors_.push_back(block);
1200 block->successors_.push_back(this);
1201 }
1202
SwapPredecessors()1203 void SwapPredecessors() {
1204 DCHECK_EQ(predecessors_.size(), 2u);
1205 std::swap(predecessors_[0], predecessors_[1]);
1206 }
1207
SwapSuccessors()1208 void SwapSuccessors() {
1209 DCHECK_EQ(successors_.size(), 2u);
1210 std::swap(successors_[0], successors_[1]);
1211 }
1212
GetPredecessorIndexOf(HBasicBlock * predecessor)1213 size_t GetPredecessorIndexOf(HBasicBlock* predecessor) const {
1214 return IndexOfElement(predecessors_, predecessor);
1215 }
1216
GetSuccessorIndexOf(HBasicBlock * successor)1217 size_t GetSuccessorIndexOf(HBasicBlock* successor) const {
1218 return IndexOfElement(successors_, successor);
1219 }
1220
GetSinglePredecessor()1221 HBasicBlock* GetSinglePredecessor() const {
1222 DCHECK_EQ(GetPredecessors().size(), 1u);
1223 return GetPredecessors()[0];
1224 }
1225
GetSingleSuccessor()1226 HBasicBlock* GetSingleSuccessor() const {
1227 DCHECK_EQ(GetSuccessors().size(), 1u);
1228 return GetSuccessors()[0];
1229 }
1230
1231 // Returns whether the first occurrence of `predecessor` in the list of
1232 // predecessors is at index `idx`.
IsFirstIndexOfPredecessor(HBasicBlock * predecessor,size_t idx)1233 bool IsFirstIndexOfPredecessor(HBasicBlock* predecessor, size_t idx) const {
1234 DCHECK_EQ(GetPredecessors()[idx], predecessor);
1235 return GetPredecessorIndexOf(predecessor) == idx;
1236 }
1237
1238 // Create a new block between this block and its predecessors. The new block
1239 // is added to the graph, all predecessor edges are relinked to it and an edge
1240 // is created to `this`. Returns the new empty block. Reverse post order or
1241 // loop and try/catch information are not updated.
1242 HBasicBlock* CreateImmediateDominator();
1243
1244 // Split the block into two blocks just before `cursor`. Returns the newly
1245 // created, latter block. Note that this method will add the block to the
1246 // graph, create a Goto at the end of the former block and will create an edge
1247 // between the blocks. It will not, however, update the reverse post order or
1248 // loop and try/catch information.
1249 HBasicBlock* SplitBefore(HInstruction* cursor);
1250
1251 // Split the block into two blocks just before `cursor`. Returns the newly
1252 // created block. Note that this method just updates raw block information,
1253 // like predecessors, successors, dominators, and instruction list. It does not
1254 // update the graph, reverse post order, loop information, nor make sure the
1255 // blocks are consistent (for example ending with a control flow instruction).
1256 HBasicBlock* SplitBeforeForInlining(HInstruction* cursor);
1257
1258 // Similar to `SplitBeforeForInlining` but does it after `cursor`.
1259 HBasicBlock* SplitAfterForInlining(HInstruction* cursor);
1260
1261 // Merge `other` at the end of `this`. Successors and dominated blocks of
1262 // `other` are changed to be successors and dominated blocks of `this`. Note
1263 // that this method does not update the graph, reverse post order, loop
1264 // information, nor make sure the blocks are consistent (for example ending
1265 // with a control flow instruction).
1266 void MergeWithInlined(HBasicBlock* other);
1267
1268 // Replace `this` with `other`. Predecessors, successors, and dominated blocks
1269 // of `this` are moved to `other`.
1270 // Note that this method does not update the graph, reverse post order, loop
1271 // information, nor make sure the blocks are consistent (for example ending
1272 // with a control flow instruction).
1273 void ReplaceWith(HBasicBlock* other);
1274
1275 // Merges the instructions of `other` at the end of `this`.
1276 void MergeInstructionsWith(HBasicBlock* other);
1277
1278 // Merge `other` at the end of `this`. This method updates loops, reverse post
1279 // order, links to predecessors, successors, dominators and deletes the block
1280 // from the graph. The two blocks must be successive, i.e. `this` the only
1281 // predecessor of `other` and vice versa.
1282 void MergeWith(HBasicBlock* other);
1283
1284 // Disconnects `this` from all its predecessors, successors and dominator,
1285 // removes it from all loops it is included in and eventually from the graph.
1286 // The block must not dominate any other block. Predecessors and successors
1287 // are safely updated.
1288 void DisconnectAndDelete();
1289
1290 void AddInstruction(HInstruction* instruction);
1291 // Insert `instruction` before/after an existing instruction `cursor`.
1292 void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
1293 void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
1294 // Replace phi `initial` with `replacement` within this block.
1295 void ReplaceAndRemovePhiWith(HPhi* initial, HPhi* replacement);
1296 // Replace instruction `initial` with `replacement` within this block.
1297 void ReplaceAndRemoveInstructionWith(HInstruction* initial,
1298 HInstruction* replacement);
1299 void AddPhi(HPhi* phi);
1300 void InsertPhiAfter(HPhi* instruction, HPhi* cursor);
1301 // RemoveInstruction and RemovePhi delete a given instruction from the respective
1302 // instruction list. With 'ensure_safety' set to true, it verifies that the
1303 // instruction is not in use and removes it from the use lists of its inputs.
1304 void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true);
1305 void RemovePhi(HPhi* phi, bool ensure_safety = true);
1306 void RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety = true);
1307
IsLoopHeader()1308 bool IsLoopHeader() const {
1309 return IsInLoop() && (loop_information_->GetHeader() == this);
1310 }
1311
IsLoopPreHeaderFirstPredecessor()1312 bool IsLoopPreHeaderFirstPredecessor() const {
1313 DCHECK(IsLoopHeader());
1314 return GetPredecessors()[0] == GetLoopInformation()->GetPreHeader();
1315 }
1316
IsFirstPredecessorBackEdge()1317 bool IsFirstPredecessorBackEdge() const {
1318 DCHECK(IsLoopHeader());
1319 return GetLoopInformation()->IsBackEdge(*GetPredecessors()[0]);
1320 }
1321
GetLoopInformation()1322 HLoopInformation* GetLoopInformation() const {
1323 return loop_information_;
1324 }
1325
1326 // Set the loop_information_ on this block. Overrides the current
1327 // loop_information if it is an outer loop of the passed loop information.
1328 // Note that this method is called while creating the loop information.
SetInLoop(HLoopInformation * info)1329 void SetInLoop(HLoopInformation* info) {
1330 if (IsLoopHeader()) {
1331 // Nothing to do. This just means `info` is an outer loop.
1332 } else if (!IsInLoop()) {
1333 loop_information_ = info;
1334 } else if (loop_information_->Contains(*info->GetHeader())) {
1335 // Block is currently part of an outer loop. Make it part of this inner loop.
1336 // Note that a non loop header having a loop information means this loop information
1337 // has already been populated
1338 loop_information_ = info;
1339 } else {
1340 // Block is part of an inner loop. Do not update the loop information.
1341 // Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()`
1342 // at this point, because this method is being called while populating `info`.
1343 }
1344 }
1345
1346 // Raw update of the loop information.
SetLoopInformation(HLoopInformation * info)1347 void SetLoopInformation(HLoopInformation* info) {
1348 loop_information_ = info;
1349 }
1350
IsInLoop()1351 bool IsInLoop() const { return loop_information_ != nullptr; }
1352
GetTryCatchInformation()1353 TryCatchInformation* GetTryCatchInformation() const { return try_catch_information_; }
1354
SetTryCatchInformation(TryCatchInformation * try_catch_information)1355 void SetTryCatchInformation(TryCatchInformation* try_catch_information) {
1356 try_catch_information_ = try_catch_information;
1357 }
1358
IsTryBlock()1359 bool IsTryBlock() const {
1360 return try_catch_information_ != nullptr && try_catch_information_->IsTryBlock();
1361 }
1362
IsCatchBlock()1363 bool IsCatchBlock() const {
1364 return try_catch_information_ != nullptr && try_catch_information_->IsCatchBlock();
1365 }
1366
1367 // Returns the try entry that this block's successors should have. They will
1368 // be in the same try, unless the block ends in a try boundary. In that case,
1369 // the appropriate try entry will be returned.
1370 const HTryBoundary* ComputeTryEntryOfSuccessors() const;
1371
1372 bool HasThrowingInstructions() const;
1373
1374 // Returns whether this block dominates the blocked passed as parameter.
1375 bool Dominates(HBasicBlock* block) const;
1376
GetLifetimeStart()1377 size_t GetLifetimeStart() const { return lifetime_start_; }
GetLifetimeEnd()1378 size_t GetLifetimeEnd() const { return lifetime_end_; }
1379
SetLifetimeStart(size_t start)1380 void SetLifetimeStart(size_t start) { lifetime_start_ = start; }
SetLifetimeEnd(size_t end)1381 void SetLifetimeEnd(size_t end) { lifetime_end_ = end; }
1382
1383 bool EndsWithControlFlowInstruction() const;
1384 bool EndsWithReturn() const;
1385 bool EndsWithIf() const;
1386 bool EndsWithTryBoundary() const;
1387 bool HasSinglePhi() const;
1388
1389 private:
1390 HGraph* graph_;
1391 ArenaVector<HBasicBlock*> predecessors_;
1392 ArenaVector<HBasicBlock*> successors_;
1393 HInstructionList instructions_;
1394 HInstructionList phis_;
1395 HLoopInformation* loop_information_;
1396 HBasicBlock* dominator_;
1397 ArenaVector<HBasicBlock*> dominated_blocks_;
1398 uint32_t block_id_;
1399 // The dex program counter of the first instruction of this block.
1400 const uint32_t dex_pc_;
1401 size_t lifetime_start_;
1402 size_t lifetime_end_;
1403 TryCatchInformation* try_catch_information_;
1404
1405 friend class HGraph;
1406 friend class HInstruction;
1407
1408 DISALLOW_COPY_AND_ASSIGN(HBasicBlock);
1409 };
1410
1411 // Iterates over the LoopInformation of all loops which contain 'block'
1412 // from the innermost to the outermost.
1413 class HLoopInformationOutwardIterator : public ValueObject {
1414 public:
HLoopInformationOutwardIterator(const HBasicBlock & block)1415 explicit HLoopInformationOutwardIterator(const HBasicBlock& block)
1416 : current_(block.GetLoopInformation()) {}
1417
Done()1418 bool Done() const { return current_ == nullptr; }
1419
Advance()1420 void Advance() {
1421 DCHECK(!Done());
1422 current_ = current_->GetPreHeader()->GetLoopInformation();
1423 }
1424
Current()1425 HLoopInformation* Current() const {
1426 DCHECK(!Done());
1427 return current_;
1428 }
1429
1430 private:
1431 HLoopInformation* current_;
1432
1433 DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator);
1434 };
1435
1436 #define FOR_EACH_CONCRETE_INSTRUCTION_SCALAR_COMMON(M) \
1437 M(Above, Condition) \
1438 M(AboveOrEqual, Condition) \
1439 M(Abs, UnaryOperation) \
1440 M(Add, BinaryOperation) \
1441 M(And, BinaryOperation) \
1442 M(ArrayGet, Instruction) \
1443 M(ArrayLength, Instruction) \
1444 M(ArraySet, Instruction) \
1445 M(Below, Condition) \
1446 M(BelowOrEqual, Condition) \
1447 M(BooleanNot, UnaryOperation) \
1448 M(BoundsCheck, Instruction) \
1449 M(BoundType, Instruction) \
1450 M(CheckCast, Instruction) \
1451 M(ClassTableGet, Instruction) \
1452 M(ClearException, Instruction) \
1453 M(ClinitCheck, Instruction) \
1454 M(Compare, BinaryOperation) \
1455 M(ConstructorFence, Instruction) \
1456 M(CurrentMethod, Instruction) \
1457 M(ShouldDeoptimizeFlag, Instruction) \
1458 M(Deoptimize, Instruction) \
1459 M(Div, BinaryOperation) \
1460 M(DivZeroCheck, Instruction) \
1461 M(DoubleConstant, Constant) \
1462 M(Equal, Condition) \
1463 M(Exit, Instruction) \
1464 M(FloatConstant, Constant) \
1465 M(Goto, Instruction) \
1466 M(GreaterThan, Condition) \
1467 M(GreaterThanOrEqual, Condition) \
1468 M(If, Instruction) \
1469 M(InstanceFieldGet, Instruction) \
1470 M(InstanceFieldSet, Instruction) \
1471 M(InstanceOf, Instruction) \
1472 M(IntConstant, Constant) \
1473 M(IntermediateAddress, Instruction) \
1474 M(InvokeUnresolved, Invoke) \
1475 M(InvokeInterface, Invoke) \
1476 M(InvokeStaticOrDirect, Invoke) \
1477 M(InvokeVirtual, Invoke) \
1478 M(InvokePolymorphic, Invoke) \
1479 M(InvokeCustom, Invoke) \
1480 M(LessThan, Condition) \
1481 M(LessThanOrEqual, Condition) \
1482 M(LoadClass, Instruction) \
1483 M(LoadException, Instruction) \
1484 M(LoadMethodHandle, Instruction) \
1485 M(LoadMethodType, Instruction) \
1486 M(LoadString, Instruction) \
1487 M(LongConstant, Constant) \
1488 M(Max, Instruction) \
1489 M(MemoryBarrier, Instruction) \
1490 M(Min, BinaryOperation) \
1491 M(MonitorOperation, Instruction) \
1492 M(Mul, BinaryOperation) \
1493 M(NativeDebugInfo, Instruction) \
1494 M(Neg, UnaryOperation) \
1495 M(NewArray, Instruction) \
1496 M(NewInstance, Instruction) \
1497 M(Not, UnaryOperation) \
1498 M(NotEqual, Condition) \
1499 M(NullConstant, Instruction) \
1500 M(NullCheck, Instruction) \
1501 M(Or, BinaryOperation) \
1502 M(PackedSwitch, Instruction) \
1503 M(ParallelMove, Instruction) \
1504 M(ParameterValue, Instruction) \
1505 M(Phi, Instruction) \
1506 M(Rem, BinaryOperation) \
1507 M(Return, Instruction) \
1508 M(ReturnVoid, Instruction) \
1509 M(Ror, BinaryOperation) \
1510 M(Shl, BinaryOperation) \
1511 M(Shr, BinaryOperation) \
1512 M(StaticFieldGet, Instruction) \
1513 M(StaticFieldSet, Instruction) \
1514 M(StringBuilderAppend, Instruction) \
1515 M(UnresolvedInstanceFieldGet, Instruction) \
1516 M(UnresolvedInstanceFieldSet, Instruction) \
1517 M(UnresolvedStaticFieldGet, Instruction) \
1518 M(UnresolvedStaticFieldSet, Instruction) \
1519 M(Select, Instruction) \
1520 M(Sub, BinaryOperation) \
1521 M(SuspendCheck, Instruction) \
1522 M(Throw, Instruction) \
1523 M(TryBoundary, Instruction) \
1524 M(TypeConversion, Instruction) \
1525 M(UShr, BinaryOperation) \
1526 M(Xor, BinaryOperation)
1527
1528 #define FOR_EACH_CONCRETE_INSTRUCTION_VECTOR_COMMON(M) \
1529 M(VecReplicateScalar, VecUnaryOperation) \
1530 M(VecExtractScalar, VecUnaryOperation) \
1531 M(VecReduce, VecUnaryOperation) \
1532 M(VecCnv, VecUnaryOperation) \
1533 M(VecNeg, VecUnaryOperation) \
1534 M(VecAbs, VecUnaryOperation) \
1535 M(VecNot, VecUnaryOperation) \
1536 M(VecAdd, VecBinaryOperation) \
1537 M(VecHalvingAdd, VecBinaryOperation) \
1538 M(VecSub, VecBinaryOperation) \
1539 M(VecMul, VecBinaryOperation) \
1540 M(VecDiv, VecBinaryOperation) \
1541 M(VecMin, VecBinaryOperation) \
1542 M(VecMax, VecBinaryOperation) \
1543 M(VecAnd, VecBinaryOperation) \
1544 M(VecAndNot, VecBinaryOperation) \
1545 M(VecOr, VecBinaryOperation) \
1546 M(VecXor, VecBinaryOperation) \
1547 M(VecSaturationAdd, VecBinaryOperation) \
1548 M(VecSaturationSub, VecBinaryOperation) \
1549 M(VecShl, VecBinaryOperation) \
1550 M(VecShr, VecBinaryOperation) \
1551 M(VecUShr, VecBinaryOperation) \
1552 M(VecSetScalars, VecOperation) \
1553 M(VecMultiplyAccumulate, VecOperation) \
1554 M(VecSADAccumulate, VecOperation) \
1555 M(VecDotProd, VecOperation) \
1556 M(VecLoad, VecMemoryOperation) \
1557 M(VecStore, VecMemoryOperation) \
1558 M(VecPredSetAll, VecPredSetOperation) \
1559 M(VecPredWhile, VecPredSetOperation) \
1560 M(VecPredCondition, VecOperation) \
1561
1562 #define FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M) \
1563 FOR_EACH_CONCRETE_INSTRUCTION_SCALAR_COMMON(M) \
1564 FOR_EACH_CONCRETE_INSTRUCTION_VECTOR_COMMON(M)
1565
1566 /*
1567 * Instructions, shared across several (not all) architectures.
1568 */
1569 #if !defined(ART_ENABLE_CODEGEN_arm) && !defined(ART_ENABLE_CODEGEN_arm64)
1570 #define FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M)
1571 #else
1572 #define FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M) \
1573 M(BitwiseNegatedRight, Instruction) \
1574 M(DataProcWithShifterOp, Instruction) \
1575 M(MultiplyAccumulate, Instruction) \
1576 M(IntermediateAddressIndex, Instruction)
1577 #endif
1578
1579 #define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)
1580
1581 #define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)
1582
1583 #ifndef ART_ENABLE_CODEGEN_x86
1584 #define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)
1585 #else
1586 #define FOR_EACH_CONCRETE_INSTRUCTION_X86(M) \
1587 M(X86ComputeBaseMethodAddress, Instruction) \
1588 M(X86LoadFromConstantTable, Instruction) \
1589 M(X86FPNeg, Instruction) \
1590 M(X86PackedSwitch, Instruction)
1591 #endif
1592
1593 #if defined(ART_ENABLE_CODEGEN_x86) || defined(ART_ENABLE_CODEGEN_x86_64)
1594 #define FOR_EACH_CONCRETE_INSTRUCTION_X86_COMMON(M) \
1595 M(X86AndNot, Instruction) \
1596 M(X86MaskOrResetLeastSetBit, Instruction)
1597 #else
1598 #define FOR_EACH_CONCRETE_INSTRUCTION_X86_COMMON(M)
1599 #endif
1600
1601 #define FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
1602
1603 #define FOR_EACH_CONCRETE_INSTRUCTION(M) \
1604 FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M) \
1605 FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M) \
1606 FOR_EACH_CONCRETE_INSTRUCTION_ARM(M) \
1607 FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M) \
1608 FOR_EACH_CONCRETE_INSTRUCTION_X86(M) \
1609 FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M) \
1610 FOR_EACH_CONCRETE_INSTRUCTION_X86_COMMON(M)
1611
1612 #define FOR_EACH_ABSTRACT_INSTRUCTION(M) \
1613 M(Condition, BinaryOperation) \
1614 M(Constant, Instruction) \
1615 M(UnaryOperation, Instruction) \
1616 M(BinaryOperation, Instruction) \
1617 M(Invoke, Instruction) \
1618 M(VecOperation, Instruction) \
1619 M(VecUnaryOperation, VecOperation) \
1620 M(VecBinaryOperation, VecOperation) \
1621 M(VecMemoryOperation, VecOperation) \
1622 M(VecPredSetOperation, VecOperation)
1623
1624 #define FOR_EACH_INSTRUCTION(M) \
1625 FOR_EACH_CONCRETE_INSTRUCTION(M) \
1626 FOR_EACH_ABSTRACT_INSTRUCTION(M)
1627
1628 #define FORWARD_DECLARATION(type, super) class H##type;
FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)1629 FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)
1630 #undef FORWARD_DECLARATION
1631
1632 #define DECLARE_INSTRUCTION(type) \
1633 private: \
1634 H##type& operator=(const H##type&) = delete; \
1635 public: \
1636 const char* DebugName() const override { return #type; } \
1637 HInstruction* Clone(ArenaAllocator* arena) const override { \
1638 DCHECK(IsClonable()); \
1639 return new (arena) H##type(*this->As##type()); \
1640 } \
1641 void Accept(HGraphVisitor* visitor) override
1642
1643 #define DECLARE_ABSTRACT_INSTRUCTION(type) \
1644 private: \
1645 H##type& operator=(const H##type&) = delete; \
1646 public:
1647
1648 #define DEFAULT_COPY_CONSTRUCTOR(type) \
1649 explicit H##type(const H##type& other) = default;
1650
1651 template <typename T>
1652 class HUseListNode : public ArenaObject<kArenaAllocUseListNode>,
1653 public IntrusiveForwardListNode<HUseListNode<T>> {
1654 public:
1655 // Get the instruction which has this use as one of the inputs.
1656 T GetUser() const { return user_; }
1657 // Get the position of the input record that this use corresponds to.
1658 size_t GetIndex() const { return index_; }
1659 // Set the position of the input record that this use corresponds to.
1660 void SetIndex(size_t index) { index_ = index; }
1661
1662 private:
1663 HUseListNode(T user, size_t index)
1664 : user_(user), index_(index) {}
1665
1666 T const user_;
1667 size_t index_;
1668
1669 friend class HInstruction;
1670
1671 DISALLOW_COPY_AND_ASSIGN(HUseListNode);
1672 };
1673
1674 template <typename T>
1675 using HUseList = IntrusiveForwardList<HUseListNode<T>>;
1676
1677 // This class is used by HEnvironment and HInstruction classes to record the
1678 // instructions they use and pointers to the corresponding HUseListNodes kept
1679 // by the used instructions.
1680 template <typename T>
1681 class HUserRecord : public ValueObject {
1682 public:
HUserRecord()1683 HUserRecord() : instruction_(nullptr), before_use_node_() {}
HUserRecord(HInstruction * instruction)1684 explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), before_use_node_() {}
1685
HUserRecord(const HUserRecord<T> & old_record,typename HUseList<T>::iterator before_use_node)1686 HUserRecord(const HUserRecord<T>& old_record, typename HUseList<T>::iterator before_use_node)
1687 : HUserRecord(old_record.instruction_, before_use_node) {}
HUserRecord(HInstruction * instruction,typename HUseList<T>::iterator before_use_node)1688 HUserRecord(HInstruction* instruction, typename HUseList<T>::iterator before_use_node)
1689 : instruction_(instruction), before_use_node_(before_use_node) {
1690 DCHECK(instruction_ != nullptr);
1691 }
1692
GetInstruction()1693 HInstruction* GetInstruction() const { return instruction_; }
GetBeforeUseNode()1694 typename HUseList<T>::iterator GetBeforeUseNode() const { return before_use_node_; }
GetUseNode()1695 typename HUseList<T>::iterator GetUseNode() const { return ++GetBeforeUseNode(); }
1696
1697 private:
1698 // Instruction used by the user.
1699 HInstruction* instruction_;
1700
1701 // Iterator before the corresponding entry in the use list kept by 'instruction_'.
1702 typename HUseList<T>::iterator before_use_node_;
1703 };
1704
1705 // Helper class that extracts the input instruction from HUserRecord<HInstruction*>.
1706 // This is used for HInstruction::GetInputs() to return a container wrapper providing
1707 // HInstruction* values even though the underlying container has HUserRecord<>s.
1708 struct HInputExtractor {
operatorHInputExtractor1709 HInstruction* operator()(HUserRecord<HInstruction*>& record) const {
1710 return record.GetInstruction();
1711 }
operatorHInputExtractor1712 const HInstruction* operator()(const HUserRecord<HInstruction*>& record) const {
1713 return record.GetInstruction();
1714 }
1715 };
1716
1717 using HInputsRef = TransformArrayRef<HUserRecord<HInstruction*>, HInputExtractor>;
1718 using HConstInputsRef = TransformArrayRef<const HUserRecord<HInstruction*>, HInputExtractor>;
1719
1720 /**
1721 * Side-effects representation.
1722 *
1723 * For write/read dependences on fields/arrays, the dependence analysis uses
1724 * type disambiguation (e.g. a float field write cannot modify the value of an
1725 * integer field read) and the access type (e.g. a reference array write cannot
1726 * modify the value of a reference field read [although it may modify the
1727 * reference fetch prior to reading the field, which is represented by its own
1728 * write/read dependence]). The analysis makes conservative points-to
1729 * assumptions on reference types (e.g. two same typed arrays are assumed to be
1730 * the same, and any reference read depends on any reference read without
1731 * further regard of its type).
1732 *
1733 * kDependsOnGCBit is defined in the following way: instructions with kDependsOnGCBit must not be
1734 * alive across the point where garbage collection might happen.
1735 *
1736 * Note: Instructions with kCanTriggerGCBit do not depend on each other.
1737 *
1738 * kCanTriggerGCBit must be used for instructions for which GC might happen on the path across
1739 * those instructions from the compiler perspective (between this instruction and the next one
1740 * in the IR).
1741 *
1742 * Note: Instructions which can cause GC only on a fatal slow path do not need
1743 * kCanTriggerGCBit as the execution never returns to the instruction next to the exceptional
1744 * one. However the execution may return to compiled code if there is a catch block in the
1745 * current method; for this purpose the TryBoundary exit instruction has kCanTriggerGCBit
1746 * set.
1747 *
1748 * The internal representation uses 38-bit and is described in the table below.
1749 * The first line indicates the side effect, and for field/array accesses the
1750 * second line indicates the type of the access (in the order of the
1751 * DataType::Type enum).
1752 * The two numbered lines below indicate the bit position in the bitfield (read
1753 * vertically).
1754 *
1755 * |Depends on GC|ARRAY-R |FIELD-R |Can trigger GC|ARRAY-W |FIELD-W |
1756 * +-------------+---------+---------+--------------+---------+---------+
1757 * | |DFJISCBZL|DFJISCBZL| |DFJISCBZL|DFJISCBZL|
1758 * | 3 |333333322|222222221| 1 |111111110|000000000|
1759 * | 7 |654321098|765432109| 8 |765432109|876543210|
1760 *
1761 * Note that, to ease the implementation, 'changes' bits are least significant
1762 * bits, while 'dependency' bits are most significant bits.
1763 */
1764 class SideEffects : public ValueObject {
1765 public:
SideEffects()1766 SideEffects() : flags_(0) {}
1767
None()1768 static SideEffects None() {
1769 return SideEffects(0);
1770 }
1771
All()1772 static SideEffects All() {
1773 return SideEffects(kAllChangeBits | kAllDependOnBits);
1774 }
1775
AllChanges()1776 static SideEffects AllChanges() {
1777 return SideEffects(kAllChangeBits);
1778 }
1779
AllDependencies()1780 static SideEffects AllDependencies() {
1781 return SideEffects(kAllDependOnBits);
1782 }
1783
AllExceptGCDependency()1784 static SideEffects AllExceptGCDependency() {
1785 return AllWritesAndReads().Union(SideEffects::CanTriggerGC());
1786 }
1787
AllWritesAndReads()1788 static SideEffects AllWritesAndReads() {
1789 return SideEffects(kAllWrites | kAllReads);
1790 }
1791
AllWrites()1792 static SideEffects AllWrites() {
1793 return SideEffects(kAllWrites);
1794 }
1795
AllReads()1796 static SideEffects AllReads() {
1797 return SideEffects(kAllReads);
1798 }
1799
FieldWriteOfType(DataType::Type type,bool is_volatile)1800 static SideEffects FieldWriteOfType(DataType::Type type, bool is_volatile) {
1801 return is_volatile
1802 ? AllWritesAndReads()
1803 : SideEffects(TypeFlag(type, kFieldWriteOffset));
1804 }
1805
ArrayWriteOfType(DataType::Type type)1806 static SideEffects ArrayWriteOfType(DataType::Type type) {
1807 return SideEffects(TypeFlag(type, kArrayWriteOffset));
1808 }
1809
FieldReadOfType(DataType::Type type,bool is_volatile)1810 static SideEffects FieldReadOfType(DataType::Type type, bool is_volatile) {
1811 return is_volatile
1812 ? AllWritesAndReads()
1813 : SideEffects(TypeFlag(type, kFieldReadOffset));
1814 }
1815
ArrayReadOfType(DataType::Type type)1816 static SideEffects ArrayReadOfType(DataType::Type type) {
1817 return SideEffects(TypeFlag(type, kArrayReadOffset));
1818 }
1819
1820 // Returns whether GC might happen across this instruction from the compiler perspective so
1821 // the next instruction in the IR would see that.
1822 //
1823 // See the SideEffect class comments.
CanTriggerGC()1824 static SideEffects CanTriggerGC() {
1825 return SideEffects(1ULL << kCanTriggerGCBit);
1826 }
1827
1828 // Returns whether the instruction must not be alive across a GC point.
1829 //
1830 // See the SideEffect class comments.
DependsOnGC()1831 static SideEffects DependsOnGC() {
1832 return SideEffects(1ULL << kDependsOnGCBit);
1833 }
1834
1835 // Combines the side-effects of this and the other.
Union(SideEffects other)1836 SideEffects Union(SideEffects other) const {
1837 return SideEffects(flags_ | other.flags_);
1838 }
1839
Exclusion(SideEffects other)1840 SideEffects Exclusion(SideEffects other) const {
1841 return SideEffects(flags_ & ~other.flags_);
1842 }
1843
Add(SideEffects other)1844 void Add(SideEffects other) {
1845 flags_ |= other.flags_;
1846 }
1847
Includes(SideEffects other)1848 bool Includes(SideEffects other) const {
1849 return (other.flags_ & flags_) == other.flags_;
1850 }
1851
HasSideEffects()1852 bool HasSideEffects() const {
1853 return (flags_ & kAllChangeBits);
1854 }
1855
HasDependencies()1856 bool HasDependencies() const {
1857 return (flags_ & kAllDependOnBits);
1858 }
1859
1860 // Returns true if there are no side effects or dependencies.
DoesNothing()1861 bool DoesNothing() const {
1862 return flags_ == 0;
1863 }
1864
1865 // Returns true if something is written.
DoesAnyWrite()1866 bool DoesAnyWrite() const {
1867 return (flags_ & kAllWrites);
1868 }
1869
1870 // Returns true if something is read.
DoesAnyRead()1871 bool DoesAnyRead() const {
1872 return (flags_ & kAllReads);
1873 }
1874
1875 // Returns true if potentially everything is written and read
1876 // (every type and every kind of access).
DoesAllReadWrite()1877 bool DoesAllReadWrite() const {
1878 return (flags_ & (kAllWrites | kAllReads)) == (kAllWrites | kAllReads);
1879 }
1880
DoesAll()1881 bool DoesAll() const {
1882 return flags_ == (kAllChangeBits | kAllDependOnBits);
1883 }
1884
1885 // Returns true if `this` may read something written by `other`.
MayDependOn(SideEffects other)1886 bool MayDependOn(SideEffects other) const {
1887 const uint64_t depends_on_flags = (flags_ & kAllDependOnBits) >> kChangeBits;
1888 return (other.flags_ & depends_on_flags);
1889 }
1890
1891 // Returns string representation of flags (for debugging only).
1892 // Format: |x|DFJISCBZL|DFJISCBZL|y|DFJISCBZL|DFJISCBZL|
ToString()1893 std::string ToString() const {
1894 std::string flags = "|";
1895 for (int s = kLastBit; s >= 0; s--) {
1896 bool current_bit_is_set = ((flags_ >> s) & 1) != 0;
1897 if ((s == kDependsOnGCBit) || (s == kCanTriggerGCBit)) {
1898 // This is a bit for the GC side effect.
1899 if (current_bit_is_set) {
1900 flags += "GC";
1901 }
1902 flags += "|";
1903 } else {
1904 // This is a bit for the array/field analysis.
1905 // The underscore character stands for the 'can trigger GC' bit.
1906 static const char *kDebug = "LZBCSIJFDLZBCSIJFD_LZBCSIJFDLZBCSIJFD";
1907 if (current_bit_is_set) {
1908 flags += kDebug[s];
1909 }
1910 if ((s == kFieldWriteOffset) || (s == kArrayWriteOffset) ||
1911 (s == kFieldReadOffset) || (s == kArrayReadOffset)) {
1912 flags += "|";
1913 }
1914 }
1915 }
1916 return flags;
1917 }
1918
Equals(const SideEffects & other)1919 bool Equals(const SideEffects& other) const { return flags_ == other.flags_; }
1920
1921 private:
1922 static constexpr int kFieldArrayAnalysisBits = 9;
1923
1924 static constexpr int kFieldWriteOffset = 0;
1925 static constexpr int kArrayWriteOffset = kFieldWriteOffset + kFieldArrayAnalysisBits;
1926 static constexpr int kLastBitForWrites = kArrayWriteOffset + kFieldArrayAnalysisBits - 1;
1927 static constexpr int kCanTriggerGCBit = kLastBitForWrites + 1;
1928
1929 static constexpr int kChangeBits = kCanTriggerGCBit + 1;
1930
1931 static constexpr int kFieldReadOffset = kCanTriggerGCBit + 1;
1932 static constexpr int kArrayReadOffset = kFieldReadOffset + kFieldArrayAnalysisBits;
1933 static constexpr int kLastBitForReads = kArrayReadOffset + kFieldArrayAnalysisBits - 1;
1934 static constexpr int kDependsOnGCBit = kLastBitForReads + 1;
1935
1936 static constexpr int kLastBit = kDependsOnGCBit;
1937 static constexpr int kDependOnBits = kLastBit + 1 - kChangeBits;
1938
1939 // Aliases.
1940
1941 static_assert(kChangeBits == kDependOnBits,
1942 "the 'change' bits should match the 'depend on' bits.");
1943
1944 static constexpr uint64_t kAllChangeBits = ((1ULL << kChangeBits) - 1);
1945 static constexpr uint64_t kAllDependOnBits = ((1ULL << kDependOnBits) - 1) << kChangeBits;
1946 static constexpr uint64_t kAllWrites =
1947 ((1ULL << (kLastBitForWrites + 1 - kFieldWriteOffset)) - 1) << kFieldWriteOffset;
1948 static constexpr uint64_t kAllReads =
1949 ((1ULL << (kLastBitForReads + 1 - kFieldReadOffset)) - 1) << kFieldReadOffset;
1950
1951 // Translates type to bit flag. The type must correspond to a Java type.
TypeFlag(DataType::Type type,int offset)1952 static uint64_t TypeFlag(DataType::Type type, int offset) {
1953 int shift;
1954 switch (type) {
1955 case DataType::Type::kReference: shift = 0; break;
1956 case DataType::Type::kBool: shift = 1; break;
1957 case DataType::Type::kInt8: shift = 2; break;
1958 case DataType::Type::kUint16: shift = 3; break;
1959 case DataType::Type::kInt16: shift = 4; break;
1960 case DataType::Type::kInt32: shift = 5; break;
1961 case DataType::Type::kInt64: shift = 6; break;
1962 case DataType::Type::kFloat32: shift = 7; break;
1963 case DataType::Type::kFloat64: shift = 8; break;
1964 default:
1965 LOG(FATAL) << "Unexpected data type " << type;
1966 UNREACHABLE();
1967 }
1968 DCHECK_LE(kFieldWriteOffset, shift);
1969 DCHECK_LT(shift, kArrayWriteOffset);
1970 return UINT64_C(1) << (shift + offset);
1971 }
1972
1973 // Private constructor on direct flags value.
SideEffects(uint64_t flags)1974 explicit SideEffects(uint64_t flags) : flags_(flags) {}
1975
1976 uint64_t flags_;
1977 };
1978
1979 // A HEnvironment object contains the values of virtual registers at a given location.
1980 class HEnvironment : public ArenaObject<kArenaAllocEnvironment> {
1981 public:
HEnvironment(ArenaAllocator * allocator,size_t number_of_vregs,ArtMethod * method,uint32_t dex_pc,HInstruction * holder)1982 ALWAYS_INLINE HEnvironment(ArenaAllocator* allocator,
1983 size_t number_of_vregs,
1984 ArtMethod* method,
1985 uint32_t dex_pc,
1986 HInstruction* holder)
1987 : vregs_(number_of_vregs, allocator->Adapter(kArenaAllocEnvironmentVRegs)),
1988 locations_(allocator->Adapter(kArenaAllocEnvironmentLocations)),
1989 parent_(nullptr),
1990 method_(method),
1991 dex_pc_(dex_pc),
1992 holder_(holder) {
1993 }
1994
HEnvironment(ArenaAllocator * allocator,const HEnvironment & to_copy,HInstruction * holder)1995 ALWAYS_INLINE HEnvironment(ArenaAllocator* allocator,
1996 const HEnvironment& to_copy,
1997 HInstruction* holder)
1998 : HEnvironment(allocator,
1999 to_copy.Size(),
2000 to_copy.GetMethod(),
2001 to_copy.GetDexPc(),
2002 holder) {}
2003
AllocateLocations()2004 void AllocateLocations() {
2005 DCHECK(locations_.empty());
2006 locations_.resize(vregs_.size());
2007 }
2008
SetAndCopyParentChain(ArenaAllocator * allocator,HEnvironment * parent)2009 void SetAndCopyParentChain(ArenaAllocator* allocator, HEnvironment* parent) {
2010 if (parent_ != nullptr) {
2011 parent_->SetAndCopyParentChain(allocator, parent);
2012 } else {
2013 parent_ = new (allocator) HEnvironment(allocator, *parent, holder_);
2014 parent_->CopyFrom(parent);
2015 if (parent->GetParent() != nullptr) {
2016 parent_->SetAndCopyParentChain(allocator, parent->GetParent());
2017 }
2018 }
2019 }
2020
2021 void CopyFrom(ArrayRef<HInstruction* const> locals);
2022 void CopyFrom(HEnvironment* environment);
2023
2024 // Copy from `env`. If it's a loop phi for `loop_header`, copy the first
2025 // input to the loop phi instead. This is for inserting instructions that
2026 // require an environment (like HDeoptimization) in the loop pre-header.
2027 void CopyFromWithLoopPhiAdjustment(HEnvironment* env, HBasicBlock* loop_header);
2028
SetRawEnvAt(size_t index,HInstruction * instruction)2029 void SetRawEnvAt(size_t index, HInstruction* instruction) {
2030 vregs_[index] = HUserRecord<HEnvironment*>(instruction);
2031 }
2032
GetInstructionAt(size_t index)2033 HInstruction* GetInstructionAt(size_t index) const {
2034 return vregs_[index].GetInstruction();
2035 }
2036
2037 void RemoveAsUserOfInput(size_t index) const;
2038
2039 // Replaces the input at the position 'index' with the replacement; the replacement and old
2040 // input instructions' env_uses_ lists are adjusted. The function works similar to
2041 // HInstruction::ReplaceInput.
2042 void ReplaceInput(HInstruction* replacement, size_t index);
2043
Size()2044 size_t Size() const { return vregs_.size(); }
2045
GetParent()2046 HEnvironment* GetParent() const { return parent_; }
2047
SetLocationAt(size_t index,Location location)2048 void SetLocationAt(size_t index, Location location) {
2049 locations_[index] = location;
2050 }
2051
GetLocationAt(size_t index)2052 Location GetLocationAt(size_t index) const {
2053 return locations_[index];
2054 }
2055
GetDexPc()2056 uint32_t GetDexPc() const {
2057 return dex_pc_;
2058 }
2059
GetMethod()2060 ArtMethod* GetMethod() const {
2061 return method_;
2062 }
2063
GetHolder()2064 HInstruction* GetHolder() const {
2065 return holder_;
2066 }
2067
2068
IsFromInlinedInvoke()2069 bool IsFromInlinedInvoke() const {
2070 return GetParent() != nullptr;
2071 }
2072
2073 private:
2074 ArenaVector<HUserRecord<HEnvironment*>> vregs_;
2075 ArenaVector<Location> locations_;
2076 HEnvironment* parent_;
2077 ArtMethod* method_;
2078 const uint32_t dex_pc_;
2079
2080 // The instruction that holds this environment.
2081 HInstruction* const holder_;
2082
2083 friend class HInstruction;
2084
2085 DISALLOW_COPY_AND_ASSIGN(HEnvironment);
2086 };
2087
2088 class HInstruction : public ArenaObject<kArenaAllocInstruction> {
2089 public:
2090 #define DECLARE_KIND(type, super) k##type,
2091 enum InstructionKind { // private marker to avoid generate-operator-out.py from processing.
2092 FOR_EACH_CONCRETE_INSTRUCTION(DECLARE_KIND)
2093 kLastInstructionKind
2094 };
2095 #undef DECLARE_KIND
2096
HInstruction(InstructionKind kind,SideEffects side_effects,uint32_t dex_pc)2097 HInstruction(InstructionKind kind, SideEffects side_effects, uint32_t dex_pc)
2098 : HInstruction(kind, DataType::Type::kVoid, side_effects, dex_pc) {}
2099
HInstruction(InstructionKind kind,DataType::Type type,SideEffects side_effects,uint32_t dex_pc)2100 HInstruction(InstructionKind kind, DataType::Type type, SideEffects side_effects, uint32_t dex_pc)
2101 : previous_(nullptr),
2102 next_(nullptr),
2103 block_(nullptr),
2104 dex_pc_(dex_pc),
2105 id_(-1),
2106 ssa_index_(-1),
2107 packed_fields_(0u),
2108 environment_(nullptr),
2109 locations_(nullptr),
2110 live_interval_(nullptr),
2111 lifetime_position_(kNoLifetime),
2112 side_effects_(side_effects),
2113 reference_type_handle_(ReferenceTypeInfo::CreateInvalid().GetTypeHandle()) {
2114 SetPackedField<InstructionKindField>(kind);
2115 SetPackedField<TypeField>(type);
2116 SetPackedFlag<kFlagReferenceTypeIsExact>(ReferenceTypeInfo::CreateInvalid().IsExact());
2117 }
2118
~HInstruction()2119 virtual ~HInstruction() {}
2120
2121
GetNext()2122 HInstruction* GetNext() const { return next_; }
GetPrevious()2123 HInstruction* GetPrevious() const { return previous_; }
2124
2125 HInstruction* GetNextDisregardingMoves() const;
2126 HInstruction* GetPreviousDisregardingMoves() const;
2127
GetBlock()2128 HBasicBlock* GetBlock() const { return block_; }
GetAllocator()2129 ArenaAllocator* GetAllocator() const { return block_->GetGraph()->GetAllocator(); }
SetBlock(HBasicBlock * block)2130 void SetBlock(HBasicBlock* block) { block_ = block; }
IsInBlock()2131 bool IsInBlock() const { return block_ != nullptr; }
IsInLoop()2132 bool IsInLoop() const { return block_->IsInLoop(); }
IsLoopHeaderPhi()2133 bool IsLoopHeaderPhi() const { return IsPhi() && block_->IsLoopHeader(); }
IsIrreducibleLoopHeaderPhi()2134 bool IsIrreducibleLoopHeaderPhi() const {
2135 return IsLoopHeaderPhi() && GetBlock()->GetLoopInformation()->IsIrreducible();
2136 }
2137
2138 virtual ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() = 0;
2139
GetInputRecords()2140 ArrayRef<const HUserRecord<HInstruction*>> GetInputRecords() const {
2141 // One virtual method is enough, just const_cast<> and then re-add the const.
2142 return ArrayRef<const HUserRecord<HInstruction*>>(
2143 const_cast<HInstruction*>(this)->GetInputRecords());
2144 }
2145
GetInputs()2146 HInputsRef GetInputs() {
2147 return MakeTransformArrayRef(GetInputRecords(), HInputExtractor());
2148 }
2149
GetInputs()2150 HConstInputsRef GetInputs() const {
2151 return MakeTransformArrayRef(GetInputRecords(), HInputExtractor());
2152 }
2153
InputCount()2154 size_t InputCount() const { return GetInputRecords().size(); }
InputAt(size_t i)2155 HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); }
2156
HasInput(HInstruction * input)2157 bool HasInput(HInstruction* input) const {
2158 for (const HInstruction* i : GetInputs()) {
2159 if (i == input) {
2160 return true;
2161 }
2162 }
2163 return false;
2164 }
2165
SetRawInputAt(size_t index,HInstruction * input)2166 void SetRawInputAt(size_t index, HInstruction* input) {
2167 SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input));
2168 }
2169
2170 virtual void Accept(HGraphVisitor* visitor) = 0;
2171 virtual const char* DebugName() const = 0;
2172
GetType()2173 DataType::Type GetType() const {
2174 return TypeField::Decode(GetPackedFields());
2175 }
2176
NeedsEnvironment()2177 virtual bool NeedsEnvironment() const { return false; }
2178
GetDexPc()2179 uint32_t GetDexPc() const { return dex_pc_; }
2180
IsControlFlow()2181 virtual bool IsControlFlow() const { return false; }
2182
2183 // Can the instruction throw?
2184 // TODO: We should rename to CanVisiblyThrow, as some instructions (like HNewInstance),
2185 // could throw OOME, but it is still OK to remove them if they are unused.
CanThrow()2186 virtual bool CanThrow() const { return false; }
2187
2188 // Does the instruction always throw an exception unconditionally?
AlwaysThrows()2189 virtual bool AlwaysThrows() const { return false; }
2190
CanThrowIntoCatchBlock()2191 bool CanThrowIntoCatchBlock() const { return CanThrow() && block_->IsTryBlock(); }
2192
HasSideEffects()2193 bool HasSideEffects() const { return side_effects_.HasSideEffects(); }
DoesAnyWrite()2194 bool DoesAnyWrite() const { return side_effects_.DoesAnyWrite(); }
2195
2196 // Does not apply for all instructions, but having this at top level greatly
2197 // simplifies the null check elimination.
2198 // TODO: Consider merging can_be_null into ReferenceTypeInfo.
CanBeNull()2199 virtual bool CanBeNull() const {
2200 DCHECK_EQ(GetType(), DataType::Type::kReference) << "CanBeNull only applies to reference types";
2201 return true;
2202 }
2203
CanDoImplicitNullCheckOn(HInstruction * obj ATTRIBUTE_UNUSED)2204 virtual bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const {
2205 return false;
2206 }
2207
2208 // If this instruction will do an implicit null check, return the `HNullCheck` associated
2209 // with it. Otherwise return null.
GetImplicitNullCheck()2210 HNullCheck* GetImplicitNullCheck() const {
2211 // Go over previous non-move instructions that are emitted at use site.
2212 HInstruction* prev_not_move = GetPreviousDisregardingMoves();
2213 while (prev_not_move != nullptr && prev_not_move->IsEmittedAtUseSite()) {
2214 if (prev_not_move->IsNullCheck()) {
2215 return prev_not_move->AsNullCheck();
2216 }
2217 prev_not_move = prev_not_move->GetPreviousDisregardingMoves();
2218 }
2219 return nullptr;
2220 }
2221
IsActualObject()2222 virtual bool IsActualObject() const {
2223 return GetType() == DataType::Type::kReference;
2224 }
2225
2226 void SetReferenceTypeInfo(ReferenceTypeInfo rti);
2227
GetReferenceTypeInfo()2228 ReferenceTypeInfo GetReferenceTypeInfo() const {
2229 DCHECK_EQ(GetType(), DataType::Type::kReference);
2230 return ReferenceTypeInfo::CreateUnchecked(reference_type_handle_,
2231 GetPackedFlag<kFlagReferenceTypeIsExact>());
2232 }
2233
AddUseAt(HInstruction * user,size_t index)2234 void AddUseAt(HInstruction* user, size_t index) {
2235 DCHECK(user != nullptr);
2236 // Note: fixup_end remains valid across push_front().
2237 auto fixup_end = uses_.empty() ? uses_.begin() : ++uses_.begin();
2238 HUseListNode<HInstruction*>* new_node =
2239 new (GetBlock()->GetGraph()->GetAllocator()) HUseListNode<HInstruction*>(user, index);
2240 uses_.push_front(*new_node);
2241 FixUpUserRecordsAfterUseInsertion(fixup_end);
2242 }
2243
AddEnvUseAt(HEnvironment * user,size_t index)2244 void AddEnvUseAt(HEnvironment* user, size_t index) {
2245 DCHECK(user != nullptr);
2246 // Note: env_fixup_end remains valid across push_front().
2247 auto env_fixup_end = env_uses_.empty() ? env_uses_.begin() : ++env_uses_.begin();
2248 HUseListNode<HEnvironment*>* new_node =
2249 new (GetBlock()->GetGraph()->GetAllocator()) HUseListNode<HEnvironment*>(user, index);
2250 env_uses_.push_front(*new_node);
2251 FixUpUserRecordsAfterEnvUseInsertion(env_fixup_end);
2252 }
2253
RemoveAsUserOfInput(size_t input)2254 void RemoveAsUserOfInput(size_t input) {
2255 HUserRecord<HInstruction*> input_use = InputRecordAt(input);
2256 HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode();
2257 input_use.GetInstruction()->uses_.erase_after(before_use_node);
2258 input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node);
2259 }
2260
RemoveAsUserOfAllInputs()2261 void RemoveAsUserOfAllInputs() {
2262 for (const HUserRecord<HInstruction*>& input_use : GetInputRecords()) {
2263 HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode();
2264 input_use.GetInstruction()->uses_.erase_after(before_use_node);
2265 input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node);
2266 }
2267 }
2268
GetUses()2269 const HUseList<HInstruction*>& GetUses() const { return uses_; }
GetEnvUses()2270 const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; }
2271
HasUses()2272 bool HasUses() const { return !uses_.empty() || !env_uses_.empty(); }
HasEnvironmentUses()2273 bool HasEnvironmentUses() const { return !env_uses_.empty(); }
HasNonEnvironmentUses()2274 bool HasNonEnvironmentUses() const { return !uses_.empty(); }
HasOnlyOneNonEnvironmentUse()2275 bool HasOnlyOneNonEnvironmentUse() const {
2276 return !HasEnvironmentUses() && GetUses().HasExactlyOneElement();
2277 }
2278
IsRemovable()2279 bool IsRemovable() const {
2280 return
2281 !DoesAnyWrite() &&
2282 !CanThrow() &&
2283 !IsSuspendCheck() &&
2284 !IsControlFlow() &&
2285 !IsNativeDebugInfo() &&
2286 !IsParameterValue() &&
2287 // If we added an explicit barrier then we should keep it.
2288 !IsMemoryBarrier() &&
2289 !IsConstructorFence();
2290 }
2291
IsDeadAndRemovable()2292 bool IsDeadAndRemovable() const {
2293 return IsRemovable() && !HasUses();
2294 }
2295
2296 // Does this instruction strictly dominate `other_instruction`?
2297 // Returns false if this instruction and `other_instruction` are the same.
2298 // Aborts if this instruction and `other_instruction` are both phis.
2299 bool StrictlyDominates(HInstruction* other_instruction) const;
2300
GetId()2301 int GetId() const { return id_; }
SetId(int id)2302 void SetId(int id) { id_ = id; }
2303
GetSsaIndex()2304 int GetSsaIndex() const { return ssa_index_; }
SetSsaIndex(int ssa_index)2305 void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; }
HasSsaIndex()2306 bool HasSsaIndex() const { return ssa_index_ != -1; }
2307
HasEnvironment()2308 bool HasEnvironment() const { return environment_ != nullptr; }
GetEnvironment()2309 HEnvironment* GetEnvironment() const { return environment_; }
2310 // Set the `environment_` field. Raw because this method does not
2311 // update the uses lists.
SetRawEnvironment(HEnvironment * environment)2312 void SetRawEnvironment(HEnvironment* environment) {
2313 DCHECK(environment_ == nullptr);
2314 DCHECK_EQ(environment->GetHolder(), this);
2315 environment_ = environment;
2316 }
2317
InsertRawEnvironment(HEnvironment * environment)2318 void InsertRawEnvironment(HEnvironment* environment) {
2319 DCHECK(environment_ != nullptr);
2320 DCHECK_EQ(environment->GetHolder(), this);
2321 DCHECK(environment->GetParent() == nullptr);
2322 environment->parent_ = environment_;
2323 environment_ = environment;
2324 }
2325
2326 void RemoveEnvironment();
2327
2328 // Set the environment of this instruction, copying it from `environment`. While
2329 // copying, the uses lists are being updated.
CopyEnvironmentFrom(HEnvironment * environment)2330 void CopyEnvironmentFrom(HEnvironment* environment) {
2331 DCHECK(environment_ == nullptr);
2332 ArenaAllocator* allocator = GetBlock()->GetGraph()->GetAllocator();
2333 environment_ = new (allocator) HEnvironment(allocator, *environment, this);
2334 environment_->CopyFrom(environment);
2335 if (environment->GetParent() != nullptr) {
2336 environment_->SetAndCopyParentChain(allocator, environment->GetParent());
2337 }
2338 }
2339
CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment * environment,HBasicBlock * block)2340 void CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment* environment,
2341 HBasicBlock* block) {
2342 DCHECK(environment_ == nullptr);
2343 ArenaAllocator* allocator = GetBlock()->GetGraph()->GetAllocator();
2344 environment_ = new (allocator) HEnvironment(allocator, *environment, this);
2345 environment_->CopyFromWithLoopPhiAdjustment(environment, block);
2346 if (environment->GetParent() != nullptr) {
2347 environment_->SetAndCopyParentChain(allocator, environment->GetParent());
2348 }
2349 }
2350
2351 // Returns the number of entries in the environment. Typically, that is the
2352 // number of dex registers in a method. It could be more in case of inlining.
2353 size_t EnvironmentSize() const;
2354
GetLocations()2355 LocationSummary* GetLocations() const { return locations_; }
SetLocations(LocationSummary * locations)2356 void SetLocations(LocationSummary* locations) { locations_ = locations; }
2357
2358 void ReplaceWith(HInstruction* instruction);
2359 void ReplaceUsesDominatedBy(HInstruction* dominator, HInstruction* replacement);
2360 void ReplaceEnvUsesDominatedBy(HInstruction* dominator, HInstruction* replacement);
2361 void ReplaceInput(HInstruction* replacement, size_t index);
2362
2363 // This is almost the same as doing `ReplaceWith()`. But in this helper, the
2364 // uses of this instruction by `other` are *not* updated.
ReplaceWithExceptInReplacementAtIndex(HInstruction * other,size_t use_index)2365 void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) {
2366 ReplaceWith(other);
2367 other->ReplaceInput(this, use_index);
2368 }
2369
2370 // Move `this` instruction before `cursor`
2371 void MoveBefore(HInstruction* cursor, bool do_checks = true);
2372
2373 // Move `this` before its first user and out of any loops. If there is no
2374 // out-of-loop user that dominates all other users, move the instruction
2375 // to the end of the out-of-loop common dominator of the user's blocks.
2376 //
2377 // This can be used only on non-throwing instructions with no side effects that
2378 // have at least one use but no environment uses.
2379 void MoveBeforeFirstUserAndOutOfLoops();
2380
2381 #define INSTRUCTION_TYPE_CHECK(type, super) \
2382 bool Is##type() const;
2383
2384 FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
2385 #undef INSTRUCTION_TYPE_CHECK
2386
2387 #define INSTRUCTION_TYPE_CAST(type, super) \
2388 const H##type* As##type() const; \
2389 H##type* As##type();
2390
FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CAST)2391 FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CAST)
2392 #undef INSTRUCTION_TYPE_CAST
2393
2394 // Return a clone of the instruction if it is clonable (shallow copy by default, custom copy
2395 // if a custom copy-constructor is provided for a particular type). If IsClonable() is false for
2396 // the instruction then the behaviour of this function is undefined.
2397 //
2398 // Note: It is semantically valid to create a clone of the instruction only until
2399 // prepare_for_register_allocator phase as lifetime, intervals and codegen info are not
2400 // copied.
2401 //
2402 // Note: HEnvironment and some other fields are not copied and are set to default values, see
2403 // 'explicit HInstruction(const HInstruction& other)' for details.
2404 virtual HInstruction* Clone(ArenaAllocator* arena ATTRIBUTE_UNUSED) const {
2405 LOG(FATAL) << "Cloning is not implemented for the instruction " <<
2406 DebugName() << " " << GetId();
2407 UNREACHABLE();
2408 }
2409
2410 // Return whether instruction can be cloned (copied).
IsClonable()2411 virtual bool IsClonable() const { return false; }
2412
2413 // Returns whether the instruction can be moved within the graph.
2414 // TODO: this method is used by LICM and GVN with possibly different
2415 // meanings? split and rename?
CanBeMoved()2416 virtual bool CanBeMoved() const { return false; }
2417
2418 // Returns whether any data encoded in the two instructions is equal.
2419 // This method does not look at the inputs. Both instructions must be
2420 // of the same type, otherwise the method has undefined behavior.
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)2421 virtual bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const {
2422 return false;
2423 }
2424
2425 // Returns whether two instructions are equal, that is:
2426 // 1) They have the same type and contain the same data (InstructionDataEquals).
2427 // 2) Their inputs are identical.
2428 bool Equals(const HInstruction* other) const;
2429
GetKind()2430 InstructionKind GetKind() const { return GetPackedField<InstructionKindField>(); }
2431
ComputeHashCode()2432 virtual size_t ComputeHashCode() const {
2433 size_t result = GetKind();
2434 for (const HInstruction* input : GetInputs()) {
2435 result = (result * 31) + input->GetId();
2436 }
2437 return result;
2438 }
2439
GetSideEffects()2440 SideEffects GetSideEffects() const { return side_effects_; }
SetSideEffects(SideEffects other)2441 void SetSideEffects(SideEffects other) { side_effects_ = other; }
AddSideEffects(SideEffects other)2442 void AddSideEffects(SideEffects other) { side_effects_.Add(other); }
2443
GetLifetimePosition()2444 size_t GetLifetimePosition() const { return lifetime_position_; }
SetLifetimePosition(size_t position)2445 void SetLifetimePosition(size_t position) { lifetime_position_ = position; }
GetLiveInterval()2446 LiveInterval* GetLiveInterval() const { return live_interval_; }
SetLiveInterval(LiveInterval * interval)2447 void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; }
HasLiveInterval()2448 bool HasLiveInterval() const { return live_interval_ != nullptr; }
2449
IsSuspendCheckEntry()2450 bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); }
2451
2452 // Returns whether the code generation of the instruction will require to have access
2453 // to the current method. Such instructions are:
2454 // (1): Instructions that require an environment, as calling the runtime requires
2455 // to walk the stack and have the current method stored at a specific stack address.
2456 // (2): HCurrentMethod, potentially used by HInvokeStaticOrDirect, HLoadString, or HLoadClass
2457 // to access the dex cache.
NeedsCurrentMethod()2458 bool NeedsCurrentMethod() const {
2459 return NeedsEnvironment() || IsCurrentMethod();
2460 }
2461
2462 // Returns whether the code generation of the instruction will require to have access
2463 // to the dex cache of the current method's declaring class via the current method.
NeedsDexCacheOfDeclaringClass()2464 virtual bool NeedsDexCacheOfDeclaringClass() const { return false; }
2465
2466 // Does this instruction have any use in an environment before
2467 // control flow hits 'other'?
2468 bool HasAnyEnvironmentUseBefore(HInstruction* other);
2469
2470 // Remove all references to environment uses of this instruction.
2471 // The caller must ensure that this is safe to do.
2472 void RemoveEnvironmentUsers();
2473
IsEmittedAtUseSite()2474 bool IsEmittedAtUseSite() const { return GetPackedFlag<kFlagEmittedAtUseSite>(); }
MarkEmittedAtUseSite()2475 void MarkEmittedAtUseSite() { SetPackedFlag<kFlagEmittedAtUseSite>(true); }
2476
2477 protected:
2478 // If set, the machine code for this instruction is assumed to be generated by
2479 // its users. Used by liveness analysis to compute use positions accordingly.
2480 static constexpr size_t kFlagEmittedAtUseSite = 0u;
2481 static constexpr size_t kFlagReferenceTypeIsExact = kFlagEmittedAtUseSite + 1;
2482 static constexpr size_t kFieldInstructionKind = kFlagReferenceTypeIsExact + 1;
2483 static constexpr size_t kFieldInstructionKindSize =
2484 MinimumBitsToStore(static_cast<size_t>(InstructionKind::kLastInstructionKind - 1));
2485 static constexpr size_t kFieldType =
2486 kFieldInstructionKind + kFieldInstructionKindSize;
2487 static constexpr size_t kFieldTypeSize =
2488 MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast));
2489 static constexpr size_t kNumberOfGenericPackedBits = kFieldType + kFieldTypeSize;
2490 static constexpr size_t kMaxNumberOfPackedBits = sizeof(uint32_t) * kBitsPerByte;
2491
2492 static_assert(kNumberOfGenericPackedBits <= kMaxNumberOfPackedBits,
2493 "Too many generic packed fields");
2494
2495 using TypeField = BitField<DataType::Type, kFieldType, kFieldTypeSize>;
2496
InputRecordAt(size_t i)2497 const HUserRecord<HInstruction*> InputRecordAt(size_t i) const {
2498 return GetInputRecords()[i];
2499 }
2500
SetRawInputRecordAt(size_t index,const HUserRecord<HInstruction * > & input)2501 void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) {
2502 ArrayRef<HUserRecord<HInstruction*>> input_records = GetInputRecords();
2503 input_records[index] = input;
2504 }
2505
GetPackedFields()2506 uint32_t GetPackedFields() const {
2507 return packed_fields_;
2508 }
2509
2510 template <size_t flag>
GetPackedFlag()2511 bool GetPackedFlag() const {
2512 return (packed_fields_ & (1u << flag)) != 0u;
2513 }
2514
2515 template <size_t flag>
2516 void SetPackedFlag(bool value = true) {
2517 packed_fields_ = (packed_fields_ & ~(1u << flag)) | ((value ? 1u : 0u) << flag);
2518 }
2519
2520 template <typename BitFieldType>
GetPackedField()2521 typename BitFieldType::value_type GetPackedField() const {
2522 return BitFieldType::Decode(packed_fields_);
2523 }
2524
2525 template <typename BitFieldType>
SetPackedField(typename BitFieldType::value_type value)2526 void SetPackedField(typename BitFieldType::value_type value) {
2527 DCHECK(IsUint<BitFieldType::size>(static_cast<uintptr_t>(value)));
2528 packed_fields_ = BitFieldType::Update(value, packed_fields_);
2529 }
2530
2531 // Copy construction for the instruction (used for Clone function).
2532 //
2533 // Fields (e.g. lifetime, intervals and codegen info) associated with phases starting from
2534 // prepare_for_register_allocator are not copied (set to default values).
2535 //
2536 // Copy constructors must be provided for every HInstruction type; default copy constructor is
2537 // fine for most of them. However for some of the instructions a custom copy constructor must be
2538 // specified (when instruction has non-trivially copyable fields and must have a special behaviour
2539 // for copying them).
HInstruction(const HInstruction & other)2540 explicit HInstruction(const HInstruction& other)
2541 : previous_(nullptr),
2542 next_(nullptr),
2543 block_(nullptr),
2544 dex_pc_(other.dex_pc_),
2545 id_(-1),
2546 ssa_index_(-1),
2547 packed_fields_(other.packed_fields_),
2548 environment_(nullptr),
2549 locations_(nullptr),
2550 live_interval_(nullptr),
2551 lifetime_position_(kNoLifetime),
2552 side_effects_(other.side_effects_),
2553 reference_type_handle_(other.reference_type_handle_) {
2554 }
2555
2556 private:
2557 using InstructionKindField =
2558 BitField<InstructionKind, kFieldInstructionKind, kFieldInstructionKindSize>;
2559
FixUpUserRecordsAfterUseInsertion(HUseList<HInstruction * >::iterator fixup_end)2560 void FixUpUserRecordsAfterUseInsertion(HUseList<HInstruction*>::iterator fixup_end) {
2561 auto before_use_node = uses_.before_begin();
2562 for (auto use_node = uses_.begin(); use_node != fixup_end; ++use_node) {
2563 HInstruction* user = use_node->GetUser();
2564 size_t input_index = use_node->GetIndex();
2565 user->SetRawInputRecordAt(input_index, HUserRecord<HInstruction*>(this, before_use_node));
2566 before_use_node = use_node;
2567 }
2568 }
2569
FixUpUserRecordsAfterUseRemoval(HUseList<HInstruction * >::iterator before_use_node)2570 void FixUpUserRecordsAfterUseRemoval(HUseList<HInstruction*>::iterator before_use_node) {
2571 auto next = ++HUseList<HInstruction*>::iterator(before_use_node);
2572 if (next != uses_.end()) {
2573 HInstruction* next_user = next->GetUser();
2574 size_t next_index = next->GetIndex();
2575 DCHECK(next_user->InputRecordAt(next_index).GetInstruction() == this);
2576 next_user->SetRawInputRecordAt(next_index, HUserRecord<HInstruction*>(this, before_use_node));
2577 }
2578 }
2579
FixUpUserRecordsAfterEnvUseInsertion(HUseList<HEnvironment * >::iterator env_fixup_end)2580 void FixUpUserRecordsAfterEnvUseInsertion(HUseList<HEnvironment*>::iterator env_fixup_end) {
2581 auto before_env_use_node = env_uses_.before_begin();
2582 for (auto env_use_node = env_uses_.begin(); env_use_node != env_fixup_end; ++env_use_node) {
2583 HEnvironment* user = env_use_node->GetUser();
2584 size_t input_index = env_use_node->GetIndex();
2585 user->vregs_[input_index] = HUserRecord<HEnvironment*>(this, before_env_use_node);
2586 before_env_use_node = env_use_node;
2587 }
2588 }
2589
FixUpUserRecordsAfterEnvUseRemoval(HUseList<HEnvironment * >::iterator before_env_use_node)2590 void FixUpUserRecordsAfterEnvUseRemoval(HUseList<HEnvironment*>::iterator before_env_use_node) {
2591 auto next = ++HUseList<HEnvironment*>::iterator(before_env_use_node);
2592 if (next != env_uses_.end()) {
2593 HEnvironment* next_user = next->GetUser();
2594 size_t next_index = next->GetIndex();
2595 DCHECK(next_user->vregs_[next_index].GetInstruction() == this);
2596 next_user->vregs_[next_index] = HUserRecord<HEnvironment*>(this, before_env_use_node);
2597 }
2598 }
2599
2600 HInstruction* previous_;
2601 HInstruction* next_;
2602 HBasicBlock* block_;
2603 const uint32_t dex_pc_;
2604
2605 // An instruction gets an id when it is added to the graph.
2606 // It reflects creation order. A negative id means the instruction
2607 // has not been added to the graph.
2608 int id_;
2609
2610 // When doing liveness analysis, instructions that have uses get an SSA index.
2611 int ssa_index_;
2612
2613 // Packed fields.
2614 uint32_t packed_fields_;
2615
2616 // List of instructions that have this instruction as input.
2617 HUseList<HInstruction*> uses_;
2618
2619 // List of environments that contain this instruction.
2620 HUseList<HEnvironment*> env_uses_;
2621
2622 // The environment associated with this instruction. Not null if the instruction
2623 // might jump out of the method.
2624 HEnvironment* environment_;
2625
2626 // Set by the code generator.
2627 LocationSummary* locations_;
2628
2629 // Set by the liveness analysis.
2630 LiveInterval* live_interval_;
2631
2632 // Set by the liveness analysis, this is the position in a linear
2633 // order of blocks where this instruction's live interval start.
2634 size_t lifetime_position_;
2635
2636 SideEffects side_effects_;
2637
2638 // The reference handle part of the reference type info.
2639 // The IsExact() flag is stored in packed fields.
2640 // TODO: for primitive types this should be marked as invalid.
2641 ReferenceTypeInfo::TypeHandle reference_type_handle_;
2642
2643 friend class GraphChecker;
2644 friend class HBasicBlock;
2645 friend class HEnvironment;
2646 friend class HGraph;
2647 friend class HInstructionList;
2648 };
2649 std::ostream& operator<<(std::ostream& os, HInstruction::InstructionKind rhs);
2650
2651 // Iterates over the instructions, while preserving the next instruction
2652 // in case the current instruction gets removed from the list by the user
2653 // of this iterator.
2654 class HInstructionIterator : public ValueObject {
2655 public:
HInstructionIterator(const HInstructionList & instructions)2656 explicit HInstructionIterator(const HInstructionList& instructions)
2657 : instruction_(instructions.first_instruction_) {
2658 next_ = Done() ? nullptr : instruction_->GetNext();
2659 }
2660
Done()2661 bool Done() const { return instruction_ == nullptr; }
Current()2662 HInstruction* Current() const { return instruction_; }
Advance()2663 void Advance() {
2664 instruction_ = next_;
2665 next_ = Done() ? nullptr : instruction_->GetNext();
2666 }
2667
2668 private:
2669 HInstruction* instruction_;
2670 HInstruction* next_;
2671
2672 DISALLOW_COPY_AND_ASSIGN(HInstructionIterator);
2673 };
2674
2675 // Iterates over the instructions without saving the next instruction,
2676 // therefore handling changes in the graph potentially made by the user
2677 // of this iterator.
2678 class HInstructionIteratorHandleChanges : public ValueObject {
2679 public:
HInstructionIteratorHandleChanges(const HInstructionList & instructions)2680 explicit HInstructionIteratorHandleChanges(const HInstructionList& instructions)
2681 : instruction_(instructions.first_instruction_) {
2682 }
2683
Done()2684 bool Done() const { return instruction_ == nullptr; }
Current()2685 HInstruction* Current() const { return instruction_; }
Advance()2686 void Advance() {
2687 instruction_ = instruction_->GetNext();
2688 }
2689
2690 private:
2691 HInstruction* instruction_;
2692
2693 DISALLOW_COPY_AND_ASSIGN(HInstructionIteratorHandleChanges);
2694 };
2695
2696
2697 class HBackwardInstructionIterator : public ValueObject {
2698 public:
HBackwardInstructionIterator(const HInstructionList & instructions)2699 explicit HBackwardInstructionIterator(const HInstructionList& instructions)
2700 : instruction_(instructions.last_instruction_) {
2701 next_ = Done() ? nullptr : instruction_->GetPrevious();
2702 }
2703
Done()2704 bool Done() const { return instruction_ == nullptr; }
Current()2705 HInstruction* Current() const { return instruction_; }
Advance()2706 void Advance() {
2707 instruction_ = next_;
2708 next_ = Done() ? nullptr : instruction_->GetPrevious();
2709 }
2710
2711 private:
2712 HInstruction* instruction_;
2713 HInstruction* next_;
2714
2715 DISALLOW_COPY_AND_ASSIGN(HBackwardInstructionIterator);
2716 };
2717
2718 class HVariableInputSizeInstruction : public HInstruction {
2719 public:
2720 using HInstruction::GetInputRecords; // Keep the const version visible.
GetInputRecords()2721 ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() override {
2722 return ArrayRef<HUserRecord<HInstruction*>>(inputs_);
2723 }
2724
2725 void AddInput(HInstruction* input);
2726 void InsertInputAt(size_t index, HInstruction* input);
2727 void RemoveInputAt(size_t index);
2728
2729 // Removes all the inputs.
2730 // Also removes this instructions from each input's use list
2731 // (for non-environment uses only).
2732 void RemoveAllInputs();
2733
2734 protected:
HVariableInputSizeInstruction(InstructionKind inst_kind,SideEffects side_effects,uint32_t dex_pc,ArenaAllocator * allocator,size_t number_of_inputs,ArenaAllocKind kind)2735 HVariableInputSizeInstruction(InstructionKind inst_kind,
2736 SideEffects side_effects,
2737 uint32_t dex_pc,
2738 ArenaAllocator* allocator,
2739 size_t number_of_inputs,
2740 ArenaAllocKind kind)
2741 : HInstruction(inst_kind, side_effects, dex_pc),
2742 inputs_(number_of_inputs, allocator->Adapter(kind)) {}
HVariableInputSizeInstruction(InstructionKind inst_kind,DataType::Type type,SideEffects side_effects,uint32_t dex_pc,ArenaAllocator * allocator,size_t number_of_inputs,ArenaAllocKind kind)2743 HVariableInputSizeInstruction(InstructionKind inst_kind,
2744 DataType::Type type,
2745 SideEffects side_effects,
2746 uint32_t dex_pc,
2747 ArenaAllocator* allocator,
2748 size_t number_of_inputs,
2749 ArenaAllocKind kind)
2750 : HInstruction(inst_kind, type, side_effects, dex_pc),
2751 inputs_(number_of_inputs, allocator->Adapter(kind)) {}
2752
2753 DEFAULT_COPY_CONSTRUCTOR(VariableInputSizeInstruction);
2754
2755 ArenaVector<HUserRecord<HInstruction*>> inputs_;
2756 };
2757
2758 template<size_t N>
2759 class HExpression : public HInstruction {
2760 public:
2761 HExpression<N>(InstructionKind kind, SideEffects side_effects, uint32_t dex_pc)
HInstruction(kind,side_effects,dex_pc)2762 : HInstruction(kind, side_effects, dex_pc), inputs_() {}
2763 HExpression<N>(InstructionKind kind,
2764 DataType::Type type,
2765 SideEffects side_effects,
2766 uint32_t dex_pc)
HInstruction(kind,type,side_effects,dex_pc)2767 : HInstruction(kind, type, side_effects, dex_pc), inputs_() {}
~HExpression()2768 virtual ~HExpression() {}
2769
2770 using HInstruction::GetInputRecords; // Keep the const version visible.
GetInputRecords()2771 ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
2772 return ArrayRef<HUserRecord<HInstruction*>>(inputs_);
2773 }
2774
2775 protected:
2776 DEFAULT_COPY_CONSTRUCTOR(Expression<N>);
2777
2778 private:
2779 std::array<HUserRecord<HInstruction*>, N> inputs_;
2780
2781 friend class SsaBuilder;
2782 };
2783
2784 // HExpression specialization for N=0.
2785 template<>
2786 class HExpression<0> : public HInstruction {
2787 public:
2788 using HInstruction::HInstruction;
2789
~HExpression()2790 virtual ~HExpression() {}
2791
2792 using HInstruction::GetInputRecords; // Keep the const version visible.
GetInputRecords()2793 ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
2794 return ArrayRef<HUserRecord<HInstruction*>>();
2795 }
2796
2797 protected:
2798 DEFAULT_COPY_CONSTRUCTOR(Expression<0>);
2799
2800 private:
2801 friend class SsaBuilder;
2802 };
2803
2804 // Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow
2805 // instruction that branches to the exit block.
2806 class HReturnVoid final : public HExpression<0> {
2807 public:
2808 explicit HReturnVoid(uint32_t dex_pc = kNoDexPc)
HExpression(kReturnVoid,SideEffects::None (),dex_pc)2809 : HExpression(kReturnVoid, SideEffects::None(), dex_pc) {
2810 }
2811
IsControlFlow()2812 bool IsControlFlow() const override { return true; }
2813
2814 DECLARE_INSTRUCTION(ReturnVoid);
2815
2816 protected:
2817 DEFAULT_COPY_CONSTRUCTOR(ReturnVoid);
2818 };
2819
2820 // Represents dex's RETURN opcodes. A HReturn is a control flow
2821 // instruction that branches to the exit block.
2822 class HReturn final : public HExpression<1> {
2823 public:
2824 explicit HReturn(HInstruction* value, uint32_t dex_pc = kNoDexPc)
HExpression(kReturn,SideEffects::None (),dex_pc)2825 : HExpression(kReturn, SideEffects::None(), dex_pc) {
2826 SetRawInputAt(0, value);
2827 }
2828
IsControlFlow()2829 bool IsControlFlow() const override { return true; }
2830
2831 DECLARE_INSTRUCTION(Return);
2832
2833 protected:
2834 DEFAULT_COPY_CONSTRUCTOR(Return);
2835 };
2836
2837 class HPhi final : public HVariableInputSizeInstruction {
2838 public:
2839 HPhi(ArenaAllocator* allocator,
2840 uint32_t reg_number,
2841 size_t number_of_inputs,
2842 DataType::Type type,
2843 uint32_t dex_pc = kNoDexPc)
HVariableInputSizeInstruction(kPhi,ToPhiType (type),SideEffects::None (),dex_pc,allocator,number_of_inputs,kArenaAllocPhiInputs)2844 : HVariableInputSizeInstruction(
2845 kPhi,
2846 ToPhiType(type),
2847 SideEffects::None(),
2848 dex_pc,
2849 allocator,
2850 number_of_inputs,
2851 kArenaAllocPhiInputs),
2852 reg_number_(reg_number) {
2853 DCHECK_NE(GetType(), DataType::Type::kVoid);
2854 // Phis are constructed live and marked dead if conflicting or unused.
2855 // Individual steps of SsaBuilder should assume that if a phi has been
2856 // marked dead, it can be ignored and will be removed by SsaPhiElimination.
2857 SetPackedFlag<kFlagIsLive>(true);
2858 SetPackedFlag<kFlagCanBeNull>(true);
2859 }
2860
IsClonable()2861 bool IsClonable() const override { return true; }
2862
2863 // Returns a type equivalent to the given `type`, but that a `HPhi` can hold.
ToPhiType(DataType::Type type)2864 static DataType::Type ToPhiType(DataType::Type type) {
2865 return DataType::Kind(type);
2866 }
2867
IsCatchPhi()2868 bool IsCatchPhi() const { return GetBlock()->IsCatchBlock(); }
2869
SetType(DataType::Type new_type)2870 void SetType(DataType::Type new_type) {
2871 // Make sure that only valid type changes occur. The following are allowed:
2872 // (1) int -> float/ref (primitive type propagation),
2873 // (2) long -> double (primitive type propagation).
2874 DCHECK(GetType() == new_type ||
2875 (GetType() == DataType::Type::kInt32 && new_type == DataType::Type::kFloat32) ||
2876 (GetType() == DataType::Type::kInt32 && new_type == DataType::Type::kReference) ||
2877 (GetType() == DataType::Type::kInt64 && new_type == DataType::Type::kFloat64));
2878 SetPackedField<TypeField>(new_type);
2879 }
2880
CanBeNull()2881 bool CanBeNull() const override { return GetPackedFlag<kFlagCanBeNull>(); }
SetCanBeNull(bool can_be_null)2882 void SetCanBeNull(bool can_be_null) { SetPackedFlag<kFlagCanBeNull>(can_be_null); }
2883
GetRegNumber()2884 uint32_t GetRegNumber() const { return reg_number_; }
2885
SetDead()2886 void SetDead() { SetPackedFlag<kFlagIsLive>(false); }
SetLive()2887 void SetLive() { SetPackedFlag<kFlagIsLive>(true); }
IsDead()2888 bool IsDead() const { return !IsLive(); }
IsLive()2889 bool IsLive() const { return GetPackedFlag<kFlagIsLive>(); }
2890
IsVRegEquivalentOf(const HInstruction * other)2891 bool IsVRegEquivalentOf(const HInstruction* other) const {
2892 return other != nullptr
2893 && other->IsPhi()
2894 && other->AsPhi()->GetBlock() == GetBlock()
2895 && other->AsPhi()->GetRegNumber() == GetRegNumber();
2896 }
2897
HasEquivalentPhi()2898 bool HasEquivalentPhi() const {
2899 if (GetPrevious() != nullptr && GetPrevious()->AsPhi()->GetRegNumber() == GetRegNumber()) {
2900 return true;
2901 }
2902 if (GetNext() != nullptr && GetNext()->AsPhi()->GetRegNumber() == GetRegNumber()) {
2903 return true;
2904 }
2905 return false;
2906 }
2907
2908 // Returns the next equivalent phi (starting from the current one) or null if there is none.
2909 // An equivalent phi is a phi having the same dex register and type.
2910 // It assumes that phis with the same dex register are adjacent.
GetNextEquivalentPhiWithSameType()2911 HPhi* GetNextEquivalentPhiWithSameType() {
2912 HInstruction* next = GetNext();
2913 while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) {
2914 if (next->GetType() == GetType()) {
2915 return next->AsPhi();
2916 }
2917 next = next->GetNext();
2918 }
2919 return nullptr;
2920 }
2921
2922 DECLARE_INSTRUCTION(Phi);
2923
2924 protected:
2925 DEFAULT_COPY_CONSTRUCTOR(Phi);
2926
2927 private:
2928 static constexpr size_t kFlagIsLive = HInstruction::kNumberOfGenericPackedBits;
2929 static constexpr size_t kFlagCanBeNull = kFlagIsLive + 1;
2930 static constexpr size_t kNumberOfPhiPackedBits = kFlagCanBeNull + 1;
2931 static_assert(kNumberOfPhiPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
2932
2933 const uint32_t reg_number_;
2934 };
2935
2936 // The exit instruction is the only instruction of the exit block.
2937 // Instructions aborting the method (HThrow and HReturn) must branch to the
2938 // exit block.
2939 class HExit final : public HExpression<0> {
2940 public:
2941 explicit HExit(uint32_t dex_pc = kNoDexPc)
HExpression(kExit,SideEffects::None (),dex_pc)2942 : HExpression(kExit, SideEffects::None(), dex_pc) {
2943 }
2944
IsControlFlow()2945 bool IsControlFlow() const override { return true; }
2946
2947 DECLARE_INSTRUCTION(Exit);
2948
2949 protected:
2950 DEFAULT_COPY_CONSTRUCTOR(Exit);
2951 };
2952
2953 // Jumps from one block to another.
2954 class HGoto final : public HExpression<0> {
2955 public:
2956 explicit HGoto(uint32_t dex_pc = kNoDexPc)
HExpression(kGoto,SideEffects::None (),dex_pc)2957 : HExpression(kGoto, SideEffects::None(), dex_pc) {
2958 }
2959
IsClonable()2960 bool IsClonable() const override { return true; }
IsControlFlow()2961 bool IsControlFlow() const override { return true; }
2962
GetSuccessor()2963 HBasicBlock* GetSuccessor() const {
2964 return GetBlock()->GetSingleSuccessor();
2965 }
2966
2967 DECLARE_INSTRUCTION(Goto);
2968
2969 protected:
2970 DEFAULT_COPY_CONSTRUCTOR(Goto);
2971 };
2972
2973 class HConstant : public HExpression<0> {
2974 public:
2975 explicit HConstant(InstructionKind kind, DataType::Type type, uint32_t dex_pc = kNoDexPc)
HExpression(kind,type,SideEffects::None (),dex_pc)2976 : HExpression(kind, type, SideEffects::None(), dex_pc) {
2977 }
2978
CanBeMoved()2979 bool CanBeMoved() const override { return true; }
2980
2981 // Is this constant -1 in the arithmetic sense?
IsMinusOne()2982 virtual bool IsMinusOne() const { return false; }
2983 // Is this constant 0 in the arithmetic sense?
IsArithmeticZero()2984 virtual bool IsArithmeticZero() const { return false; }
2985 // Is this constant a 0-bit pattern?
IsZeroBitPattern()2986 virtual bool IsZeroBitPattern() const { return false; }
2987 // Is this constant 1 in the arithmetic sense?
IsOne()2988 virtual bool IsOne() const { return false; }
2989
2990 virtual uint64_t GetValueAsUint64() const = 0;
2991
2992 DECLARE_ABSTRACT_INSTRUCTION(Constant);
2993
2994 protected:
2995 DEFAULT_COPY_CONSTRUCTOR(Constant);
2996 };
2997
2998 class HNullConstant final : public HConstant {
2999 public:
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)3000 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
3001 return true;
3002 }
3003
GetValueAsUint64()3004 uint64_t GetValueAsUint64() const override { return 0; }
3005
ComputeHashCode()3006 size_t ComputeHashCode() const override { return 0; }
3007
3008 // The null constant representation is a 0-bit pattern.
IsZeroBitPattern()3009 bool IsZeroBitPattern() const override { return true; }
3010
3011 DECLARE_INSTRUCTION(NullConstant);
3012
3013 protected:
3014 DEFAULT_COPY_CONSTRUCTOR(NullConstant);
3015
3016 private:
3017 explicit HNullConstant(uint32_t dex_pc = kNoDexPc)
HConstant(kNullConstant,DataType::Type::kReference,dex_pc)3018 : HConstant(kNullConstant, DataType::Type::kReference, dex_pc) {
3019 }
3020
3021 friend class HGraph;
3022 };
3023
3024 // Constants of the type int. Those can be from Dex instructions, or
3025 // synthesized (for example with the if-eqz instruction).
3026 class HIntConstant final : public HConstant {
3027 public:
GetValue()3028 int32_t GetValue() const { return value_; }
3029
GetValueAsUint64()3030 uint64_t GetValueAsUint64() const override {
3031 return static_cast<uint64_t>(static_cast<uint32_t>(value_));
3032 }
3033
InstructionDataEquals(const HInstruction * other)3034 bool InstructionDataEquals(const HInstruction* other) const override {
3035 DCHECK(other->IsIntConstant()) << other->DebugName();
3036 return other->AsIntConstant()->value_ == value_;
3037 }
3038
ComputeHashCode()3039 size_t ComputeHashCode() const override { return GetValue(); }
3040
IsMinusOne()3041 bool IsMinusOne() const override { return GetValue() == -1; }
IsArithmeticZero()3042 bool IsArithmeticZero() const override { return GetValue() == 0; }
IsZeroBitPattern()3043 bool IsZeroBitPattern() const override { return GetValue() == 0; }
IsOne()3044 bool IsOne() const override { return GetValue() == 1; }
3045
3046 // Integer constants are used to encode Boolean values as well,
3047 // where 1 means true and 0 means false.
IsTrue()3048 bool IsTrue() const { return GetValue() == 1; }
IsFalse()3049 bool IsFalse() const { return GetValue() == 0; }
3050
3051 DECLARE_INSTRUCTION(IntConstant);
3052
3053 protected:
3054 DEFAULT_COPY_CONSTRUCTOR(IntConstant);
3055
3056 private:
3057 explicit HIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
HConstant(kIntConstant,DataType::Type::kInt32,dex_pc)3058 : HConstant(kIntConstant, DataType::Type::kInt32, dex_pc), value_(value) {
3059 }
3060 explicit HIntConstant(bool value, uint32_t dex_pc = kNoDexPc)
HConstant(kIntConstant,DataType::Type::kInt32,dex_pc)3061 : HConstant(kIntConstant, DataType::Type::kInt32, dex_pc),
3062 value_(value ? 1 : 0) {
3063 }
3064
3065 const int32_t value_;
3066
3067 friend class HGraph;
3068 ART_FRIEND_TEST(GraphTest, InsertInstructionBefore);
3069 ART_FRIEND_TYPED_TEST(ParallelMoveTest, ConstantLast);
3070 };
3071
3072 class HLongConstant final : public HConstant {
3073 public:
GetValue()3074 int64_t GetValue() const { return value_; }
3075
GetValueAsUint64()3076 uint64_t GetValueAsUint64() const override { return value_; }
3077
InstructionDataEquals(const HInstruction * other)3078 bool InstructionDataEquals(const HInstruction* other) const override {
3079 DCHECK(other->IsLongConstant()) << other->DebugName();
3080 return other->AsLongConstant()->value_ == value_;
3081 }
3082
ComputeHashCode()3083 size_t ComputeHashCode() const override { return static_cast<size_t>(GetValue()); }
3084
IsMinusOne()3085 bool IsMinusOne() const override { return GetValue() == -1; }
IsArithmeticZero()3086 bool IsArithmeticZero() const override { return GetValue() == 0; }
IsZeroBitPattern()3087 bool IsZeroBitPattern() const override { return GetValue() == 0; }
IsOne()3088 bool IsOne() const override { return GetValue() == 1; }
3089
3090 DECLARE_INSTRUCTION(LongConstant);
3091
3092 protected:
3093 DEFAULT_COPY_CONSTRUCTOR(LongConstant);
3094
3095 private:
3096 explicit HLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
HConstant(kLongConstant,DataType::Type::kInt64,dex_pc)3097 : HConstant(kLongConstant, DataType::Type::kInt64, dex_pc),
3098 value_(value) {
3099 }
3100
3101 const int64_t value_;
3102
3103 friend class HGraph;
3104 };
3105
3106 class HFloatConstant final : public HConstant {
3107 public:
GetValue()3108 float GetValue() const { return value_; }
3109
GetValueAsUint64()3110 uint64_t GetValueAsUint64() const override {
3111 return static_cast<uint64_t>(bit_cast<uint32_t, float>(value_));
3112 }
3113
InstructionDataEquals(const HInstruction * other)3114 bool InstructionDataEquals(const HInstruction* other) const override {
3115 DCHECK(other->IsFloatConstant()) << other->DebugName();
3116 return other->AsFloatConstant()->GetValueAsUint64() == GetValueAsUint64();
3117 }
3118
ComputeHashCode()3119 size_t ComputeHashCode() const override { return static_cast<size_t>(GetValue()); }
3120
IsMinusOne()3121 bool IsMinusOne() const override {
3122 return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>((-1.0f));
3123 }
IsArithmeticZero()3124 bool IsArithmeticZero() const override {
3125 return std::fpclassify(value_) == FP_ZERO;
3126 }
IsArithmeticPositiveZero()3127 bool IsArithmeticPositiveZero() const {
3128 return IsArithmeticZero() && !std::signbit(value_);
3129 }
IsArithmeticNegativeZero()3130 bool IsArithmeticNegativeZero() const {
3131 return IsArithmeticZero() && std::signbit(value_);
3132 }
IsZeroBitPattern()3133 bool IsZeroBitPattern() const override {
3134 return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(0.0f);
3135 }
IsOne()3136 bool IsOne() const override {
3137 return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(1.0f);
3138 }
IsNaN()3139 bool IsNaN() const {
3140 return std::isnan(value_);
3141 }
3142
3143 DECLARE_INSTRUCTION(FloatConstant);
3144
3145 protected:
3146 DEFAULT_COPY_CONSTRUCTOR(FloatConstant);
3147
3148 private:
3149 explicit HFloatConstant(float value, uint32_t dex_pc = kNoDexPc)
HConstant(kFloatConstant,DataType::Type::kFloat32,dex_pc)3150 : HConstant(kFloatConstant, DataType::Type::kFloat32, dex_pc),
3151 value_(value) {
3152 }
3153 explicit HFloatConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
HConstant(kFloatConstant,DataType::Type::kFloat32,dex_pc)3154 : HConstant(kFloatConstant, DataType::Type::kFloat32, dex_pc),
3155 value_(bit_cast<float, int32_t>(value)) {
3156 }
3157
3158 const float value_;
3159
3160 // Only the SsaBuilder and HGraph can create floating-point constants.
3161 friend class SsaBuilder;
3162 friend class HGraph;
3163 };
3164
3165 class HDoubleConstant final : public HConstant {
3166 public:
GetValue()3167 double GetValue() const { return value_; }
3168
GetValueAsUint64()3169 uint64_t GetValueAsUint64() const override { return bit_cast<uint64_t, double>(value_); }
3170
InstructionDataEquals(const HInstruction * other)3171 bool InstructionDataEquals(const HInstruction* other) const override {
3172 DCHECK(other->IsDoubleConstant()) << other->DebugName();
3173 return other->AsDoubleConstant()->GetValueAsUint64() == GetValueAsUint64();
3174 }
3175
ComputeHashCode()3176 size_t ComputeHashCode() const override { return static_cast<size_t>(GetValue()); }
3177
IsMinusOne()3178 bool IsMinusOne() const override {
3179 return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((-1.0));
3180 }
IsArithmeticZero()3181 bool IsArithmeticZero() const override {
3182 return std::fpclassify(value_) == FP_ZERO;
3183 }
IsArithmeticPositiveZero()3184 bool IsArithmeticPositiveZero() const {
3185 return IsArithmeticZero() && !std::signbit(value_);
3186 }
IsArithmeticNegativeZero()3187 bool IsArithmeticNegativeZero() const {
3188 return IsArithmeticZero() && std::signbit(value_);
3189 }
IsZeroBitPattern()3190 bool IsZeroBitPattern() const override {
3191 return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((0.0));
3192 }
IsOne()3193 bool IsOne() const override {
3194 return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>(1.0);
3195 }
IsNaN()3196 bool IsNaN() const {
3197 return std::isnan(value_);
3198 }
3199
3200 DECLARE_INSTRUCTION(DoubleConstant);
3201
3202 protected:
3203 DEFAULT_COPY_CONSTRUCTOR(DoubleConstant);
3204
3205 private:
3206 explicit HDoubleConstant(double value, uint32_t dex_pc = kNoDexPc)
HConstant(kDoubleConstant,DataType::Type::kFloat64,dex_pc)3207 : HConstant(kDoubleConstant, DataType::Type::kFloat64, dex_pc),
3208 value_(value) {
3209 }
3210 explicit HDoubleConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
HConstant(kDoubleConstant,DataType::Type::kFloat64,dex_pc)3211 : HConstant(kDoubleConstant, DataType::Type::kFloat64, dex_pc),
3212 value_(bit_cast<double, int64_t>(value)) {
3213 }
3214
3215 const double value_;
3216
3217 // Only the SsaBuilder and HGraph can create floating-point constants.
3218 friend class SsaBuilder;
3219 friend class HGraph;
3220 };
3221
3222 // Conditional branch. A block ending with an HIf instruction must have
3223 // two successors.
3224 class HIf final : public HExpression<1> {
3225 public:
3226 explicit HIf(HInstruction* input, uint32_t dex_pc = kNoDexPc)
HExpression(kIf,SideEffects::None (),dex_pc)3227 : HExpression(kIf, SideEffects::None(), dex_pc) {
3228 SetRawInputAt(0, input);
3229 }
3230
IsClonable()3231 bool IsClonable() const override { return true; }
IsControlFlow()3232 bool IsControlFlow() const override { return true; }
3233
IfTrueSuccessor()3234 HBasicBlock* IfTrueSuccessor() const {
3235 return GetBlock()->GetSuccessors()[0];
3236 }
3237
IfFalseSuccessor()3238 HBasicBlock* IfFalseSuccessor() const {
3239 return GetBlock()->GetSuccessors()[1];
3240 }
3241
3242 DECLARE_INSTRUCTION(If);
3243
3244 protected:
3245 DEFAULT_COPY_CONSTRUCTOR(If);
3246 };
3247
3248
3249 // Abstract instruction which marks the beginning and/or end of a try block and
3250 // links it to the respective exception handlers. Behaves the same as a Goto in
3251 // non-exceptional control flow.
3252 // Normal-flow successor is stored at index zero, exception handlers under
3253 // higher indices in no particular order.
3254 class HTryBoundary final : public HExpression<0> {
3255 public:
3256 enum class BoundaryKind {
3257 kEntry,
3258 kExit,
3259 kLast = kExit
3260 };
3261
3262 // SideEffects::CanTriggerGC prevents instructions with SideEffects::DependOnGC to be alive
3263 // across the catch block entering edges as GC might happen during throwing an exception.
3264 // TryBoundary with BoundaryKind::kExit is conservatively used for that as there is no
3265 // HInstruction which a catch block must start from.
3266 explicit HTryBoundary(BoundaryKind kind, uint32_t dex_pc = kNoDexPc)
3267 : HExpression(kTryBoundary,
3268 (kind == BoundaryKind::kExit) ? SideEffects::CanTriggerGC()
3269 : SideEffects::None(),
3270 dex_pc) {
3271 SetPackedField<BoundaryKindField>(kind);
3272 }
3273
IsControlFlow()3274 bool IsControlFlow() const override { return true; }
3275
3276 // Returns the block's non-exceptional successor (index zero).
GetNormalFlowSuccessor()3277 HBasicBlock* GetNormalFlowSuccessor() const { return GetBlock()->GetSuccessors()[0]; }
3278
GetExceptionHandlers()3279 ArrayRef<HBasicBlock* const> GetExceptionHandlers() const {
3280 return ArrayRef<HBasicBlock* const>(GetBlock()->GetSuccessors()).SubArray(1u);
3281 }
3282
3283 // Returns whether `handler` is among its exception handlers (non-zero index
3284 // successors).
HasExceptionHandler(const HBasicBlock & handler)3285 bool HasExceptionHandler(const HBasicBlock& handler) const {
3286 DCHECK(handler.IsCatchBlock());
3287 return GetBlock()->HasSuccessor(&handler, 1u /* Skip first successor. */);
3288 }
3289
3290 // If not present already, adds `handler` to its block's list of exception
3291 // handlers.
AddExceptionHandler(HBasicBlock * handler)3292 void AddExceptionHandler(HBasicBlock* handler) {
3293 if (!HasExceptionHandler(*handler)) {
3294 GetBlock()->AddSuccessor(handler);
3295 }
3296 }
3297
GetBoundaryKind()3298 BoundaryKind GetBoundaryKind() const { return GetPackedField<BoundaryKindField>(); }
IsEntry()3299 bool IsEntry() const { return GetBoundaryKind() == BoundaryKind::kEntry; }
3300
3301 bool HasSameExceptionHandlersAs(const HTryBoundary& other) const;
3302
3303 DECLARE_INSTRUCTION(TryBoundary);
3304
3305 protected:
3306 DEFAULT_COPY_CONSTRUCTOR(TryBoundary);
3307
3308 private:
3309 static constexpr size_t kFieldBoundaryKind = kNumberOfGenericPackedBits;
3310 static constexpr size_t kFieldBoundaryKindSize =
3311 MinimumBitsToStore(static_cast<size_t>(BoundaryKind::kLast));
3312 static constexpr size_t kNumberOfTryBoundaryPackedBits =
3313 kFieldBoundaryKind + kFieldBoundaryKindSize;
3314 static_assert(kNumberOfTryBoundaryPackedBits <= kMaxNumberOfPackedBits,
3315 "Too many packed fields.");
3316 using BoundaryKindField = BitField<BoundaryKind, kFieldBoundaryKind, kFieldBoundaryKindSize>;
3317 };
3318
3319 // Deoptimize to interpreter, upon checking a condition.
3320 class HDeoptimize final : public HVariableInputSizeInstruction {
3321 public:
3322 // Use this constructor when the `HDeoptimize` acts as a barrier, where no code can move
3323 // across.
HDeoptimize(ArenaAllocator * allocator,HInstruction * cond,DeoptimizationKind kind,uint32_t dex_pc)3324 HDeoptimize(ArenaAllocator* allocator,
3325 HInstruction* cond,
3326 DeoptimizationKind kind,
3327 uint32_t dex_pc)
3328 : HVariableInputSizeInstruction(
3329 kDeoptimize,
3330 SideEffects::All(),
3331 dex_pc,
3332 allocator,
3333 /* number_of_inputs= */ 1,
3334 kArenaAllocMisc) {
3335 SetPackedFlag<kFieldCanBeMoved>(false);
3336 SetPackedField<DeoptimizeKindField>(kind);
3337 SetRawInputAt(0, cond);
3338 }
3339
IsClonable()3340 bool IsClonable() const override { return true; }
3341
3342 // Use this constructor when the `HDeoptimize` guards an instruction, and any user
3343 // that relies on the deoptimization to pass should have its input be the `HDeoptimize`
3344 // instead of `guard`.
3345 // We set CanTriggerGC to prevent any intermediate address to be live
3346 // at the point of the `HDeoptimize`.
HDeoptimize(ArenaAllocator * allocator,HInstruction * cond,HInstruction * guard,DeoptimizationKind kind,uint32_t dex_pc)3347 HDeoptimize(ArenaAllocator* allocator,
3348 HInstruction* cond,
3349 HInstruction* guard,
3350 DeoptimizationKind kind,
3351 uint32_t dex_pc)
3352 : HVariableInputSizeInstruction(
3353 kDeoptimize,
3354 guard->GetType(),
3355 SideEffects::CanTriggerGC(),
3356 dex_pc,
3357 allocator,
3358 /* number_of_inputs= */ 2,
3359 kArenaAllocMisc) {
3360 SetPackedFlag<kFieldCanBeMoved>(true);
3361 SetPackedField<DeoptimizeKindField>(kind);
3362 SetRawInputAt(0, cond);
3363 SetRawInputAt(1, guard);
3364 }
3365
CanBeMoved()3366 bool CanBeMoved() const override { return GetPackedFlag<kFieldCanBeMoved>(); }
3367
InstructionDataEquals(const HInstruction * other)3368 bool InstructionDataEquals(const HInstruction* other) const override {
3369 return (other->CanBeMoved() == CanBeMoved()) && (other->AsDeoptimize()->GetKind() == GetKind());
3370 }
3371
NeedsEnvironment()3372 bool NeedsEnvironment() const override { return true; }
3373
CanThrow()3374 bool CanThrow() const override { return true; }
3375
GetDeoptimizationKind()3376 DeoptimizationKind GetDeoptimizationKind() const { return GetPackedField<DeoptimizeKindField>(); }
3377
GuardsAnInput()3378 bool GuardsAnInput() const {
3379 return InputCount() == 2;
3380 }
3381
GuardedInput()3382 HInstruction* GuardedInput() const {
3383 DCHECK(GuardsAnInput());
3384 return InputAt(1);
3385 }
3386
RemoveGuard()3387 void RemoveGuard() {
3388 RemoveInputAt(1);
3389 }
3390
3391 DECLARE_INSTRUCTION(Deoptimize);
3392
3393 protected:
3394 DEFAULT_COPY_CONSTRUCTOR(Deoptimize);
3395
3396 private:
3397 static constexpr size_t kFieldCanBeMoved = kNumberOfGenericPackedBits;
3398 static constexpr size_t kFieldDeoptimizeKind = kNumberOfGenericPackedBits + 1;
3399 static constexpr size_t kFieldDeoptimizeKindSize =
3400 MinimumBitsToStore(static_cast<size_t>(DeoptimizationKind::kLast));
3401 static constexpr size_t kNumberOfDeoptimizePackedBits =
3402 kFieldDeoptimizeKind + kFieldDeoptimizeKindSize;
3403 static_assert(kNumberOfDeoptimizePackedBits <= kMaxNumberOfPackedBits,
3404 "Too many packed fields.");
3405 using DeoptimizeKindField =
3406 BitField<DeoptimizationKind, kFieldDeoptimizeKind, kFieldDeoptimizeKindSize>;
3407 };
3408
3409 // Represents a should_deoptimize flag. Currently used for CHA-based devirtualization.
3410 // The compiled code checks this flag value in a guard before devirtualized call and
3411 // if it's true, starts to do deoptimization.
3412 // It has a 4-byte slot on stack.
3413 // TODO: allocate a register for this flag.
3414 class HShouldDeoptimizeFlag final : public HVariableInputSizeInstruction {
3415 public:
3416 // CHA guards are only optimized in a separate pass and it has no side effects
3417 // with regard to other passes.
HShouldDeoptimizeFlag(ArenaAllocator * allocator,uint32_t dex_pc)3418 HShouldDeoptimizeFlag(ArenaAllocator* allocator, uint32_t dex_pc)
3419 : HVariableInputSizeInstruction(kShouldDeoptimizeFlag,
3420 DataType::Type::kInt32,
3421 SideEffects::None(),
3422 dex_pc,
3423 allocator,
3424 0,
3425 kArenaAllocCHA) {
3426 }
3427
3428 // We do all CHA guard elimination/motion in a single pass, after which there is no
3429 // further guard elimination/motion since a guard might have been used for justification
3430 // of the elimination of another guard. Therefore, we pretend this guard cannot be moved
3431 // to avoid other optimizations trying to move it.
CanBeMoved()3432 bool CanBeMoved() const override { return false; }
3433
3434 DECLARE_INSTRUCTION(ShouldDeoptimizeFlag);
3435
3436 protected:
3437 DEFAULT_COPY_CONSTRUCTOR(ShouldDeoptimizeFlag);
3438 };
3439
3440 // Represents the ArtMethod that was passed as a first argument to
3441 // the method. It is used by instructions that depend on it, like
3442 // instructions that work with the dex cache.
3443 class HCurrentMethod final : public HExpression<0> {
3444 public:
3445 explicit HCurrentMethod(DataType::Type type, uint32_t dex_pc = kNoDexPc)
HExpression(kCurrentMethod,type,SideEffects::None (),dex_pc)3446 : HExpression(kCurrentMethod, type, SideEffects::None(), dex_pc) {
3447 }
3448
3449 DECLARE_INSTRUCTION(CurrentMethod);
3450
3451 protected:
3452 DEFAULT_COPY_CONSTRUCTOR(CurrentMethod);
3453 };
3454
3455 // Fetches an ArtMethod from the virtual table or the interface method table
3456 // of a class.
3457 class HClassTableGet final : public HExpression<1> {
3458 public:
3459 enum class TableKind {
3460 kVTable,
3461 kIMTable,
3462 kLast = kIMTable
3463 };
HClassTableGet(HInstruction * cls,DataType::Type type,TableKind kind,size_t index,uint32_t dex_pc)3464 HClassTableGet(HInstruction* cls,
3465 DataType::Type type,
3466 TableKind kind,
3467 size_t index,
3468 uint32_t dex_pc)
3469 : HExpression(kClassTableGet, type, SideEffects::None(), dex_pc),
3470 index_(index) {
3471 SetPackedField<TableKindField>(kind);
3472 SetRawInputAt(0, cls);
3473 }
3474
IsClonable()3475 bool IsClonable() const override { return true; }
CanBeMoved()3476 bool CanBeMoved() const override { return true; }
InstructionDataEquals(const HInstruction * other)3477 bool InstructionDataEquals(const HInstruction* other) const override {
3478 return other->AsClassTableGet()->GetIndex() == index_ &&
3479 other->AsClassTableGet()->GetPackedFields() == GetPackedFields();
3480 }
3481
GetTableKind()3482 TableKind GetTableKind() const { return GetPackedField<TableKindField>(); }
GetIndex()3483 size_t GetIndex() const { return index_; }
3484
3485 DECLARE_INSTRUCTION(ClassTableGet);
3486
3487 protected:
3488 DEFAULT_COPY_CONSTRUCTOR(ClassTableGet);
3489
3490 private:
3491 static constexpr size_t kFieldTableKind = kNumberOfGenericPackedBits;
3492 static constexpr size_t kFieldTableKindSize =
3493 MinimumBitsToStore(static_cast<size_t>(TableKind::kLast));
3494 static constexpr size_t kNumberOfClassTableGetPackedBits = kFieldTableKind + kFieldTableKindSize;
3495 static_assert(kNumberOfClassTableGetPackedBits <= kMaxNumberOfPackedBits,
3496 "Too many packed fields.");
3497 using TableKindField = BitField<TableKind, kFieldTableKind, kFieldTableKind>;
3498
3499 // The index of the ArtMethod in the table.
3500 const size_t index_;
3501 };
3502
3503 // PackedSwitch (jump table). A block ending with a PackedSwitch instruction will
3504 // have one successor for each entry in the switch table, and the final successor
3505 // will be the block containing the next Dex opcode.
3506 class HPackedSwitch final : public HExpression<1> {
3507 public:
3508 HPackedSwitch(int32_t start_value,
3509 uint32_t num_entries,
3510 HInstruction* input,
3511 uint32_t dex_pc = kNoDexPc)
HExpression(kPackedSwitch,SideEffects::None (),dex_pc)3512 : HExpression(kPackedSwitch, SideEffects::None(), dex_pc),
3513 start_value_(start_value),
3514 num_entries_(num_entries) {
3515 SetRawInputAt(0, input);
3516 }
3517
IsClonable()3518 bool IsClonable() const override { return true; }
3519
IsControlFlow()3520 bool IsControlFlow() const override { return true; }
3521
GetStartValue()3522 int32_t GetStartValue() const { return start_value_; }
3523
GetNumEntries()3524 uint32_t GetNumEntries() const { return num_entries_; }
3525
GetDefaultBlock()3526 HBasicBlock* GetDefaultBlock() const {
3527 // Last entry is the default block.
3528 return GetBlock()->GetSuccessors()[num_entries_];
3529 }
3530 DECLARE_INSTRUCTION(PackedSwitch);
3531
3532 protected:
3533 DEFAULT_COPY_CONSTRUCTOR(PackedSwitch);
3534
3535 private:
3536 const int32_t start_value_;
3537 const uint32_t num_entries_;
3538 };
3539
3540 class HUnaryOperation : public HExpression<1> {
3541 public:
3542 HUnaryOperation(InstructionKind kind,
3543 DataType::Type result_type,
3544 HInstruction* input,
3545 uint32_t dex_pc = kNoDexPc)
HExpression(kind,result_type,SideEffects::None (),dex_pc)3546 : HExpression(kind, result_type, SideEffects::None(), dex_pc) {
3547 SetRawInputAt(0, input);
3548 }
3549
3550 // All of the UnaryOperation instructions are clonable.
IsClonable()3551 bool IsClonable() const override { return true; }
3552
GetInput()3553 HInstruction* GetInput() const { return InputAt(0); }
GetResultType()3554 DataType::Type GetResultType() const { return GetType(); }
3555
CanBeMoved()3556 bool CanBeMoved() const override { return true; }
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)3557 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
3558 return true;
3559 }
3560
3561 // Try to statically evaluate `this` and return a HConstant
3562 // containing the result of this evaluation. If `this` cannot
3563 // be evaluated as a constant, return null.
3564 HConstant* TryStaticEvaluation() const;
3565
3566 // Apply this operation to `x`.
3567 virtual HConstant* Evaluate(HIntConstant* x) const = 0;
3568 virtual HConstant* Evaluate(HLongConstant* x) const = 0;
3569 virtual HConstant* Evaluate(HFloatConstant* x) const = 0;
3570 virtual HConstant* Evaluate(HDoubleConstant* x) const = 0;
3571
3572 DECLARE_ABSTRACT_INSTRUCTION(UnaryOperation);
3573
3574 protected:
3575 DEFAULT_COPY_CONSTRUCTOR(UnaryOperation);
3576 };
3577
3578 class HBinaryOperation : public HExpression<2> {
3579 public:
3580 HBinaryOperation(InstructionKind kind,
3581 DataType::Type result_type,
3582 HInstruction* left,
3583 HInstruction* right,
3584 SideEffects side_effects = SideEffects::None(),
3585 uint32_t dex_pc = kNoDexPc)
HExpression(kind,result_type,side_effects,dex_pc)3586 : HExpression(kind, result_type, side_effects, dex_pc) {
3587 SetRawInputAt(0, left);
3588 SetRawInputAt(1, right);
3589 }
3590
3591 // All of the BinaryOperation instructions are clonable.
IsClonable()3592 bool IsClonable() const override { return true; }
3593
GetLeft()3594 HInstruction* GetLeft() const { return InputAt(0); }
GetRight()3595 HInstruction* GetRight() const { return InputAt(1); }
GetResultType()3596 DataType::Type GetResultType() const { return GetType(); }
3597
IsCommutative()3598 virtual bool IsCommutative() const { return false; }
3599
3600 // Put constant on the right.
3601 // Returns whether order is changed.
OrderInputsWithConstantOnTheRight()3602 bool OrderInputsWithConstantOnTheRight() {
3603 HInstruction* left = InputAt(0);
3604 HInstruction* right = InputAt(1);
3605 if (left->IsConstant() && !right->IsConstant()) {
3606 ReplaceInput(right, 0);
3607 ReplaceInput(left, 1);
3608 return true;
3609 }
3610 return false;
3611 }
3612
3613 // Order inputs by instruction id, but favor constant on the right side.
3614 // This helps GVN for commutative ops.
OrderInputs()3615 void OrderInputs() {
3616 DCHECK(IsCommutative());
3617 HInstruction* left = InputAt(0);
3618 HInstruction* right = InputAt(1);
3619 if (left == right || (!left->IsConstant() && right->IsConstant())) {
3620 return;
3621 }
3622 if (OrderInputsWithConstantOnTheRight()) {
3623 return;
3624 }
3625 // Order according to instruction id.
3626 if (left->GetId() > right->GetId()) {
3627 ReplaceInput(right, 0);
3628 ReplaceInput(left, 1);
3629 }
3630 }
3631
CanBeMoved()3632 bool CanBeMoved() const override { return true; }
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)3633 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
3634 return true;
3635 }
3636
3637 // Try to statically evaluate `this` and return a HConstant
3638 // containing the result of this evaluation. If `this` cannot
3639 // be evaluated as a constant, return null.
3640 HConstant* TryStaticEvaluation() const;
3641
3642 // Apply this operation to `x` and `y`.
Evaluate(HNullConstant * x ATTRIBUTE_UNUSED,HNullConstant * y ATTRIBUTE_UNUSED)3643 virtual HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
3644 HNullConstant* y ATTRIBUTE_UNUSED) const {
3645 LOG(FATAL) << DebugName() << " is not defined for the (null, null) case.";
3646 UNREACHABLE();
3647 }
3648 virtual HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const = 0;
3649 virtual HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const = 0;
Evaluate(HLongConstant * x ATTRIBUTE_UNUSED,HIntConstant * y ATTRIBUTE_UNUSED)3650 virtual HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED,
3651 HIntConstant* y ATTRIBUTE_UNUSED) const {
3652 LOG(FATAL) << DebugName() << " is not defined for the (long, int) case.";
3653 UNREACHABLE();
3654 }
3655 virtual HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const = 0;
3656 virtual HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const = 0;
3657
3658 // Returns an input that can legally be used as the right input and is
3659 // constant, or null.
3660 HConstant* GetConstantRight() const;
3661
3662 // If `GetConstantRight()` returns one of the input, this returns the other
3663 // one. Otherwise it returns null.
3664 HInstruction* GetLeastConstantLeft() const;
3665
3666 DECLARE_ABSTRACT_INSTRUCTION(BinaryOperation);
3667
3668 protected:
3669 DEFAULT_COPY_CONSTRUCTOR(BinaryOperation);
3670 };
3671
3672 // The comparison bias applies for floating point operations and indicates how NaN
3673 // comparisons are treated:
3674 enum class ComparisonBias { // private marker to avoid generate-operator-out.py from processing.
3675 kNoBias, // bias is not applicable (i.e. for long operation)
3676 kGtBias, // return 1 for NaN comparisons
3677 kLtBias, // return -1 for NaN comparisons
3678 kLast = kLtBias
3679 };
3680
3681 std::ostream& operator<<(std::ostream& os, ComparisonBias rhs);
3682
3683 class HCondition : public HBinaryOperation {
3684 public:
3685 HCondition(InstructionKind kind,
3686 HInstruction* first,
3687 HInstruction* second,
3688 uint32_t dex_pc = kNoDexPc)
HBinaryOperation(kind,DataType::Type::kBool,first,second,SideEffects::None (),dex_pc)3689 : HBinaryOperation(kind,
3690 DataType::Type::kBool,
3691 first,
3692 second,
3693 SideEffects::None(),
3694 dex_pc) {
3695 SetPackedField<ComparisonBiasField>(ComparisonBias::kNoBias);
3696 }
3697
3698 // For code generation purposes, returns whether this instruction is just before
3699 // `instruction`, and disregard moves in between.
3700 bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const;
3701
3702 DECLARE_ABSTRACT_INSTRUCTION(Condition);
3703
3704 virtual IfCondition GetCondition() const = 0;
3705
3706 virtual IfCondition GetOppositeCondition() const = 0;
3707
IsGtBias()3708 bool IsGtBias() const { return GetBias() == ComparisonBias::kGtBias; }
IsLtBias()3709 bool IsLtBias() const { return GetBias() == ComparisonBias::kLtBias; }
3710
GetBias()3711 ComparisonBias GetBias() const { return GetPackedField<ComparisonBiasField>(); }
SetBias(ComparisonBias bias)3712 void SetBias(ComparisonBias bias) { SetPackedField<ComparisonBiasField>(bias); }
3713
InstructionDataEquals(const HInstruction * other)3714 bool InstructionDataEquals(const HInstruction* other) const override {
3715 return GetPackedFields() == other->AsCondition()->GetPackedFields();
3716 }
3717
IsFPConditionTrueIfNaN()3718 bool IsFPConditionTrueIfNaN() const {
3719 DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
3720 IfCondition if_cond = GetCondition();
3721 if (if_cond == kCondNE) {
3722 return true;
3723 } else if (if_cond == kCondEQ) {
3724 return false;
3725 }
3726 return ((if_cond == kCondGT) || (if_cond == kCondGE)) && IsGtBias();
3727 }
3728
IsFPConditionFalseIfNaN()3729 bool IsFPConditionFalseIfNaN() const {
3730 DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
3731 IfCondition if_cond = GetCondition();
3732 if (if_cond == kCondEQ) {
3733 return true;
3734 } else if (if_cond == kCondNE) {
3735 return false;
3736 }
3737 return ((if_cond == kCondLT) || (if_cond == kCondLE)) && IsGtBias();
3738 }
3739
3740 protected:
3741 // Needed if we merge a HCompare into a HCondition.
3742 static constexpr size_t kFieldComparisonBias = kNumberOfGenericPackedBits;
3743 static constexpr size_t kFieldComparisonBiasSize =
3744 MinimumBitsToStore(static_cast<size_t>(ComparisonBias::kLast));
3745 static constexpr size_t kNumberOfConditionPackedBits =
3746 kFieldComparisonBias + kFieldComparisonBiasSize;
3747 static_assert(kNumberOfConditionPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
3748 using ComparisonBiasField =
3749 BitField<ComparisonBias, kFieldComparisonBias, kFieldComparisonBiasSize>;
3750
3751 template <typename T>
Compare(T x,T y)3752 int32_t Compare(T x, T y) const { return x > y ? 1 : (x < y ? -1 : 0); }
3753
3754 template <typename T>
CompareFP(T x,T y)3755 int32_t CompareFP(T x, T y) const {
3756 DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
3757 DCHECK_NE(GetBias(), ComparisonBias::kNoBias);
3758 // Handle the bias.
3759 return std::isunordered(x, y) ? (IsGtBias() ? 1 : -1) : Compare(x, y);
3760 }
3761
3762 // Return an integer constant containing the result of a condition evaluated at compile time.
MakeConstantCondition(bool value,uint32_t dex_pc)3763 HIntConstant* MakeConstantCondition(bool value, uint32_t dex_pc) const {
3764 return GetBlock()->GetGraph()->GetIntConstant(value, dex_pc);
3765 }
3766
3767 DEFAULT_COPY_CONSTRUCTOR(Condition);
3768 };
3769
3770 // Instruction to check if two inputs are equal to each other.
3771 class HEqual final : public HCondition {
3772 public:
3773 HEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
HCondition(kEqual,first,second,dex_pc)3774 : HCondition(kEqual, first, second, dex_pc) {
3775 }
3776
IsCommutative()3777 bool IsCommutative() const override { return true; }
3778
Evaluate(HNullConstant * x ATTRIBUTE_UNUSED,HNullConstant * y ATTRIBUTE_UNUSED)3779 HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
3780 HNullConstant* y ATTRIBUTE_UNUSED) const override {
3781 return MakeConstantCondition(true, GetDexPc());
3782 }
Evaluate(HIntConstant * x,HIntConstant * y)3783 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
3784 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3785 }
3786 // In the following Evaluate methods, a HCompare instruction has
3787 // been merged into this HEqual instruction; evaluate it as
3788 // `Compare(x, y) == 0`.
Evaluate(HLongConstant * x,HLongConstant * y)3789 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
3790 return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0),
3791 GetDexPc());
3792 }
Evaluate(HFloatConstant * x,HFloatConstant * y)3793 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
3794 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3795 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)3796 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
3797 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3798 }
3799
3800 DECLARE_INSTRUCTION(Equal);
3801
GetCondition()3802 IfCondition GetCondition() const override {
3803 return kCondEQ;
3804 }
3805
GetOppositeCondition()3806 IfCondition GetOppositeCondition() const override {
3807 return kCondNE;
3808 }
3809
3810 protected:
3811 DEFAULT_COPY_CONSTRUCTOR(Equal);
3812
3813 private:
Compute(T x,T y)3814 template <typename T> static bool Compute(T x, T y) { return x == y; }
3815 };
3816
3817 class HNotEqual final : public HCondition {
3818 public:
3819 HNotEqual(HInstruction* first, HInstruction* second,
3820 uint32_t dex_pc = kNoDexPc)
HCondition(kNotEqual,first,second,dex_pc)3821 : HCondition(kNotEqual, first, second, dex_pc) {
3822 }
3823
IsCommutative()3824 bool IsCommutative() const override { return true; }
3825
Evaluate(HNullConstant * x ATTRIBUTE_UNUSED,HNullConstant * y ATTRIBUTE_UNUSED)3826 HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
3827 HNullConstant* y ATTRIBUTE_UNUSED) const override {
3828 return MakeConstantCondition(false, GetDexPc());
3829 }
Evaluate(HIntConstant * x,HIntConstant * y)3830 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
3831 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3832 }
3833 // In the following Evaluate methods, a HCompare instruction has
3834 // been merged into this HNotEqual instruction; evaluate it as
3835 // `Compare(x, y) != 0`.
Evaluate(HLongConstant * x,HLongConstant * y)3836 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
3837 return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
3838 }
Evaluate(HFloatConstant * x,HFloatConstant * y)3839 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
3840 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3841 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)3842 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
3843 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3844 }
3845
3846 DECLARE_INSTRUCTION(NotEqual);
3847
GetCondition()3848 IfCondition GetCondition() const override {
3849 return kCondNE;
3850 }
3851
GetOppositeCondition()3852 IfCondition GetOppositeCondition() const override {
3853 return kCondEQ;
3854 }
3855
3856 protected:
3857 DEFAULT_COPY_CONSTRUCTOR(NotEqual);
3858
3859 private:
Compute(T x,T y)3860 template <typename T> static bool Compute(T x, T y) { return x != y; }
3861 };
3862
3863 class HLessThan final : public HCondition {
3864 public:
3865 HLessThan(HInstruction* first, HInstruction* second,
3866 uint32_t dex_pc = kNoDexPc)
HCondition(kLessThan,first,second,dex_pc)3867 : HCondition(kLessThan, first, second, dex_pc) {
3868 }
3869
Evaluate(HIntConstant * x,HIntConstant * y)3870 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
3871 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3872 }
3873 // In the following Evaluate methods, a HCompare instruction has
3874 // been merged into this HLessThan instruction; evaluate it as
3875 // `Compare(x, y) < 0`.
Evaluate(HLongConstant * x,HLongConstant * y)3876 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
3877 return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
3878 }
Evaluate(HFloatConstant * x,HFloatConstant * y)3879 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
3880 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3881 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)3882 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
3883 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3884 }
3885
3886 DECLARE_INSTRUCTION(LessThan);
3887
GetCondition()3888 IfCondition GetCondition() const override {
3889 return kCondLT;
3890 }
3891
GetOppositeCondition()3892 IfCondition GetOppositeCondition() const override {
3893 return kCondGE;
3894 }
3895
3896 protected:
3897 DEFAULT_COPY_CONSTRUCTOR(LessThan);
3898
3899 private:
Compute(T x,T y)3900 template <typename T> static bool Compute(T x, T y) { return x < y; }
3901 };
3902
3903 class HLessThanOrEqual final : public HCondition {
3904 public:
3905 HLessThanOrEqual(HInstruction* first, HInstruction* second,
3906 uint32_t dex_pc = kNoDexPc)
HCondition(kLessThanOrEqual,first,second,dex_pc)3907 : HCondition(kLessThanOrEqual, first, second, dex_pc) {
3908 }
3909
Evaluate(HIntConstant * x,HIntConstant * y)3910 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
3911 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3912 }
3913 // In the following Evaluate methods, a HCompare instruction has
3914 // been merged into this HLessThanOrEqual instruction; evaluate it as
3915 // `Compare(x, y) <= 0`.
Evaluate(HLongConstant * x,HLongConstant * y)3916 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
3917 return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
3918 }
Evaluate(HFloatConstant * x,HFloatConstant * y)3919 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
3920 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3921 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)3922 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
3923 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3924 }
3925
3926 DECLARE_INSTRUCTION(LessThanOrEqual);
3927
GetCondition()3928 IfCondition GetCondition() const override {
3929 return kCondLE;
3930 }
3931
GetOppositeCondition()3932 IfCondition GetOppositeCondition() const override {
3933 return kCondGT;
3934 }
3935
3936 protected:
3937 DEFAULT_COPY_CONSTRUCTOR(LessThanOrEqual);
3938
3939 private:
Compute(T x,T y)3940 template <typename T> static bool Compute(T x, T y) { return x <= y; }
3941 };
3942
3943 class HGreaterThan final : public HCondition {
3944 public:
3945 HGreaterThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
HCondition(kGreaterThan,first,second,dex_pc)3946 : HCondition(kGreaterThan, first, second, dex_pc) {
3947 }
3948
Evaluate(HIntConstant * x,HIntConstant * y)3949 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
3950 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3951 }
3952 // In the following Evaluate methods, a HCompare instruction has
3953 // been merged into this HGreaterThan instruction; evaluate it as
3954 // `Compare(x, y) > 0`.
Evaluate(HLongConstant * x,HLongConstant * y)3955 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
3956 return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
3957 }
Evaluate(HFloatConstant * x,HFloatConstant * y)3958 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
3959 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3960 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)3961 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
3962 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3963 }
3964
3965 DECLARE_INSTRUCTION(GreaterThan);
3966
GetCondition()3967 IfCondition GetCondition() const override {
3968 return kCondGT;
3969 }
3970
GetOppositeCondition()3971 IfCondition GetOppositeCondition() const override {
3972 return kCondLE;
3973 }
3974
3975 protected:
3976 DEFAULT_COPY_CONSTRUCTOR(GreaterThan);
3977
3978 private:
Compute(T x,T y)3979 template <typename T> static bool Compute(T x, T y) { return x > y; }
3980 };
3981
3982 class HGreaterThanOrEqual final : public HCondition {
3983 public:
3984 HGreaterThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
HCondition(kGreaterThanOrEqual,first,second,dex_pc)3985 : HCondition(kGreaterThanOrEqual, first, second, dex_pc) {
3986 }
3987
Evaluate(HIntConstant * x,HIntConstant * y)3988 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
3989 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
3990 }
3991 // In the following Evaluate methods, a HCompare instruction has
3992 // been merged into this HGreaterThanOrEqual instruction; evaluate it as
3993 // `Compare(x, y) >= 0`.
Evaluate(HLongConstant * x,HLongConstant * y)3994 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
3995 return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
3996 }
Evaluate(HFloatConstant * x,HFloatConstant * y)3997 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
3998 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
3999 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)4000 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
4001 return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
4002 }
4003
4004 DECLARE_INSTRUCTION(GreaterThanOrEqual);
4005
GetCondition()4006 IfCondition GetCondition() const override {
4007 return kCondGE;
4008 }
4009
GetOppositeCondition()4010 IfCondition GetOppositeCondition() const override {
4011 return kCondLT;
4012 }
4013
4014 protected:
4015 DEFAULT_COPY_CONSTRUCTOR(GreaterThanOrEqual);
4016
4017 private:
Compute(T x,T y)4018 template <typename T> static bool Compute(T x, T y) { return x >= y; }
4019 };
4020
4021 class HBelow final : public HCondition {
4022 public:
4023 HBelow(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
HCondition(kBelow,first,second,dex_pc)4024 : HCondition(kBelow, first, second, dex_pc) {
4025 }
4026
Evaluate(HIntConstant * x,HIntConstant * y)4027 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4028 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4029 }
Evaluate(HLongConstant * x,HLongConstant * y)4030 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4031 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4032 }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)4033 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
4034 HFloatConstant* y ATTRIBUTE_UNUSED) const override {
4035 LOG(FATAL) << DebugName() << " is not defined for float values";
4036 UNREACHABLE();
4037 }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)4038 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
4039 HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
4040 LOG(FATAL) << DebugName() << " is not defined for double values";
4041 UNREACHABLE();
4042 }
4043
4044 DECLARE_INSTRUCTION(Below);
4045
GetCondition()4046 IfCondition GetCondition() const override {
4047 return kCondB;
4048 }
4049
GetOppositeCondition()4050 IfCondition GetOppositeCondition() const override {
4051 return kCondAE;
4052 }
4053
4054 protected:
4055 DEFAULT_COPY_CONSTRUCTOR(Below);
4056
4057 private:
Compute(T x,T y)4058 template <typename T> static bool Compute(T x, T y) {
4059 return MakeUnsigned(x) < MakeUnsigned(y);
4060 }
4061 };
4062
4063 class HBelowOrEqual final : public HCondition {
4064 public:
4065 HBelowOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
HCondition(kBelowOrEqual,first,second,dex_pc)4066 : HCondition(kBelowOrEqual, first, second, dex_pc) {
4067 }
4068
Evaluate(HIntConstant * x,HIntConstant * y)4069 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4070 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4071 }
Evaluate(HLongConstant * x,HLongConstant * y)4072 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4073 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4074 }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)4075 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
4076 HFloatConstant* y ATTRIBUTE_UNUSED) const override {
4077 LOG(FATAL) << DebugName() << " is not defined for float values";
4078 UNREACHABLE();
4079 }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)4080 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
4081 HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
4082 LOG(FATAL) << DebugName() << " is not defined for double values";
4083 UNREACHABLE();
4084 }
4085
4086 DECLARE_INSTRUCTION(BelowOrEqual);
4087
GetCondition()4088 IfCondition GetCondition() const override {
4089 return kCondBE;
4090 }
4091
GetOppositeCondition()4092 IfCondition GetOppositeCondition() const override {
4093 return kCondA;
4094 }
4095
4096 protected:
4097 DEFAULT_COPY_CONSTRUCTOR(BelowOrEqual);
4098
4099 private:
Compute(T x,T y)4100 template <typename T> static bool Compute(T x, T y) {
4101 return MakeUnsigned(x) <= MakeUnsigned(y);
4102 }
4103 };
4104
4105 class HAbove final : public HCondition {
4106 public:
4107 HAbove(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
HCondition(kAbove,first,second,dex_pc)4108 : HCondition(kAbove, first, second, dex_pc) {
4109 }
4110
Evaluate(HIntConstant * x,HIntConstant * y)4111 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4112 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4113 }
Evaluate(HLongConstant * x,HLongConstant * y)4114 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4115 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4116 }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)4117 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
4118 HFloatConstant* y ATTRIBUTE_UNUSED) const override {
4119 LOG(FATAL) << DebugName() << " is not defined for float values";
4120 UNREACHABLE();
4121 }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)4122 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
4123 HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
4124 LOG(FATAL) << DebugName() << " is not defined for double values";
4125 UNREACHABLE();
4126 }
4127
4128 DECLARE_INSTRUCTION(Above);
4129
GetCondition()4130 IfCondition GetCondition() const override {
4131 return kCondA;
4132 }
4133
GetOppositeCondition()4134 IfCondition GetOppositeCondition() const override {
4135 return kCondBE;
4136 }
4137
4138 protected:
4139 DEFAULT_COPY_CONSTRUCTOR(Above);
4140
4141 private:
Compute(T x,T y)4142 template <typename T> static bool Compute(T x, T y) {
4143 return MakeUnsigned(x) > MakeUnsigned(y);
4144 }
4145 };
4146
4147 class HAboveOrEqual final : public HCondition {
4148 public:
4149 HAboveOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
HCondition(kAboveOrEqual,first,second,dex_pc)4150 : HCondition(kAboveOrEqual, first, second, dex_pc) {
4151 }
4152
Evaluate(HIntConstant * x,HIntConstant * y)4153 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4154 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4155 }
Evaluate(HLongConstant * x,HLongConstant * y)4156 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4157 return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4158 }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)4159 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
4160 HFloatConstant* y ATTRIBUTE_UNUSED) const override {
4161 LOG(FATAL) << DebugName() << " is not defined for float values";
4162 UNREACHABLE();
4163 }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)4164 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
4165 HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
4166 LOG(FATAL) << DebugName() << " is not defined for double values";
4167 UNREACHABLE();
4168 }
4169
4170 DECLARE_INSTRUCTION(AboveOrEqual);
4171
GetCondition()4172 IfCondition GetCondition() const override {
4173 return kCondAE;
4174 }
4175
GetOppositeCondition()4176 IfCondition GetOppositeCondition() const override {
4177 return kCondB;
4178 }
4179
4180 protected:
4181 DEFAULT_COPY_CONSTRUCTOR(AboveOrEqual);
4182
4183 private:
Compute(T x,T y)4184 template <typename T> static bool Compute(T x, T y) {
4185 return MakeUnsigned(x) >= MakeUnsigned(y);
4186 }
4187 };
4188
4189 // Instruction to check how two inputs compare to each other.
4190 // Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1.
4191 class HCompare final : public HBinaryOperation {
4192 public:
4193 // Note that `comparison_type` is the type of comparison performed
4194 // between the comparison's inputs, not the type of the instantiated
4195 // HCompare instruction (which is always DataType::Type::kInt).
HCompare(DataType::Type comparison_type,HInstruction * first,HInstruction * second,ComparisonBias bias,uint32_t dex_pc)4196 HCompare(DataType::Type comparison_type,
4197 HInstruction* first,
4198 HInstruction* second,
4199 ComparisonBias bias,
4200 uint32_t dex_pc)
4201 : HBinaryOperation(kCompare,
4202 DataType::Type::kInt32,
4203 first,
4204 second,
4205 SideEffectsForArchRuntimeCalls(comparison_type),
4206 dex_pc) {
4207 SetPackedField<ComparisonBiasField>(bias);
4208 }
4209
4210 template <typename T>
Compute(T x,T y)4211 int32_t Compute(T x, T y) const { return x > y ? 1 : (x < y ? -1 : 0); }
4212
4213 template <typename T>
ComputeFP(T x,T y)4214 int32_t ComputeFP(T x, T y) const {
4215 DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
4216 DCHECK_NE(GetBias(), ComparisonBias::kNoBias);
4217 // Handle the bias.
4218 return std::isunordered(x, y) ? (IsGtBias() ? 1 : -1) : Compute(x, y);
4219 }
4220
Evaluate(HIntConstant * x,HIntConstant * y)4221 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
4222 // Note that there is no "cmp-int" Dex instruction so we shouldn't
4223 // reach this code path when processing a freshly built HIR
4224 // graph. However HCompare integer instructions can be synthesized
4225 // by the instruction simplifier to implement IntegerCompare and
4226 // IntegerSignum intrinsics, so we have to handle this case.
4227 return MakeConstantComparison(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4228 }
Evaluate(HLongConstant * x,HLongConstant * y)4229 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
4230 return MakeConstantComparison(Compute(x->GetValue(), y->GetValue()), GetDexPc());
4231 }
Evaluate(HFloatConstant * x,HFloatConstant * y)4232 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
4233 return MakeConstantComparison(ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
4234 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)4235 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
4236 return MakeConstantComparison(ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
4237 }
4238
InstructionDataEquals(const HInstruction * other)4239 bool InstructionDataEquals(const HInstruction* other) const override {
4240 return GetPackedFields() == other->AsCompare()->GetPackedFields();
4241 }
4242
GetBias()4243 ComparisonBias GetBias() const { return GetPackedField<ComparisonBiasField>(); }
4244
4245 // Does this compare instruction have a "gt bias" (vs an "lt bias")?
4246 // Only meaningful for floating-point comparisons.
IsGtBias()4247 bool IsGtBias() const {
4248 DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
4249 return GetBias() == ComparisonBias::kGtBias;
4250 }
4251
SideEffectsForArchRuntimeCalls(DataType::Type type ATTRIBUTE_UNUSED)4252 static SideEffects SideEffectsForArchRuntimeCalls(DataType::Type type ATTRIBUTE_UNUSED) {
4253 // Comparisons do not require a runtime call in any back end.
4254 return SideEffects::None();
4255 }
4256
4257 DECLARE_INSTRUCTION(Compare);
4258
4259 protected:
4260 static constexpr size_t kFieldComparisonBias = kNumberOfGenericPackedBits;
4261 static constexpr size_t kFieldComparisonBiasSize =
4262 MinimumBitsToStore(static_cast<size_t>(ComparisonBias::kLast));
4263 static constexpr size_t kNumberOfComparePackedBits =
4264 kFieldComparisonBias + kFieldComparisonBiasSize;
4265 static_assert(kNumberOfComparePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
4266 using ComparisonBiasField =
4267 BitField<ComparisonBias, kFieldComparisonBias, kFieldComparisonBiasSize>;
4268
4269 // Return an integer constant containing the result of a comparison evaluated at compile time.
MakeConstantComparison(int32_t value,uint32_t dex_pc)4270 HIntConstant* MakeConstantComparison(int32_t value, uint32_t dex_pc) const {
4271 DCHECK(value == -1 || value == 0 || value == 1) << value;
4272 return GetBlock()->GetGraph()->GetIntConstant(value, dex_pc);
4273 }
4274
4275 DEFAULT_COPY_CONSTRUCTOR(Compare);
4276 };
4277
4278 class HNewInstance final : public HExpression<1> {
4279 public:
HNewInstance(HInstruction * cls,uint32_t dex_pc,dex::TypeIndex type_index,const DexFile & dex_file,bool finalizable,QuickEntrypointEnum entrypoint)4280 HNewInstance(HInstruction* cls,
4281 uint32_t dex_pc,
4282 dex::TypeIndex type_index,
4283 const DexFile& dex_file,
4284 bool finalizable,
4285 QuickEntrypointEnum entrypoint)
4286 : HExpression(kNewInstance,
4287 DataType::Type::kReference,
4288 SideEffects::CanTriggerGC(),
4289 dex_pc),
4290 type_index_(type_index),
4291 dex_file_(dex_file),
4292 entrypoint_(entrypoint) {
4293 SetPackedFlag<kFlagFinalizable>(finalizable);
4294 SetRawInputAt(0, cls);
4295 }
4296
IsClonable()4297 bool IsClonable() const override { return true; }
4298
GetTypeIndex()4299 dex::TypeIndex GetTypeIndex() const { return type_index_; }
GetDexFile()4300 const DexFile& GetDexFile() const { return dex_file_; }
4301
4302 // Calls runtime so needs an environment.
NeedsEnvironment()4303 bool NeedsEnvironment() const override { return true; }
4304
4305 // Can throw errors when out-of-memory or if it's not instantiable/accessible.
CanThrow()4306 bool CanThrow() const override { return true; }
4307
NeedsChecks()4308 bool NeedsChecks() const {
4309 return entrypoint_ == kQuickAllocObjectWithChecks;
4310 }
4311
IsFinalizable()4312 bool IsFinalizable() const { return GetPackedFlag<kFlagFinalizable>(); }
4313
CanBeNull()4314 bool CanBeNull() const override { return false; }
4315
GetEntrypoint()4316 QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
4317
SetEntrypoint(QuickEntrypointEnum entrypoint)4318 void SetEntrypoint(QuickEntrypointEnum entrypoint) {
4319 entrypoint_ = entrypoint;
4320 }
4321
GetLoadClass()4322 HLoadClass* GetLoadClass() const {
4323 HInstruction* input = InputAt(0);
4324 if (input->IsClinitCheck()) {
4325 input = input->InputAt(0);
4326 }
4327 DCHECK(input->IsLoadClass());
4328 return input->AsLoadClass();
4329 }
4330
4331 bool IsStringAlloc() const;
4332
4333 DECLARE_INSTRUCTION(NewInstance);
4334
4335 protected:
4336 DEFAULT_COPY_CONSTRUCTOR(NewInstance);
4337
4338 private:
4339 static constexpr size_t kFlagFinalizable = kNumberOfGenericPackedBits;
4340 static constexpr size_t kNumberOfNewInstancePackedBits = kFlagFinalizable + 1;
4341 static_assert(kNumberOfNewInstancePackedBits <= kMaxNumberOfPackedBits,
4342 "Too many packed fields.");
4343
4344 const dex::TypeIndex type_index_;
4345 const DexFile& dex_file_;
4346 QuickEntrypointEnum entrypoint_;
4347 };
4348
4349 enum IntrinsicNeedsEnvironmentOrCache {
4350 kNoEnvironmentOrCache, // Intrinsic does not require an environment or dex cache.
4351 kNeedsEnvironmentOrCache // Intrinsic requires an environment or requires a dex cache.
4352 };
4353
4354 enum IntrinsicSideEffects {
4355 kNoSideEffects, // Intrinsic does not have any heap memory side effects.
4356 kReadSideEffects, // Intrinsic may read heap memory.
4357 kWriteSideEffects, // Intrinsic may write heap memory.
4358 kAllSideEffects // Intrinsic may read or write heap memory, or trigger GC.
4359 };
4360
4361 enum IntrinsicExceptions {
4362 kNoThrow, // Intrinsic does not throw any exceptions.
4363 kCanThrow // Intrinsic may throw exceptions.
4364 };
4365
4366 class HInvoke : public HVariableInputSizeInstruction {
4367 public:
4368 bool NeedsEnvironment() const override;
4369
SetArgumentAt(size_t index,HInstruction * argument)4370 void SetArgumentAt(size_t index, HInstruction* argument) {
4371 SetRawInputAt(index, argument);
4372 }
4373
4374 // Return the number of arguments. This number can be lower than
4375 // the number of inputs returned by InputCount(), as some invoke
4376 // instructions (e.g. HInvokeStaticOrDirect) can have non-argument
4377 // inputs at the end of their list of inputs.
GetNumberOfArguments()4378 uint32_t GetNumberOfArguments() const { return number_of_arguments_; }
4379
GetDexMethodIndex()4380 uint32_t GetDexMethodIndex() const { return dex_method_index_; }
4381
GetInvokeType()4382 InvokeType GetInvokeType() const {
4383 return GetPackedField<InvokeTypeField>();
4384 }
4385
GetIntrinsic()4386 Intrinsics GetIntrinsic() const {
4387 return intrinsic_;
4388 }
4389
4390 void SetIntrinsic(Intrinsics intrinsic,
4391 IntrinsicNeedsEnvironmentOrCache needs_env_or_cache,
4392 IntrinsicSideEffects side_effects,
4393 IntrinsicExceptions exceptions);
4394
IsFromInlinedInvoke()4395 bool IsFromInlinedInvoke() const {
4396 return GetEnvironment()->IsFromInlinedInvoke();
4397 }
4398
SetCanThrow(bool can_throw)4399 void SetCanThrow(bool can_throw) { SetPackedFlag<kFlagCanThrow>(can_throw); }
4400
CanThrow()4401 bool CanThrow() const override { return GetPackedFlag<kFlagCanThrow>(); }
4402
SetAlwaysThrows(bool always_throws)4403 void SetAlwaysThrows(bool always_throws) { SetPackedFlag<kFlagAlwaysThrows>(always_throws); }
4404
AlwaysThrows()4405 bool AlwaysThrows() const override { return GetPackedFlag<kFlagAlwaysThrows>(); }
4406
CanBeMoved()4407 bool CanBeMoved() const override { return IsIntrinsic() && !DoesAnyWrite(); }
4408
InstructionDataEquals(const HInstruction * other)4409 bool InstructionDataEquals(const HInstruction* other) const override {
4410 return intrinsic_ != Intrinsics::kNone && intrinsic_ == other->AsInvoke()->intrinsic_;
4411 }
4412
GetIntrinsicOptimizations()4413 uint32_t* GetIntrinsicOptimizations() {
4414 return &intrinsic_optimizations_;
4415 }
4416
GetIntrinsicOptimizations()4417 const uint32_t* GetIntrinsicOptimizations() const {
4418 return &intrinsic_optimizations_;
4419 }
4420
IsIntrinsic()4421 bool IsIntrinsic() const { return intrinsic_ != Intrinsics::kNone; }
4422
GetResolvedMethod()4423 ArtMethod* GetResolvedMethod() const { return resolved_method_; }
4424 void SetResolvedMethod(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_);
4425
4426 DECLARE_ABSTRACT_INSTRUCTION(Invoke);
4427
4428 protected:
4429 static constexpr size_t kFieldInvokeType = kNumberOfGenericPackedBits;
4430 static constexpr size_t kFieldInvokeTypeSize =
4431 MinimumBitsToStore(static_cast<size_t>(kMaxInvokeType));
4432 static constexpr size_t kFlagCanThrow = kFieldInvokeType + kFieldInvokeTypeSize;
4433 static constexpr size_t kFlagAlwaysThrows = kFlagCanThrow + 1;
4434 static constexpr size_t kNumberOfInvokePackedBits = kFlagAlwaysThrows + 1;
4435 static_assert(kNumberOfInvokePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
4436 using InvokeTypeField = BitField<InvokeType, kFieldInvokeType, kFieldInvokeTypeSize>;
4437
HInvoke(InstructionKind kind,ArenaAllocator * allocator,uint32_t number_of_arguments,uint32_t number_of_other_inputs,DataType::Type return_type,uint32_t dex_pc,uint32_t dex_method_index,ArtMethod * resolved_method,InvokeType invoke_type)4438 HInvoke(InstructionKind kind,
4439 ArenaAllocator* allocator,
4440 uint32_t number_of_arguments,
4441 uint32_t number_of_other_inputs,
4442 DataType::Type return_type,
4443 uint32_t dex_pc,
4444 uint32_t dex_method_index,
4445 ArtMethod* resolved_method,
4446 InvokeType invoke_type)
4447 : HVariableInputSizeInstruction(
4448 kind,
4449 return_type,
4450 SideEffects::AllExceptGCDependency(), // Assume write/read on all fields/arrays.
4451 dex_pc,
4452 allocator,
4453 number_of_arguments + number_of_other_inputs,
4454 kArenaAllocInvokeInputs),
4455 number_of_arguments_(number_of_arguments),
4456 dex_method_index_(dex_method_index),
4457 intrinsic_(Intrinsics::kNone),
4458 intrinsic_optimizations_(0) {
4459 SetPackedField<InvokeTypeField>(invoke_type);
4460 SetPackedFlag<kFlagCanThrow>(true);
4461 // Check mutator lock, constructors lack annotalysis support.
4462 Locks::mutator_lock_->AssertNotExclusiveHeld(Thread::Current());
4463 SetResolvedMethod(resolved_method);
4464 }
4465
4466 DEFAULT_COPY_CONSTRUCTOR(Invoke);
4467
4468 uint32_t number_of_arguments_;
4469 ArtMethod* resolved_method_;
4470 const uint32_t dex_method_index_;
4471 Intrinsics intrinsic_;
4472
4473 // A magic word holding optimizations for intrinsics. See intrinsics.h.
4474 uint32_t intrinsic_optimizations_;
4475 };
4476
4477 class HInvokeUnresolved final : public HInvoke {
4478 public:
HInvokeUnresolved(ArenaAllocator * allocator,uint32_t number_of_arguments,DataType::Type return_type,uint32_t dex_pc,uint32_t dex_method_index,InvokeType invoke_type)4479 HInvokeUnresolved(ArenaAllocator* allocator,
4480 uint32_t number_of_arguments,
4481 DataType::Type return_type,
4482 uint32_t dex_pc,
4483 uint32_t dex_method_index,
4484 InvokeType invoke_type)
4485 : HInvoke(kInvokeUnresolved,
4486 allocator,
4487 number_of_arguments,
4488 /* number_of_other_inputs= */ 0u,
4489 return_type,
4490 dex_pc,
4491 dex_method_index,
4492 nullptr,
4493 invoke_type) {
4494 }
4495
IsClonable()4496 bool IsClonable() const override { return true; }
4497
4498 DECLARE_INSTRUCTION(InvokeUnresolved);
4499
4500 protected:
4501 DEFAULT_COPY_CONSTRUCTOR(InvokeUnresolved);
4502 };
4503
4504 class HInvokePolymorphic final : public HInvoke {
4505 public:
HInvokePolymorphic(ArenaAllocator * allocator,uint32_t number_of_arguments,DataType::Type return_type,uint32_t dex_pc,uint32_t dex_method_index,ArtMethod * resolved_method)4506 HInvokePolymorphic(ArenaAllocator* allocator,
4507 uint32_t number_of_arguments,
4508 DataType::Type return_type,
4509 uint32_t dex_pc,
4510 uint32_t dex_method_index,
4511 // resolved_method is the ArtMethod object corresponding to the polymorphic
4512 // method (e.g. VarHandle.get), resolved using the class linker. It is needed
4513 // to pass intrinsic information to the HInvokePolymorphic node.
4514 ArtMethod* resolved_method)
4515 : HInvoke(kInvokePolymorphic,
4516 allocator,
4517 number_of_arguments,
4518 /* number_of_other_inputs= */ 0u,
4519 return_type,
4520 dex_pc,
4521 dex_method_index,
4522 resolved_method,
4523 kPolymorphic) {
4524 }
4525
IsClonable()4526 bool IsClonable() const override { return true; }
4527
4528 DECLARE_INSTRUCTION(InvokePolymorphic);
4529
4530 protected:
4531 DEFAULT_COPY_CONSTRUCTOR(InvokePolymorphic);
4532 };
4533
4534 class HInvokeCustom final : public HInvoke {
4535 public:
HInvokeCustom(ArenaAllocator * allocator,uint32_t number_of_arguments,uint32_t call_site_index,DataType::Type return_type,uint32_t dex_pc)4536 HInvokeCustom(ArenaAllocator* allocator,
4537 uint32_t number_of_arguments,
4538 uint32_t call_site_index,
4539 DataType::Type return_type,
4540 uint32_t dex_pc)
4541 : HInvoke(kInvokeCustom,
4542 allocator,
4543 number_of_arguments,
4544 /* number_of_other_inputs= */ 0u,
4545 return_type,
4546 dex_pc,
4547 /* dex_method_index= */ dex::kDexNoIndex,
4548 /* resolved_method= */ nullptr,
4549 kStatic),
4550 call_site_index_(call_site_index) {
4551 }
4552
GetCallSiteIndex()4553 uint32_t GetCallSiteIndex() const { return call_site_index_; }
4554
IsClonable()4555 bool IsClonable() const override { return true; }
4556
4557 DECLARE_INSTRUCTION(InvokeCustom);
4558
4559 protected:
4560 DEFAULT_COPY_CONSTRUCTOR(InvokeCustom);
4561
4562 private:
4563 uint32_t call_site_index_;
4564 };
4565
4566 class HInvokeStaticOrDirect final : public HInvoke {
4567 public:
4568 // Requirements of this method call regarding the class
4569 // initialization (clinit) check of its declaring class.
4570 enum class ClinitCheckRequirement { // private marker to avoid generate-operator-out.py from processing.
4571 kNone, // Class already initialized.
4572 kExplicit, // Static call having explicit clinit check as last input.
4573 kImplicit, // Static call implicitly requiring a clinit check.
4574 kLast = kImplicit
4575 };
4576
4577 // Determines how to load the target ArtMethod*.
4578 enum class MethodLoadKind {
4579 // Use a String init ArtMethod* loaded from Thread entrypoints.
4580 kStringInit,
4581
4582 // Use the method's own ArtMethod* loaded by the register allocator.
4583 kRecursive,
4584
4585 // Use PC-relative boot image ArtMethod* address that will be known at link time.
4586 // Used for boot image methods referenced by boot image code.
4587 kBootImageLinkTimePcRelative,
4588
4589 // Load from an entry in the .data.bimg.rel.ro using a PC-relative load.
4590 // Used for app->boot calls with relocatable image.
4591 kBootImageRelRo,
4592
4593 // Load from an entry in the .bss section using a PC-relative load.
4594 // Used for methods outside boot image referenced by AOT-compiled app and boot image code.
4595 kBssEntry,
4596
4597 // Use ArtMethod* at a known address, embed the direct address in the code.
4598 // Used for for JIT-compiled calls.
4599 kJitDirectAddress,
4600
4601 // Make a runtime call to resolve and call the method. This is the last-resort-kind
4602 // used when other kinds are unimplemented on a particular architecture.
4603 kRuntimeCall,
4604 };
4605
4606 // Determines the location of the code pointer.
4607 enum class CodePtrLocation {
4608 // Recursive call, use local PC-relative call instruction.
4609 kCallSelf,
4610
4611 // Use native pointer from the Artmethod*.
4612 // Used for @CriticalNative to avoid going through the compiled stub. This call goes through
4613 // a special resolution stub if the class is not initialized or no native code is registered.
4614 kCallCriticalNative,
4615
4616 // Use code pointer from the ArtMethod*.
4617 // Used when we don't know the target code. This is also the last-resort-kind used when
4618 // other kinds are unimplemented or impractical (i.e. slow) on a particular architecture.
4619 kCallArtMethod,
4620 };
4621
4622 struct DispatchInfo {
4623 MethodLoadKind method_load_kind;
4624 CodePtrLocation code_ptr_location;
4625 // The method load data holds
4626 // - thread entrypoint offset for kStringInit method if this is a string init invoke.
4627 // Note that there are multiple string init methods, each having its own offset.
4628 // - the method address for kDirectAddress
4629 uint64_t method_load_data;
4630 };
4631
HInvokeStaticOrDirect(ArenaAllocator * allocator,uint32_t number_of_arguments,DataType::Type return_type,uint32_t dex_pc,uint32_t method_index,ArtMethod * resolved_method,DispatchInfo dispatch_info,InvokeType invoke_type,MethodReference target_method,ClinitCheckRequirement clinit_check_requirement)4632 HInvokeStaticOrDirect(ArenaAllocator* allocator,
4633 uint32_t number_of_arguments,
4634 DataType::Type return_type,
4635 uint32_t dex_pc,
4636 uint32_t method_index,
4637 ArtMethod* resolved_method,
4638 DispatchInfo dispatch_info,
4639 InvokeType invoke_type,
4640 MethodReference target_method,
4641 ClinitCheckRequirement clinit_check_requirement)
4642 : HInvoke(kInvokeStaticOrDirect,
4643 allocator,
4644 number_of_arguments,
4645 // There is potentially one extra argument for the HCurrentMethod input,
4646 // and one other if the clinit check is explicit. These can be removed later.
4647 (NeedsCurrentMethodInput(dispatch_info) ? 1u : 0u) +
4648 (clinit_check_requirement == ClinitCheckRequirement::kExplicit ? 1u : 0u),
4649 return_type,
4650 dex_pc,
4651 method_index,
4652 resolved_method,
4653 invoke_type),
4654 target_method_(target_method),
4655 dispatch_info_(dispatch_info) {
4656 SetPackedField<ClinitCheckRequirementField>(clinit_check_requirement);
4657 }
4658
IsClonable()4659 bool IsClonable() const override { return true; }
4660
SetDispatchInfo(DispatchInfo dispatch_info)4661 void SetDispatchInfo(DispatchInfo dispatch_info) {
4662 bool had_current_method_input = HasCurrentMethodInput();
4663 bool needs_current_method_input = NeedsCurrentMethodInput(dispatch_info);
4664
4665 // Using the current method is the default and once we find a better
4666 // method load kind, we should not go back to using the current method.
4667 DCHECK(had_current_method_input || !needs_current_method_input);
4668
4669 if (had_current_method_input && !needs_current_method_input) {
4670 DCHECK_EQ(InputAt(GetCurrentMethodIndex()), GetBlock()->GetGraph()->GetCurrentMethod());
4671 RemoveInputAt(GetCurrentMethodIndex());
4672 }
4673 dispatch_info_ = dispatch_info;
4674 }
4675
GetDispatchInfo()4676 DispatchInfo GetDispatchInfo() const {
4677 return dispatch_info_;
4678 }
4679
4680 using HInstruction::GetInputRecords; // Keep the const version visible.
GetInputRecords()4681 ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() override {
4682 ArrayRef<HUserRecord<HInstruction*>> input_records = HInvoke::GetInputRecords();
4683 if (kIsDebugBuild && IsStaticWithExplicitClinitCheck()) {
4684 DCHECK(!input_records.empty());
4685 DCHECK_GT(input_records.size(), GetNumberOfArguments());
4686 HInstruction* last_input = input_records.back().GetInstruction();
4687 // Note: `last_input` may be null during arguments setup.
4688 if (last_input != nullptr) {
4689 // `last_input` is the last input of a static invoke marked as having
4690 // an explicit clinit check. It must either be:
4691 // - an art::HClinitCheck instruction, set by art::HGraphBuilder; or
4692 // - an art::HLoadClass instruction, set by art::PrepareForRegisterAllocation.
4693 DCHECK(last_input->IsClinitCheck() || last_input->IsLoadClass()) << last_input->DebugName();
4694 }
4695 }
4696 return input_records;
4697 }
4698
CanDoImplicitNullCheckOn(HInstruction * obj ATTRIBUTE_UNUSED)4699 bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const override {
4700 // We do not access the method via object reference, so we cannot do an implicit null check.
4701 // TODO: for intrinsics we can generate implicit null checks.
4702 return false;
4703 }
4704
CanBeNull()4705 bool CanBeNull() const override {
4706 return GetType() == DataType::Type::kReference && !IsStringInit();
4707 }
4708
GetMethodLoadKind()4709 MethodLoadKind GetMethodLoadKind() const { return dispatch_info_.method_load_kind; }
GetCodePtrLocation()4710 CodePtrLocation GetCodePtrLocation() const { return dispatch_info_.code_ptr_location; }
IsRecursive()4711 bool IsRecursive() const { return GetMethodLoadKind() == MethodLoadKind::kRecursive; }
4712 bool NeedsDexCacheOfDeclaringClass() const override;
IsStringInit()4713 bool IsStringInit() const { return GetMethodLoadKind() == MethodLoadKind::kStringInit; }
HasMethodAddress()4714 bool HasMethodAddress() const { return GetMethodLoadKind() == MethodLoadKind::kJitDirectAddress; }
HasPcRelativeMethodLoadKind()4715 bool HasPcRelativeMethodLoadKind() const {
4716 return GetMethodLoadKind() == MethodLoadKind::kBootImageLinkTimePcRelative ||
4717 GetMethodLoadKind() == MethodLoadKind::kBootImageRelRo ||
4718 GetMethodLoadKind() == MethodLoadKind::kBssEntry;
4719 }
4720
GetStringInitEntryPoint()4721 QuickEntrypointEnum GetStringInitEntryPoint() const {
4722 DCHECK(IsStringInit());
4723 return static_cast<QuickEntrypointEnum>(dispatch_info_.method_load_data);
4724 }
4725
GetMethodAddress()4726 uint64_t GetMethodAddress() const {
4727 DCHECK(HasMethodAddress());
4728 return dispatch_info_.method_load_data;
4729 }
4730
4731 const DexFile& GetDexFileForPcRelativeDexCache() const;
4732
GetClinitCheckRequirement()4733 ClinitCheckRequirement GetClinitCheckRequirement() const {
4734 return GetPackedField<ClinitCheckRequirementField>();
4735 }
4736
4737 // Is this instruction a call to a static method?
IsStatic()4738 bool IsStatic() const {
4739 return GetInvokeType() == kStatic;
4740 }
4741
GetTargetMethod()4742 MethodReference GetTargetMethod() const {
4743 return target_method_;
4744 }
4745
4746 // Does this method load kind need the current method as an input?
NeedsCurrentMethodInput(DispatchInfo dispatch_info)4747 static bool NeedsCurrentMethodInput(DispatchInfo dispatch_info) {
4748 return dispatch_info.method_load_kind == MethodLoadKind::kRecursive ||
4749 dispatch_info.method_load_kind == MethodLoadKind::kRuntimeCall ||
4750 dispatch_info.code_ptr_location == CodePtrLocation::kCallCriticalNative;
4751 }
4752
4753 // Get the index of the current method input.
GetCurrentMethodIndex()4754 size_t GetCurrentMethodIndex() const {
4755 DCHECK(HasCurrentMethodInput());
4756 return GetCurrentMethodIndexUnchecked();
4757 }
GetCurrentMethodIndexUnchecked()4758 size_t GetCurrentMethodIndexUnchecked() const {
4759 return GetNumberOfArguments();
4760 }
4761
4762 // Check if the method has a current method input.
HasCurrentMethodInput()4763 bool HasCurrentMethodInput() const {
4764 if (NeedsCurrentMethodInput(GetDispatchInfo())) {
4765 DCHECK(InputAt(GetCurrentMethodIndexUnchecked()) == nullptr || // During argument setup.
4766 InputAt(GetCurrentMethodIndexUnchecked())->IsCurrentMethod());
4767 return true;
4768 } else {
4769 DCHECK(InputCount() == GetCurrentMethodIndexUnchecked() ||
4770 InputAt(GetCurrentMethodIndexUnchecked()) == nullptr || // During argument setup.
4771 !InputAt(GetCurrentMethodIndexUnchecked())->IsCurrentMethod());
4772 return false;
4773 }
4774 }
4775
4776 // Get the index of the special input.
GetSpecialInputIndex()4777 size_t GetSpecialInputIndex() const {
4778 DCHECK(HasSpecialInput());
4779 return GetSpecialInputIndexUnchecked();
4780 }
GetSpecialInputIndexUnchecked()4781 size_t GetSpecialInputIndexUnchecked() const {
4782 return GetNumberOfArguments() + (HasCurrentMethodInput() ? 1u : 0u);
4783 }
4784
4785 // Check if the method has a special input.
HasSpecialInput()4786 bool HasSpecialInput() const {
4787 size_t other_inputs =
4788 GetSpecialInputIndexUnchecked() + (IsStaticWithExplicitClinitCheck() ? 1u : 0u);
4789 size_t input_count = InputCount();
4790 DCHECK_LE(input_count - other_inputs, 1u) << other_inputs << " " << input_count;
4791 return other_inputs != input_count;
4792 }
4793
AddSpecialInput(HInstruction * input)4794 void AddSpecialInput(HInstruction* input) {
4795 // We allow only one special input.
4796 DCHECK(!HasSpecialInput());
4797 InsertInputAt(GetSpecialInputIndexUnchecked(), input);
4798 }
4799
4800 // Remove the HClinitCheck or the replacement HLoadClass (set as last input by
4801 // PrepareForRegisterAllocation::VisitClinitCheck() in lieu of the initial HClinitCheck)
4802 // instruction; only relevant for static calls with explicit clinit check.
RemoveExplicitClinitCheck(ClinitCheckRequirement new_requirement)4803 void RemoveExplicitClinitCheck(ClinitCheckRequirement new_requirement) {
4804 DCHECK(IsStaticWithExplicitClinitCheck());
4805 size_t last_input_index = inputs_.size() - 1u;
4806 HInstruction* last_input = inputs_.back().GetInstruction();
4807 DCHECK(last_input != nullptr);
4808 DCHECK(last_input->IsLoadClass() || last_input->IsClinitCheck()) << last_input->DebugName();
4809 RemoveAsUserOfInput(last_input_index);
4810 inputs_.pop_back();
4811 SetPackedField<ClinitCheckRequirementField>(new_requirement);
4812 DCHECK(!IsStaticWithExplicitClinitCheck());
4813 }
4814
4815 // Is this a call to a static method whose declaring class has an
4816 // explicit initialization check in the graph?
IsStaticWithExplicitClinitCheck()4817 bool IsStaticWithExplicitClinitCheck() const {
4818 return IsStatic() && (GetClinitCheckRequirement() == ClinitCheckRequirement::kExplicit);
4819 }
4820
4821 // Is this a call to a static method whose declaring class has an
4822 // implicit intialization check requirement?
IsStaticWithImplicitClinitCheck()4823 bool IsStaticWithImplicitClinitCheck() const {
4824 return IsStatic() && (GetClinitCheckRequirement() == ClinitCheckRequirement::kImplicit);
4825 }
4826
4827 DECLARE_INSTRUCTION(InvokeStaticOrDirect);
4828
4829 protected:
4830 DEFAULT_COPY_CONSTRUCTOR(InvokeStaticOrDirect);
4831
4832 private:
4833 static constexpr size_t kFieldClinitCheckRequirement = kNumberOfInvokePackedBits;
4834 static constexpr size_t kFieldClinitCheckRequirementSize =
4835 MinimumBitsToStore(static_cast<size_t>(ClinitCheckRequirement::kLast));
4836 static constexpr size_t kNumberOfInvokeStaticOrDirectPackedBits =
4837 kFieldClinitCheckRequirement + kFieldClinitCheckRequirementSize;
4838 static_assert(kNumberOfInvokeStaticOrDirectPackedBits <= kMaxNumberOfPackedBits,
4839 "Too many packed fields.");
4840 using ClinitCheckRequirementField = BitField<ClinitCheckRequirement,
4841 kFieldClinitCheckRequirement,
4842 kFieldClinitCheckRequirementSize>;
4843
4844 // Cached values of the resolved method, to avoid needing the mutator lock.
4845 const MethodReference target_method_;
4846 DispatchInfo dispatch_info_;
4847 };
4848 std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::MethodLoadKind rhs);
4849 std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::CodePtrLocation rhs);
4850 std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::ClinitCheckRequirement rhs);
4851
4852 class HInvokeVirtual final : public HInvoke {
4853 public:
HInvokeVirtual(ArenaAllocator * allocator,uint32_t number_of_arguments,DataType::Type return_type,uint32_t dex_pc,uint32_t dex_method_index,ArtMethod * resolved_method,uint32_t vtable_index)4854 HInvokeVirtual(ArenaAllocator* allocator,
4855 uint32_t number_of_arguments,
4856 DataType::Type return_type,
4857 uint32_t dex_pc,
4858 uint32_t dex_method_index,
4859 ArtMethod* resolved_method,
4860 uint32_t vtable_index)
4861 : HInvoke(kInvokeVirtual,
4862 allocator,
4863 number_of_arguments,
4864 0u,
4865 return_type,
4866 dex_pc,
4867 dex_method_index,
4868 resolved_method,
4869 kVirtual),
4870 vtable_index_(vtable_index) {
4871 }
4872
IsClonable()4873 bool IsClonable() const override { return true; }
4874
CanBeNull()4875 bool CanBeNull() const override {
4876 switch (GetIntrinsic()) {
4877 case Intrinsics::kThreadCurrentThread:
4878 case Intrinsics::kStringBufferAppend:
4879 case Intrinsics::kStringBufferToString:
4880 case Intrinsics::kStringBuilderAppendObject:
4881 case Intrinsics::kStringBuilderAppendString:
4882 case Intrinsics::kStringBuilderAppendCharSequence:
4883 case Intrinsics::kStringBuilderAppendCharArray:
4884 case Intrinsics::kStringBuilderAppendBoolean:
4885 case Intrinsics::kStringBuilderAppendChar:
4886 case Intrinsics::kStringBuilderAppendInt:
4887 case Intrinsics::kStringBuilderAppendLong:
4888 case Intrinsics::kStringBuilderAppendFloat:
4889 case Intrinsics::kStringBuilderAppendDouble:
4890 case Intrinsics::kStringBuilderToString:
4891 return false;
4892 default:
4893 return HInvoke::CanBeNull();
4894 }
4895 }
4896
CanDoImplicitNullCheckOn(HInstruction * obj)4897 bool CanDoImplicitNullCheckOn(HInstruction* obj) const override {
4898 // TODO: Add implicit null checks in intrinsics.
4899 return (obj == InputAt(0)) && !IsIntrinsic();
4900 }
4901
GetVTableIndex()4902 uint32_t GetVTableIndex() const { return vtable_index_; }
4903
4904 DECLARE_INSTRUCTION(InvokeVirtual);
4905
4906 protected:
4907 DEFAULT_COPY_CONSTRUCTOR(InvokeVirtual);
4908
4909 private:
4910 // Cached value of the resolved method, to avoid needing the mutator lock.
4911 const uint32_t vtable_index_;
4912 };
4913
4914 class HInvokeInterface final : public HInvoke {
4915 public:
HInvokeInterface(ArenaAllocator * allocator,uint32_t number_of_arguments,DataType::Type return_type,uint32_t dex_pc,uint32_t dex_method_index,ArtMethod * resolved_method,uint32_t imt_index)4916 HInvokeInterface(ArenaAllocator* allocator,
4917 uint32_t number_of_arguments,
4918 DataType::Type return_type,
4919 uint32_t dex_pc,
4920 uint32_t dex_method_index,
4921 ArtMethod* resolved_method,
4922 uint32_t imt_index)
4923 : HInvoke(kInvokeInterface,
4924 allocator,
4925 number_of_arguments,
4926 0u,
4927 return_type,
4928 dex_pc,
4929 dex_method_index,
4930 resolved_method,
4931 kInterface),
4932 imt_index_(imt_index) {
4933 }
4934
IsClonable()4935 bool IsClonable() const override { return true; }
4936
CanDoImplicitNullCheckOn(HInstruction * obj)4937 bool CanDoImplicitNullCheckOn(HInstruction* obj) const override {
4938 // TODO: Add implicit null checks in intrinsics.
4939 return (obj == InputAt(0)) && !IsIntrinsic();
4940 }
4941
NeedsDexCacheOfDeclaringClass()4942 bool NeedsDexCacheOfDeclaringClass() const override {
4943 // The assembly stub currently needs it.
4944 return true;
4945 }
4946
GetImtIndex()4947 uint32_t GetImtIndex() const { return imt_index_; }
4948
4949 DECLARE_INSTRUCTION(InvokeInterface);
4950
4951 protected:
4952 DEFAULT_COPY_CONSTRUCTOR(InvokeInterface);
4953
4954 private:
4955 // Cached value of the resolved method, to avoid needing the mutator lock.
4956 const uint32_t imt_index_;
4957 };
4958
4959 class HNeg final : public HUnaryOperation {
4960 public:
4961 HNeg(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
HUnaryOperation(kNeg,result_type,input,dex_pc)4962 : HUnaryOperation(kNeg, result_type, input, dex_pc) {
4963 DCHECK_EQ(result_type, DataType::Kind(input->GetType()));
4964 }
4965
Compute(T x)4966 template <typename T> static T Compute(T x) { return -x; }
4967
Evaluate(HIntConstant * x)4968 HConstant* Evaluate(HIntConstant* x) const override {
4969 return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
4970 }
Evaluate(HLongConstant * x)4971 HConstant* Evaluate(HLongConstant* x) const override {
4972 return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
4973 }
Evaluate(HFloatConstant * x)4974 HConstant* Evaluate(HFloatConstant* x) const override {
4975 return GetBlock()->GetGraph()->GetFloatConstant(Compute(x->GetValue()), GetDexPc());
4976 }
Evaluate(HDoubleConstant * x)4977 HConstant* Evaluate(HDoubleConstant* x) const override {
4978 return GetBlock()->GetGraph()->GetDoubleConstant(Compute(x->GetValue()), GetDexPc());
4979 }
4980
4981 DECLARE_INSTRUCTION(Neg);
4982
4983 protected:
4984 DEFAULT_COPY_CONSTRUCTOR(Neg);
4985 };
4986
4987 class HNewArray final : public HExpression<2> {
4988 public:
HNewArray(HInstruction * cls,HInstruction * length,uint32_t dex_pc,size_t component_size_shift)4989 HNewArray(HInstruction* cls, HInstruction* length, uint32_t dex_pc, size_t component_size_shift)
4990 : HExpression(kNewArray, DataType::Type::kReference, SideEffects::CanTriggerGC(), dex_pc) {
4991 SetRawInputAt(0, cls);
4992 SetRawInputAt(1, length);
4993 SetPackedField<ComponentSizeShiftField>(component_size_shift);
4994 }
4995
IsClonable()4996 bool IsClonable() const override { return true; }
4997
4998 // Calls runtime so needs an environment.
NeedsEnvironment()4999 bool NeedsEnvironment() const override { return true; }
5000
5001 // May throw NegativeArraySizeException, OutOfMemoryError, etc.
CanThrow()5002 bool CanThrow() const override { return true; }
5003
CanBeNull()5004 bool CanBeNull() const override { return false; }
5005
GetLoadClass()5006 HLoadClass* GetLoadClass() const {
5007 DCHECK(InputAt(0)->IsLoadClass());
5008 return InputAt(0)->AsLoadClass();
5009 }
5010
GetLength()5011 HInstruction* GetLength() const {
5012 return InputAt(1);
5013 }
5014
GetComponentSizeShift()5015 size_t GetComponentSizeShift() {
5016 return GetPackedField<ComponentSizeShiftField>();
5017 }
5018
5019 DECLARE_INSTRUCTION(NewArray);
5020
5021 protected:
5022 DEFAULT_COPY_CONSTRUCTOR(NewArray);
5023
5024 private:
5025 static constexpr size_t kFieldComponentSizeShift = kNumberOfGenericPackedBits;
5026 static constexpr size_t kFieldComponentSizeShiftSize = MinimumBitsToStore(3u);
5027 static constexpr size_t kNumberOfNewArrayPackedBits =
5028 kFieldComponentSizeShift + kFieldComponentSizeShiftSize;
5029 static_assert(kNumberOfNewArrayPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
5030 using ComponentSizeShiftField =
5031 BitField<size_t, kFieldComponentSizeShift, kFieldComponentSizeShift>;
5032 };
5033
5034 class HAdd final : public HBinaryOperation {
5035 public:
5036 HAdd(DataType::Type result_type,
5037 HInstruction* left,
5038 HInstruction* right,
5039 uint32_t dex_pc = kNoDexPc)
HBinaryOperation(kAdd,result_type,left,right,SideEffects::None (),dex_pc)5040 : HBinaryOperation(kAdd, result_type, left, right, SideEffects::None(), dex_pc) {
5041 }
5042
IsCommutative()5043 bool IsCommutative() const override { return true; }
5044
Compute(T x,T y)5045 template <typename T> static T Compute(T x, T y) { return x + y; }
5046
Evaluate(HIntConstant * x,HIntConstant * y)5047 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5048 return GetBlock()->GetGraph()->GetIntConstant(
5049 Compute(x->GetValue(), y->GetValue()), GetDexPc());
5050 }
Evaluate(HLongConstant * x,HLongConstant * y)5051 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5052 return GetBlock()->GetGraph()->GetLongConstant(
5053 Compute(x->GetValue(), y->GetValue()), GetDexPc());
5054 }
Evaluate(HFloatConstant * x,HFloatConstant * y)5055 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
5056 return GetBlock()->GetGraph()->GetFloatConstant(
5057 Compute(x->GetValue(), y->GetValue()), GetDexPc());
5058 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)5059 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
5060 return GetBlock()->GetGraph()->GetDoubleConstant(
5061 Compute(x->GetValue(), y->GetValue()), GetDexPc());
5062 }
5063
5064 DECLARE_INSTRUCTION(Add);
5065
5066 protected:
5067 DEFAULT_COPY_CONSTRUCTOR(Add);
5068 };
5069
5070 class HSub final : public HBinaryOperation {
5071 public:
5072 HSub(DataType::Type result_type,
5073 HInstruction* left,
5074 HInstruction* right,
5075 uint32_t dex_pc = kNoDexPc)
HBinaryOperation(kSub,result_type,left,right,SideEffects::None (),dex_pc)5076 : HBinaryOperation(kSub, result_type, left, right, SideEffects::None(), dex_pc) {
5077 }
5078
Compute(T x,T y)5079 template <typename T> static T Compute(T x, T y) { return x - y; }
5080
Evaluate(HIntConstant * x,HIntConstant * y)5081 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5082 return GetBlock()->GetGraph()->GetIntConstant(
5083 Compute(x->GetValue(), y->GetValue()), GetDexPc());
5084 }
Evaluate(HLongConstant * x,HLongConstant * y)5085 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5086 return GetBlock()->GetGraph()->GetLongConstant(
5087 Compute(x->GetValue(), y->GetValue()), GetDexPc());
5088 }
Evaluate(HFloatConstant * x,HFloatConstant * y)5089 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
5090 return GetBlock()->GetGraph()->GetFloatConstant(
5091 Compute(x->GetValue(), y->GetValue()), GetDexPc());
5092 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)5093 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
5094 return GetBlock()->GetGraph()->GetDoubleConstant(
5095 Compute(x->GetValue(), y->GetValue()), GetDexPc());
5096 }
5097
5098 DECLARE_INSTRUCTION(Sub);
5099
5100 protected:
5101 DEFAULT_COPY_CONSTRUCTOR(Sub);
5102 };
5103
5104 class HMul final : public HBinaryOperation {
5105 public:
5106 HMul(DataType::Type result_type,
5107 HInstruction* left,
5108 HInstruction* right,
5109 uint32_t dex_pc = kNoDexPc)
HBinaryOperation(kMul,result_type,left,right,SideEffects::None (),dex_pc)5110 : HBinaryOperation(kMul, result_type, left, right, SideEffects::None(), dex_pc) {
5111 }
5112
IsCommutative()5113 bool IsCommutative() const override { return true; }
5114
Compute(T x,T y)5115 template <typename T> static T Compute(T x, T y) { return x * y; }
5116
Evaluate(HIntConstant * x,HIntConstant * y)5117 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5118 return GetBlock()->GetGraph()->GetIntConstant(
5119 Compute(x->GetValue(), y->GetValue()), GetDexPc());
5120 }
Evaluate(HLongConstant * x,HLongConstant * y)5121 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5122 return GetBlock()->GetGraph()->GetLongConstant(
5123 Compute(x->GetValue(), y->GetValue()), GetDexPc());
5124 }
Evaluate(HFloatConstant * x,HFloatConstant * y)5125 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
5126 return GetBlock()->GetGraph()->GetFloatConstant(
5127 Compute(x->GetValue(), y->GetValue()), GetDexPc());
5128 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)5129 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
5130 return GetBlock()->GetGraph()->GetDoubleConstant(
5131 Compute(x->GetValue(), y->GetValue()), GetDexPc());
5132 }
5133
5134 DECLARE_INSTRUCTION(Mul);
5135
5136 protected:
5137 DEFAULT_COPY_CONSTRUCTOR(Mul);
5138 };
5139
5140 class HDiv final : public HBinaryOperation {
5141 public:
HDiv(DataType::Type result_type,HInstruction * left,HInstruction * right,uint32_t dex_pc)5142 HDiv(DataType::Type result_type,
5143 HInstruction* left,
5144 HInstruction* right,
5145 uint32_t dex_pc)
5146 : HBinaryOperation(kDiv, result_type, left, right, SideEffects::None(), dex_pc) {
5147 }
5148
5149 template <typename T>
ComputeIntegral(T x,T y)5150 T ComputeIntegral(T x, T y) const {
5151 DCHECK(!DataType::IsFloatingPointType(GetType())) << GetType();
5152 // Our graph structure ensures we never have 0 for `y` during
5153 // constant folding.
5154 DCHECK_NE(y, 0);
5155 // Special case -1 to avoid getting a SIGFPE on x86(_64).
5156 return (y == -1) ? -x : x / y;
5157 }
5158
5159 template <typename T>
ComputeFP(T x,T y)5160 T ComputeFP(T x, T y) const {
5161 DCHECK(DataType::IsFloatingPointType(GetType())) << GetType();
5162 return x / y;
5163 }
5164
Evaluate(HIntConstant * x,HIntConstant * y)5165 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5166 return GetBlock()->GetGraph()->GetIntConstant(
5167 ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
5168 }
Evaluate(HLongConstant * x,HLongConstant * y)5169 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5170 return GetBlock()->GetGraph()->GetLongConstant(
5171 ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
5172 }
Evaluate(HFloatConstant * x,HFloatConstant * y)5173 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
5174 return GetBlock()->GetGraph()->GetFloatConstant(
5175 ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
5176 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)5177 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
5178 return GetBlock()->GetGraph()->GetDoubleConstant(
5179 ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
5180 }
5181
5182 DECLARE_INSTRUCTION(Div);
5183
5184 protected:
5185 DEFAULT_COPY_CONSTRUCTOR(Div);
5186 };
5187
5188 class HRem final : public HBinaryOperation {
5189 public:
HRem(DataType::Type result_type,HInstruction * left,HInstruction * right,uint32_t dex_pc)5190 HRem(DataType::Type result_type,
5191 HInstruction* left,
5192 HInstruction* right,
5193 uint32_t dex_pc)
5194 : HBinaryOperation(kRem, result_type, left, right, SideEffects::None(), dex_pc) {
5195 }
5196
5197 template <typename T>
ComputeIntegral(T x,T y)5198 T ComputeIntegral(T x, T y) const {
5199 DCHECK(!DataType::IsFloatingPointType(GetType())) << GetType();
5200 // Our graph structure ensures we never have 0 for `y` during
5201 // constant folding.
5202 DCHECK_NE(y, 0);
5203 // Special case -1 to avoid getting a SIGFPE on x86(_64).
5204 return (y == -1) ? 0 : x % y;
5205 }
5206
5207 template <typename T>
ComputeFP(T x,T y)5208 T ComputeFP(T x, T y) const {
5209 DCHECK(DataType::IsFloatingPointType(GetType())) << GetType();
5210 return std::fmod(x, y);
5211 }
5212
Evaluate(HIntConstant * x,HIntConstant * y)5213 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5214 return GetBlock()->GetGraph()->GetIntConstant(
5215 ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
5216 }
Evaluate(HLongConstant * x,HLongConstant * y)5217 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5218 return GetBlock()->GetGraph()->GetLongConstant(
5219 ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
5220 }
Evaluate(HFloatConstant * x,HFloatConstant * y)5221 HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
5222 return GetBlock()->GetGraph()->GetFloatConstant(
5223 ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
5224 }
Evaluate(HDoubleConstant * x,HDoubleConstant * y)5225 HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
5226 return GetBlock()->GetGraph()->GetDoubleConstant(
5227 ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
5228 }
5229
5230 DECLARE_INSTRUCTION(Rem);
5231
5232 protected:
5233 DEFAULT_COPY_CONSTRUCTOR(Rem);
5234 };
5235
5236 class HMin final : public HBinaryOperation {
5237 public:
HMin(DataType::Type result_type,HInstruction * left,HInstruction * right,uint32_t dex_pc)5238 HMin(DataType::Type result_type,
5239 HInstruction* left,
5240 HInstruction* right,
5241 uint32_t dex_pc)
5242 : HBinaryOperation(kMin, result_type, left, right, SideEffects::None(), dex_pc) {}
5243
IsCommutative()5244 bool IsCommutative() const override { return true; }
5245
5246 // Evaluation for integral values.
ComputeIntegral(T x,T y)5247 template <typename T> static T ComputeIntegral(T x, T y) {
5248 return (x <= y) ? x : y;
5249 }
5250
Evaluate(HIntConstant * x,HIntConstant * y)5251 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5252 return GetBlock()->GetGraph()->GetIntConstant(
5253 ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
5254 }
Evaluate(HLongConstant * x,HLongConstant * y)5255 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5256 return GetBlock()->GetGraph()->GetLongConstant(
5257 ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
5258 }
5259 // TODO: Evaluation for floating-point values.
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)5260 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
5261 HFloatConstant* y ATTRIBUTE_UNUSED) const override { return nullptr; }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)5262 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
5263 HDoubleConstant* y ATTRIBUTE_UNUSED) const override { return nullptr; }
5264
5265 DECLARE_INSTRUCTION(Min);
5266
5267 protected:
5268 DEFAULT_COPY_CONSTRUCTOR(Min);
5269 };
5270
5271 class HMax final : public HBinaryOperation {
5272 public:
HMax(DataType::Type result_type,HInstruction * left,HInstruction * right,uint32_t dex_pc)5273 HMax(DataType::Type result_type,
5274 HInstruction* left,
5275 HInstruction* right,
5276 uint32_t dex_pc)
5277 : HBinaryOperation(kMax, result_type, left, right, SideEffects::None(), dex_pc) {}
5278
IsCommutative()5279 bool IsCommutative() const override { return true; }
5280
5281 // Evaluation for integral values.
ComputeIntegral(T x,T y)5282 template <typename T> static T ComputeIntegral(T x, T y) {
5283 return (x >= y) ? x : y;
5284 }
5285
Evaluate(HIntConstant * x,HIntConstant * y)5286 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5287 return GetBlock()->GetGraph()->GetIntConstant(
5288 ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
5289 }
Evaluate(HLongConstant * x,HLongConstant * y)5290 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5291 return GetBlock()->GetGraph()->GetLongConstant(
5292 ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
5293 }
5294 // TODO: Evaluation for floating-point values.
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)5295 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
5296 HFloatConstant* y ATTRIBUTE_UNUSED) const override { return nullptr; }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)5297 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
5298 HDoubleConstant* y ATTRIBUTE_UNUSED) const override { return nullptr; }
5299
5300 DECLARE_INSTRUCTION(Max);
5301
5302 protected:
5303 DEFAULT_COPY_CONSTRUCTOR(Max);
5304 };
5305
5306 class HAbs final : public HUnaryOperation {
5307 public:
5308 HAbs(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
HUnaryOperation(kAbs,result_type,input,dex_pc)5309 : HUnaryOperation(kAbs, result_type, input, dex_pc) {}
5310
5311 // Evaluation for integral values.
ComputeIntegral(T x)5312 template <typename T> static T ComputeIntegral(T x) {
5313 return x < 0 ? -x : x;
5314 }
5315
5316 // Evaluation for floating-point values.
5317 // Note, as a "quality of implementation", rather than pure "spec compliance",
5318 // we require that Math.abs() clears the sign bit (but changes nothing else)
5319 // for all floating-point numbers, including NaN (signaling NaN may become quiet though).
5320 // http://b/30758343
ComputeFP(T x)5321 template <typename T, typename S> static T ComputeFP(T x) {
5322 S bits = bit_cast<S, T>(x);
5323 return bit_cast<T, S>(bits & std::numeric_limits<S>::max());
5324 }
5325
Evaluate(HIntConstant * x)5326 HConstant* Evaluate(HIntConstant* x) const override {
5327 return GetBlock()->GetGraph()->GetIntConstant(ComputeIntegral(x->GetValue()), GetDexPc());
5328 }
Evaluate(HLongConstant * x)5329 HConstant* Evaluate(HLongConstant* x) const override {
5330 return GetBlock()->GetGraph()->GetLongConstant(ComputeIntegral(x->GetValue()), GetDexPc());
5331 }
Evaluate(HFloatConstant * x)5332 HConstant* Evaluate(HFloatConstant* x) const override {
5333 return GetBlock()->GetGraph()->GetFloatConstant(
5334 ComputeFP<float, int32_t>(x->GetValue()), GetDexPc());
5335 }
Evaluate(HDoubleConstant * x)5336 HConstant* Evaluate(HDoubleConstant* x) const override {
5337 return GetBlock()->GetGraph()->GetDoubleConstant(
5338 ComputeFP<double, int64_t>(x->GetValue()), GetDexPc());
5339 }
5340
5341 DECLARE_INSTRUCTION(Abs);
5342
5343 protected:
5344 DEFAULT_COPY_CONSTRUCTOR(Abs);
5345 };
5346
5347 class HDivZeroCheck final : public HExpression<1> {
5348 public:
5349 // `HDivZeroCheck` can trigger GC, as it may call the `ArithmeticException`
5350 // constructor. However it can only do it on a fatal slow path so execution never returns to the
5351 // instruction following the current one; thus 'SideEffects::None()' is used.
HDivZeroCheck(HInstruction * value,uint32_t dex_pc)5352 HDivZeroCheck(HInstruction* value, uint32_t dex_pc)
5353 : HExpression(kDivZeroCheck, value->GetType(), SideEffects::None(), dex_pc) {
5354 SetRawInputAt(0, value);
5355 }
5356
IsClonable()5357 bool IsClonable() const override { return true; }
CanBeMoved()5358 bool CanBeMoved() const override { return true; }
5359
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)5360 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
5361 return true;
5362 }
5363
NeedsEnvironment()5364 bool NeedsEnvironment() const override { return true; }
CanThrow()5365 bool CanThrow() const override { return true; }
5366
5367 DECLARE_INSTRUCTION(DivZeroCheck);
5368
5369 protected:
5370 DEFAULT_COPY_CONSTRUCTOR(DivZeroCheck);
5371 };
5372
5373 class HShl final : public HBinaryOperation {
5374 public:
5375 HShl(DataType::Type result_type,
5376 HInstruction* value,
5377 HInstruction* distance,
5378 uint32_t dex_pc = kNoDexPc)
HBinaryOperation(kShl,result_type,value,distance,SideEffects::None (),dex_pc)5379 : HBinaryOperation(kShl, result_type, value, distance, SideEffects::None(), dex_pc) {
5380 DCHECK_EQ(result_type, DataType::Kind(value->GetType()));
5381 DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(distance->GetType()));
5382 }
5383
5384 template <typename T>
Compute(T value,int32_t distance,int32_t max_shift_distance)5385 static T Compute(T value, int32_t distance, int32_t max_shift_distance) {
5386 return value << (distance & max_shift_distance);
5387 }
5388
Evaluate(HIntConstant * value,HIntConstant * distance)5389 HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override {
5390 return GetBlock()->GetGraph()->GetIntConstant(
5391 Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
5392 }
Evaluate(HLongConstant * value,HIntConstant * distance)5393 HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override {
5394 return GetBlock()->GetGraph()->GetLongConstant(
5395 Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
5396 }
Evaluate(HLongConstant * value ATTRIBUTE_UNUSED,HLongConstant * distance ATTRIBUTE_UNUSED)5397 HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
5398 HLongConstant* distance ATTRIBUTE_UNUSED) const override {
5399 LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
5400 UNREACHABLE();
5401 }
Evaluate(HFloatConstant * value ATTRIBUTE_UNUSED,HFloatConstant * distance ATTRIBUTE_UNUSED)5402 HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
5403 HFloatConstant* distance ATTRIBUTE_UNUSED) const override {
5404 LOG(FATAL) << DebugName() << " is not defined for float values";
5405 UNREACHABLE();
5406 }
Evaluate(HDoubleConstant * value ATTRIBUTE_UNUSED,HDoubleConstant * distance ATTRIBUTE_UNUSED)5407 HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
5408 HDoubleConstant* distance ATTRIBUTE_UNUSED) const override {
5409 LOG(FATAL) << DebugName() << " is not defined for double values";
5410 UNREACHABLE();
5411 }
5412
5413 DECLARE_INSTRUCTION(Shl);
5414
5415 protected:
5416 DEFAULT_COPY_CONSTRUCTOR(Shl);
5417 };
5418
5419 class HShr final : public HBinaryOperation {
5420 public:
5421 HShr(DataType::Type result_type,
5422 HInstruction* value,
5423 HInstruction* distance,
5424 uint32_t dex_pc = kNoDexPc)
HBinaryOperation(kShr,result_type,value,distance,SideEffects::None (),dex_pc)5425 : HBinaryOperation(kShr, result_type, value, distance, SideEffects::None(), dex_pc) {
5426 DCHECK_EQ(result_type, DataType::Kind(value->GetType()));
5427 DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(distance->GetType()));
5428 }
5429
5430 template <typename T>
Compute(T value,int32_t distance,int32_t max_shift_distance)5431 static T Compute(T value, int32_t distance, int32_t max_shift_distance) {
5432 return value >> (distance & max_shift_distance);
5433 }
5434
Evaluate(HIntConstant * value,HIntConstant * distance)5435 HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override {
5436 return GetBlock()->GetGraph()->GetIntConstant(
5437 Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
5438 }
Evaluate(HLongConstant * value,HIntConstant * distance)5439 HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override {
5440 return GetBlock()->GetGraph()->GetLongConstant(
5441 Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
5442 }
Evaluate(HLongConstant * value ATTRIBUTE_UNUSED,HLongConstant * distance ATTRIBUTE_UNUSED)5443 HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
5444 HLongConstant* distance ATTRIBUTE_UNUSED) const override {
5445 LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
5446 UNREACHABLE();
5447 }
Evaluate(HFloatConstant * value ATTRIBUTE_UNUSED,HFloatConstant * distance ATTRIBUTE_UNUSED)5448 HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
5449 HFloatConstant* distance ATTRIBUTE_UNUSED) const override {
5450 LOG(FATAL) << DebugName() << " is not defined for float values";
5451 UNREACHABLE();
5452 }
Evaluate(HDoubleConstant * value ATTRIBUTE_UNUSED,HDoubleConstant * distance ATTRIBUTE_UNUSED)5453 HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
5454 HDoubleConstant* distance ATTRIBUTE_UNUSED) const override {
5455 LOG(FATAL) << DebugName() << " is not defined for double values";
5456 UNREACHABLE();
5457 }
5458
5459 DECLARE_INSTRUCTION(Shr);
5460
5461 protected:
5462 DEFAULT_COPY_CONSTRUCTOR(Shr);
5463 };
5464
5465 class HUShr final : public HBinaryOperation {
5466 public:
5467 HUShr(DataType::Type result_type,
5468 HInstruction* value,
5469 HInstruction* distance,
5470 uint32_t dex_pc = kNoDexPc)
HBinaryOperation(kUShr,result_type,value,distance,SideEffects::None (),dex_pc)5471 : HBinaryOperation(kUShr, result_type, value, distance, SideEffects::None(), dex_pc) {
5472 DCHECK_EQ(result_type, DataType::Kind(value->GetType()));
5473 DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(distance->GetType()));
5474 }
5475
5476 template <typename T>
Compute(T value,int32_t distance,int32_t max_shift_distance)5477 static T Compute(T value, int32_t distance, int32_t max_shift_distance) {
5478 typedef typename std::make_unsigned<T>::type V;
5479 V ux = static_cast<V>(value);
5480 return static_cast<T>(ux >> (distance & max_shift_distance));
5481 }
5482
Evaluate(HIntConstant * value,HIntConstant * distance)5483 HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override {
5484 return GetBlock()->GetGraph()->GetIntConstant(
5485 Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
5486 }
Evaluate(HLongConstant * value,HIntConstant * distance)5487 HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override {
5488 return GetBlock()->GetGraph()->GetLongConstant(
5489 Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
5490 }
Evaluate(HLongConstant * value ATTRIBUTE_UNUSED,HLongConstant * distance ATTRIBUTE_UNUSED)5491 HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
5492 HLongConstant* distance ATTRIBUTE_UNUSED) const override {
5493 LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
5494 UNREACHABLE();
5495 }
Evaluate(HFloatConstant * value ATTRIBUTE_UNUSED,HFloatConstant * distance ATTRIBUTE_UNUSED)5496 HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
5497 HFloatConstant* distance ATTRIBUTE_UNUSED) const override {
5498 LOG(FATAL) << DebugName() << " is not defined for float values";
5499 UNREACHABLE();
5500 }
Evaluate(HDoubleConstant * value ATTRIBUTE_UNUSED,HDoubleConstant * distance ATTRIBUTE_UNUSED)5501 HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
5502 HDoubleConstant* distance ATTRIBUTE_UNUSED) const override {
5503 LOG(FATAL) << DebugName() << " is not defined for double values";
5504 UNREACHABLE();
5505 }
5506
5507 DECLARE_INSTRUCTION(UShr);
5508
5509 protected:
5510 DEFAULT_COPY_CONSTRUCTOR(UShr);
5511 };
5512
5513 class HAnd final : public HBinaryOperation {
5514 public:
5515 HAnd(DataType::Type result_type,
5516 HInstruction* left,
5517 HInstruction* right,
5518 uint32_t dex_pc = kNoDexPc)
HBinaryOperation(kAnd,result_type,left,right,SideEffects::None (),dex_pc)5519 : HBinaryOperation(kAnd, result_type, left, right, SideEffects::None(), dex_pc) {
5520 }
5521
IsCommutative()5522 bool IsCommutative() const override { return true; }
5523
Compute(T x,T y)5524 template <typename T> static T Compute(T x, T y) { return x & y; }
5525
Evaluate(HIntConstant * x,HIntConstant * y)5526 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5527 return GetBlock()->GetGraph()->GetIntConstant(
5528 Compute(x->GetValue(), y->GetValue()), GetDexPc());
5529 }
Evaluate(HLongConstant * x,HLongConstant * y)5530 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5531 return GetBlock()->GetGraph()->GetLongConstant(
5532 Compute(x->GetValue(), y->GetValue()), GetDexPc());
5533 }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)5534 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
5535 HFloatConstant* y ATTRIBUTE_UNUSED) const override {
5536 LOG(FATAL) << DebugName() << " is not defined for float values";
5537 UNREACHABLE();
5538 }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)5539 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
5540 HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
5541 LOG(FATAL) << DebugName() << " is not defined for double values";
5542 UNREACHABLE();
5543 }
5544
5545 DECLARE_INSTRUCTION(And);
5546
5547 protected:
5548 DEFAULT_COPY_CONSTRUCTOR(And);
5549 };
5550
5551 class HOr final : public HBinaryOperation {
5552 public:
5553 HOr(DataType::Type result_type,
5554 HInstruction* left,
5555 HInstruction* right,
5556 uint32_t dex_pc = kNoDexPc)
HBinaryOperation(kOr,result_type,left,right,SideEffects::None (),dex_pc)5557 : HBinaryOperation(kOr, result_type, left, right, SideEffects::None(), dex_pc) {
5558 }
5559
IsCommutative()5560 bool IsCommutative() const override { return true; }
5561
Compute(T x,T y)5562 template <typename T> static T Compute(T x, T y) { return x | y; }
5563
Evaluate(HIntConstant * x,HIntConstant * y)5564 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5565 return GetBlock()->GetGraph()->GetIntConstant(
5566 Compute(x->GetValue(), y->GetValue()), GetDexPc());
5567 }
Evaluate(HLongConstant * x,HLongConstant * y)5568 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5569 return GetBlock()->GetGraph()->GetLongConstant(
5570 Compute(x->GetValue(), y->GetValue()), GetDexPc());
5571 }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)5572 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
5573 HFloatConstant* y ATTRIBUTE_UNUSED) const override {
5574 LOG(FATAL) << DebugName() << " is not defined for float values";
5575 UNREACHABLE();
5576 }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)5577 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
5578 HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
5579 LOG(FATAL) << DebugName() << " is not defined for double values";
5580 UNREACHABLE();
5581 }
5582
5583 DECLARE_INSTRUCTION(Or);
5584
5585 protected:
5586 DEFAULT_COPY_CONSTRUCTOR(Or);
5587 };
5588
5589 class HXor final : public HBinaryOperation {
5590 public:
5591 HXor(DataType::Type result_type,
5592 HInstruction* left,
5593 HInstruction* right,
5594 uint32_t dex_pc = kNoDexPc)
HBinaryOperation(kXor,result_type,left,right,SideEffects::None (),dex_pc)5595 : HBinaryOperation(kXor, result_type, left, right, SideEffects::None(), dex_pc) {
5596 }
5597
IsCommutative()5598 bool IsCommutative() const override { return true; }
5599
Compute(T x,T y)5600 template <typename T> static T Compute(T x, T y) { return x ^ y; }
5601
Evaluate(HIntConstant * x,HIntConstant * y)5602 HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
5603 return GetBlock()->GetGraph()->GetIntConstant(
5604 Compute(x->GetValue(), y->GetValue()), GetDexPc());
5605 }
Evaluate(HLongConstant * x,HLongConstant * y)5606 HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
5607 return GetBlock()->GetGraph()->GetLongConstant(
5608 Compute(x->GetValue(), y->GetValue()), GetDexPc());
5609 }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED,HFloatConstant * y ATTRIBUTE_UNUSED)5610 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
5611 HFloatConstant* y ATTRIBUTE_UNUSED) const override {
5612 LOG(FATAL) << DebugName() << " is not defined for float values";
5613 UNREACHABLE();
5614 }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED,HDoubleConstant * y ATTRIBUTE_UNUSED)5615 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
5616 HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
5617 LOG(FATAL) << DebugName() << " is not defined for double values";
5618 UNREACHABLE();
5619 }
5620
5621 DECLARE_INSTRUCTION(Xor);
5622
5623 protected:
5624 DEFAULT_COPY_CONSTRUCTOR(Xor);
5625 };
5626
5627 class HRor final : public HBinaryOperation {
5628 public:
HRor(DataType::Type result_type,HInstruction * value,HInstruction * distance)5629 HRor(DataType::Type result_type, HInstruction* value, HInstruction* distance)
5630 : HBinaryOperation(kRor, result_type, value, distance) {
5631 }
5632
5633 template <typename T>
Compute(T value,int32_t distance,int32_t max_shift_value)5634 static T Compute(T value, int32_t distance, int32_t max_shift_value) {
5635 typedef typename std::make_unsigned<T>::type V;
5636 V ux = static_cast<V>(value);
5637 if ((distance & max_shift_value) == 0) {
5638 return static_cast<T>(ux);
5639 } else {
5640 const V reg_bits = sizeof(T) * 8;
5641 return static_cast<T>(ux >> (distance & max_shift_value)) |
5642 (value << (reg_bits - (distance & max_shift_value)));
5643 }
5644 }
5645
Evaluate(HIntConstant * value,HIntConstant * distance)5646 HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override {
5647 return GetBlock()->GetGraph()->GetIntConstant(
5648 Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
5649 }
Evaluate(HLongConstant * value,HIntConstant * distance)5650 HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override {
5651 return GetBlock()->GetGraph()->GetLongConstant(
5652 Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
5653 }
Evaluate(HLongConstant * value ATTRIBUTE_UNUSED,HLongConstant * distance ATTRIBUTE_UNUSED)5654 HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
5655 HLongConstant* distance ATTRIBUTE_UNUSED) const override {
5656 LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
5657 UNREACHABLE();
5658 }
Evaluate(HFloatConstant * value ATTRIBUTE_UNUSED,HFloatConstant * distance ATTRIBUTE_UNUSED)5659 HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
5660 HFloatConstant* distance ATTRIBUTE_UNUSED) const override {
5661 LOG(FATAL) << DebugName() << " is not defined for float values";
5662 UNREACHABLE();
5663 }
Evaluate(HDoubleConstant * value ATTRIBUTE_UNUSED,HDoubleConstant * distance ATTRIBUTE_UNUSED)5664 HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
5665 HDoubleConstant* distance ATTRIBUTE_UNUSED) const override {
5666 LOG(FATAL) << DebugName() << " is not defined for double values";
5667 UNREACHABLE();
5668 }
5669
5670 DECLARE_INSTRUCTION(Ror);
5671
5672 protected:
5673 DEFAULT_COPY_CONSTRUCTOR(Ror);
5674 };
5675
5676 // The value of a parameter in this method. Its location depends on
5677 // the calling convention.
5678 class HParameterValue final : public HExpression<0> {
5679 public:
5680 HParameterValue(const DexFile& dex_file,
5681 dex::TypeIndex type_index,
5682 uint8_t index,
5683 DataType::Type parameter_type,
5684 bool is_this = false)
HExpression(kParameterValue,parameter_type,SideEffects::None (),kNoDexPc)5685 : HExpression(kParameterValue, parameter_type, SideEffects::None(), kNoDexPc),
5686 dex_file_(dex_file),
5687 type_index_(type_index),
5688 index_(index) {
5689 SetPackedFlag<kFlagIsThis>(is_this);
5690 SetPackedFlag<kFlagCanBeNull>(!is_this);
5691 }
5692
GetDexFile()5693 const DexFile& GetDexFile() const { return dex_file_; }
GetTypeIndex()5694 dex::TypeIndex GetTypeIndex() const { return type_index_; }
GetIndex()5695 uint8_t GetIndex() const { return index_; }
IsThis()5696 bool IsThis() const { return GetPackedFlag<kFlagIsThis>(); }
5697
CanBeNull()5698 bool CanBeNull() const override { return GetPackedFlag<kFlagCanBeNull>(); }
SetCanBeNull(bool can_be_null)5699 void SetCanBeNull(bool can_be_null) { SetPackedFlag<kFlagCanBeNull>(can_be_null); }
5700
5701 DECLARE_INSTRUCTION(ParameterValue);
5702
5703 protected:
5704 DEFAULT_COPY_CONSTRUCTOR(ParameterValue);
5705
5706 private:
5707 // Whether or not the parameter value corresponds to 'this' argument.
5708 static constexpr size_t kFlagIsThis = kNumberOfGenericPackedBits;
5709 static constexpr size_t kFlagCanBeNull = kFlagIsThis + 1;
5710 static constexpr size_t kNumberOfParameterValuePackedBits = kFlagCanBeNull + 1;
5711 static_assert(kNumberOfParameterValuePackedBits <= kMaxNumberOfPackedBits,
5712 "Too many packed fields.");
5713
5714 const DexFile& dex_file_;
5715 const dex::TypeIndex type_index_;
5716 // The index of this parameter in the parameters list. Must be less
5717 // than HGraph::number_of_in_vregs_.
5718 const uint8_t index_;
5719 };
5720
5721 class HNot final : public HUnaryOperation {
5722 public:
5723 HNot(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
HUnaryOperation(kNot,result_type,input,dex_pc)5724 : HUnaryOperation(kNot, result_type, input, dex_pc) {
5725 }
5726
CanBeMoved()5727 bool CanBeMoved() const override { return true; }
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)5728 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
5729 return true;
5730 }
5731
Compute(T x)5732 template <typename T> static T Compute(T x) { return ~x; }
5733
Evaluate(HIntConstant * x)5734 HConstant* Evaluate(HIntConstant* x) const override {
5735 return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
5736 }
Evaluate(HLongConstant * x)5737 HConstant* Evaluate(HLongConstant* x) const override {
5738 return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
5739 }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED)5740 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED) const override {
5741 LOG(FATAL) << DebugName() << " is not defined for float values";
5742 UNREACHABLE();
5743 }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED)5744 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED) const override {
5745 LOG(FATAL) << DebugName() << " is not defined for double values";
5746 UNREACHABLE();
5747 }
5748
5749 DECLARE_INSTRUCTION(Not);
5750
5751 protected:
5752 DEFAULT_COPY_CONSTRUCTOR(Not);
5753 };
5754
5755 class HBooleanNot final : public HUnaryOperation {
5756 public:
5757 explicit HBooleanNot(HInstruction* input, uint32_t dex_pc = kNoDexPc)
HUnaryOperation(kBooleanNot,DataType::Type::kBool,input,dex_pc)5758 : HUnaryOperation(kBooleanNot, DataType::Type::kBool, input, dex_pc) {
5759 }
5760
CanBeMoved()5761 bool CanBeMoved() const override { return true; }
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)5762 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
5763 return true;
5764 }
5765
Compute(T x)5766 template <typename T> static bool Compute(T x) {
5767 DCHECK(IsUint<1>(x)) << x;
5768 return !x;
5769 }
5770
Evaluate(HIntConstant * x)5771 HConstant* Evaluate(HIntConstant* x) const override {
5772 return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
5773 }
Evaluate(HLongConstant * x ATTRIBUTE_UNUSED)5774 HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED) const override {
5775 LOG(FATAL) << DebugName() << " is not defined for long values";
5776 UNREACHABLE();
5777 }
Evaluate(HFloatConstant * x ATTRIBUTE_UNUSED)5778 HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED) const override {
5779 LOG(FATAL) << DebugName() << " is not defined for float values";
5780 UNREACHABLE();
5781 }
Evaluate(HDoubleConstant * x ATTRIBUTE_UNUSED)5782 HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED) const override {
5783 LOG(FATAL) << DebugName() << " is not defined for double values";
5784 UNREACHABLE();
5785 }
5786
5787 DECLARE_INSTRUCTION(BooleanNot);
5788
5789 protected:
5790 DEFAULT_COPY_CONSTRUCTOR(BooleanNot);
5791 };
5792
5793 class HTypeConversion final : public HExpression<1> {
5794 public:
5795 // Instantiate a type conversion of `input` to `result_type`.
5796 HTypeConversion(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
HExpression(kTypeConversion,result_type,SideEffects::None (),dex_pc)5797 : HExpression(kTypeConversion, result_type, SideEffects::None(), dex_pc) {
5798 SetRawInputAt(0, input);
5799 // Invariant: We should never generate a conversion to a Boolean value.
5800 DCHECK_NE(DataType::Type::kBool, result_type);
5801 }
5802
GetInput()5803 HInstruction* GetInput() const { return InputAt(0); }
GetInputType()5804 DataType::Type GetInputType() const { return GetInput()->GetType(); }
GetResultType()5805 DataType::Type GetResultType() const { return GetType(); }
5806
IsClonable()5807 bool IsClonable() const override { return true; }
CanBeMoved()5808 bool CanBeMoved() const override { return true; }
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)5809 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
5810 return true;
5811 }
5812 // Return whether the conversion is implicit. This includes conversion to the same type.
IsImplicitConversion()5813 bool IsImplicitConversion() const {
5814 return DataType::IsTypeConversionImplicit(GetInputType(), GetResultType());
5815 }
5816
5817 // Try to statically evaluate the conversion and return a HConstant
5818 // containing the result. If the input cannot be converted, return nullptr.
5819 HConstant* TryStaticEvaluation() const;
5820
5821 DECLARE_INSTRUCTION(TypeConversion);
5822
5823 protected:
5824 DEFAULT_COPY_CONSTRUCTOR(TypeConversion);
5825 };
5826
5827 static constexpr uint32_t kNoRegNumber = -1;
5828
5829 class HNullCheck final : public HExpression<1> {
5830 public:
5831 // `HNullCheck` can trigger GC, as it may call the `NullPointerException`
5832 // constructor. However it can only do it on a fatal slow path so execution never returns to the
5833 // instruction following the current one; thus 'SideEffects::None()' is used.
HNullCheck(HInstruction * value,uint32_t dex_pc)5834 HNullCheck(HInstruction* value, uint32_t dex_pc)
5835 : HExpression(kNullCheck, value->GetType(), SideEffects::None(), dex_pc) {
5836 SetRawInputAt(0, value);
5837 }
5838
IsClonable()5839 bool IsClonable() const override { return true; }
CanBeMoved()5840 bool CanBeMoved() const override { return true; }
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)5841 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
5842 return true;
5843 }
5844
NeedsEnvironment()5845 bool NeedsEnvironment() const override { return true; }
5846
CanThrow()5847 bool CanThrow() const override { return true; }
5848
CanBeNull()5849 bool CanBeNull() const override { return false; }
5850
5851 DECLARE_INSTRUCTION(NullCheck);
5852
5853 protected:
5854 DEFAULT_COPY_CONSTRUCTOR(NullCheck);
5855 };
5856
5857 // Embeds an ArtField and all the information required by the compiler. We cache
5858 // that information to avoid requiring the mutator lock every time we need it.
5859 class FieldInfo : public ValueObject {
5860 public:
FieldInfo(ArtField * field,MemberOffset field_offset,DataType::Type field_type,bool is_volatile,uint32_t index,uint16_t declaring_class_def_index,const DexFile & dex_file)5861 FieldInfo(ArtField* field,
5862 MemberOffset field_offset,
5863 DataType::Type field_type,
5864 bool is_volatile,
5865 uint32_t index,
5866 uint16_t declaring_class_def_index,
5867 const DexFile& dex_file)
5868 : field_(field),
5869 field_offset_(field_offset),
5870 field_type_(field_type),
5871 is_volatile_(is_volatile),
5872 index_(index),
5873 declaring_class_def_index_(declaring_class_def_index),
5874 dex_file_(dex_file) {}
5875
GetField()5876 ArtField* GetField() const { return field_; }
GetFieldOffset()5877 MemberOffset GetFieldOffset() const { return field_offset_; }
GetFieldType()5878 DataType::Type GetFieldType() const { return field_type_; }
GetFieldIndex()5879 uint32_t GetFieldIndex() const { return index_; }
GetDeclaringClassDefIndex()5880 uint16_t GetDeclaringClassDefIndex() const { return declaring_class_def_index_;}
GetDexFile()5881 const DexFile& GetDexFile() const { return dex_file_; }
IsVolatile()5882 bool IsVolatile() const { return is_volatile_; }
5883
5884 private:
5885 ArtField* const field_;
5886 const MemberOffset field_offset_;
5887 const DataType::Type field_type_;
5888 const bool is_volatile_;
5889 const uint32_t index_;
5890 const uint16_t declaring_class_def_index_;
5891 const DexFile& dex_file_;
5892 };
5893
5894 class HInstanceFieldGet final : public HExpression<1> {
5895 public:
HInstanceFieldGet(HInstruction * value,ArtField * field,DataType::Type field_type,MemberOffset field_offset,bool is_volatile,uint32_t field_idx,uint16_t declaring_class_def_index,const DexFile & dex_file,uint32_t dex_pc)5896 HInstanceFieldGet(HInstruction* value,
5897 ArtField* field,
5898 DataType::Type field_type,
5899 MemberOffset field_offset,
5900 bool is_volatile,
5901 uint32_t field_idx,
5902 uint16_t declaring_class_def_index,
5903 const DexFile& dex_file,
5904 uint32_t dex_pc)
5905 : HExpression(kInstanceFieldGet,
5906 field_type,
5907 SideEffects::FieldReadOfType(field_type, is_volatile),
5908 dex_pc),
5909 field_info_(field,
5910 field_offset,
5911 field_type,
5912 is_volatile,
5913 field_idx,
5914 declaring_class_def_index,
5915 dex_file) {
5916 SetRawInputAt(0, value);
5917 }
5918
IsClonable()5919 bool IsClonable() const override { return true; }
CanBeMoved()5920 bool CanBeMoved() const override { return !IsVolatile(); }
5921
InstructionDataEquals(const HInstruction * other)5922 bool InstructionDataEquals(const HInstruction* other) const override {
5923 const HInstanceFieldGet* other_get = other->AsInstanceFieldGet();
5924 return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
5925 }
5926
CanDoImplicitNullCheckOn(HInstruction * obj)5927 bool CanDoImplicitNullCheckOn(HInstruction* obj) const override {
5928 return (obj == InputAt(0)) && art::CanDoImplicitNullCheckOn(GetFieldOffset().Uint32Value());
5929 }
5930
ComputeHashCode()5931 size_t ComputeHashCode() const override {
5932 return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
5933 }
5934
GetFieldInfo()5935 const FieldInfo& GetFieldInfo() const { return field_info_; }
GetFieldOffset()5936 MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
GetFieldType()5937 DataType::Type GetFieldType() const { return field_info_.GetFieldType(); }
IsVolatile()5938 bool IsVolatile() const { return field_info_.IsVolatile(); }
5939
SetType(DataType::Type new_type)5940 void SetType(DataType::Type new_type) {
5941 DCHECK(DataType::IsIntegralType(GetType()));
5942 DCHECK(DataType::IsIntegralType(new_type));
5943 DCHECK_EQ(DataType::Size(GetType()), DataType::Size(new_type));
5944 SetPackedField<TypeField>(new_type);
5945 }
5946
5947 DECLARE_INSTRUCTION(InstanceFieldGet);
5948
5949 protected:
5950 DEFAULT_COPY_CONSTRUCTOR(InstanceFieldGet);
5951
5952 private:
5953 const FieldInfo field_info_;
5954 };
5955
5956 class HInstanceFieldSet final : public HExpression<2> {
5957 public:
HInstanceFieldSet(HInstruction * object,HInstruction * value,ArtField * field,DataType::Type field_type,MemberOffset field_offset,bool is_volatile,uint32_t field_idx,uint16_t declaring_class_def_index,const DexFile & dex_file,uint32_t dex_pc)5958 HInstanceFieldSet(HInstruction* object,
5959 HInstruction* value,
5960 ArtField* field,
5961 DataType::Type field_type,
5962 MemberOffset field_offset,
5963 bool is_volatile,
5964 uint32_t field_idx,
5965 uint16_t declaring_class_def_index,
5966 const DexFile& dex_file,
5967 uint32_t dex_pc)
5968 : HExpression(kInstanceFieldSet,
5969 SideEffects::FieldWriteOfType(field_type, is_volatile),
5970 dex_pc),
5971 field_info_(field,
5972 field_offset,
5973 field_type,
5974 is_volatile,
5975 field_idx,
5976 declaring_class_def_index,
5977 dex_file) {
5978 SetPackedFlag<kFlagValueCanBeNull>(true);
5979 SetRawInputAt(0, object);
5980 SetRawInputAt(1, value);
5981 }
5982
IsClonable()5983 bool IsClonable() const override { return true; }
5984
CanDoImplicitNullCheckOn(HInstruction * obj)5985 bool CanDoImplicitNullCheckOn(HInstruction* obj) const override {
5986 return (obj == InputAt(0)) && art::CanDoImplicitNullCheckOn(GetFieldOffset().Uint32Value());
5987 }
5988
GetFieldInfo()5989 const FieldInfo& GetFieldInfo() const { return field_info_; }
GetFieldOffset()5990 MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
GetFieldType()5991 DataType::Type GetFieldType() const { return field_info_.GetFieldType(); }
IsVolatile()5992 bool IsVolatile() const { return field_info_.IsVolatile(); }
GetValue()5993 HInstruction* GetValue() const { return InputAt(1); }
GetValueCanBeNull()5994 bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); }
ClearValueCanBeNull()5995 void ClearValueCanBeNull() { SetPackedFlag<kFlagValueCanBeNull>(false); }
5996
5997 DECLARE_INSTRUCTION(InstanceFieldSet);
5998
5999 protected:
6000 DEFAULT_COPY_CONSTRUCTOR(InstanceFieldSet);
6001
6002 private:
6003 static constexpr size_t kFlagValueCanBeNull = kNumberOfGenericPackedBits;
6004 static constexpr size_t kNumberOfInstanceFieldSetPackedBits = kFlagValueCanBeNull + 1;
6005 static_assert(kNumberOfInstanceFieldSetPackedBits <= kMaxNumberOfPackedBits,
6006 "Too many packed fields.");
6007
6008 const FieldInfo field_info_;
6009 };
6010
6011 class HArrayGet final : public HExpression<2> {
6012 public:
HArrayGet(HInstruction * array,HInstruction * index,DataType::Type type,uint32_t dex_pc)6013 HArrayGet(HInstruction* array,
6014 HInstruction* index,
6015 DataType::Type type,
6016 uint32_t dex_pc)
6017 : HArrayGet(array,
6018 index,
6019 type,
6020 SideEffects::ArrayReadOfType(type),
6021 dex_pc,
6022 /* is_string_char_at= */ false) {
6023 }
6024
HArrayGet(HInstruction * array,HInstruction * index,DataType::Type type,SideEffects side_effects,uint32_t dex_pc,bool is_string_char_at)6025 HArrayGet(HInstruction* array,
6026 HInstruction* index,
6027 DataType::Type type,
6028 SideEffects side_effects,
6029 uint32_t dex_pc,
6030 bool is_string_char_at)
6031 : HExpression(kArrayGet, type, side_effects, dex_pc) {
6032 SetPackedFlag<kFlagIsStringCharAt>(is_string_char_at);
6033 SetRawInputAt(0, array);
6034 SetRawInputAt(1, index);
6035 }
6036
IsClonable()6037 bool IsClonable() const override { return true; }
CanBeMoved()6038 bool CanBeMoved() const override { return true; }
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)6039 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
6040 return true;
6041 }
CanDoImplicitNullCheckOn(HInstruction * obj ATTRIBUTE_UNUSED)6042 bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const override {
6043 // TODO: We can be smarter here.
6044 // Currently, unless the array is the result of NewArray, the array access is always
6045 // preceded by some form of null NullCheck necessary for the bounds check, usually
6046 // implicit null check on the ArrayLength input to BoundsCheck or Deoptimize for
6047 // dynamic BCE. There are cases when these could be removed to produce better code.
6048 // If we ever add optimizations to do so we should allow an implicit check here
6049 // (as long as the address falls in the first page).
6050 //
6051 // As an example of such fancy optimization, we could eliminate BoundsCheck for
6052 // a = cond ? new int[1] : null;
6053 // a[0]; // The Phi does not need bounds check for either input.
6054 return false;
6055 }
6056
IsEquivalentOf(HArrayGet * other)6057 bool IsEquivalentOf(HArrayGet* other) const {
6058 bool result = (GetDexPc() == other->GetDexPc());
6059 if (kIsDebugBuild && result) {
6060 DCHECK_EQ(GetBlock(), other->GetBlock());
6061 DCHECK_EQ(GetArray(), other->GetArray());
6062 DCHECK_EQ(GetIndex(), other->GetIndex());
6063 if (DataType::IsIntOrLongType(GetType())) {
6064 DCHECK(DataType::IsFloatingPointType(other->GetType())) << other->GetType();
6065 } else {
6066 DCHECK(DataType::IsFloatingPointType(GetType())) << GetType();
6067 DCHECK(DataType::IsIntOrLongType(other->GetType())) << other->GetType();
6068 }
6069 }
6070 return result;
6071 }
6072
IsStringCharAt()6073 bool IsStringCharAt() const { return GetPackedFlag<kFlagIsStringCharAt>(); }
6074
GetArray()6075 HInstruction* GetArray() const { return InputAt(0); }
GetIndex()6076 HInstruction* GetIndex() const { return InputAt(1); }
6077
SetType(DataType::Type new_type)6078 void SetType(DataType::Type new_type) {
6079 DCHECK(DataType::IsIntegralType(GetType()));
6080 DCHECK(DataType::IsIntegralType(new_type));
6081 DCHECK_EQ(DataType::Size(GetType()), DataType::Size(new_type));
6082 SetPackedField<TypeField>(new_type);
6083 }
6084
6085 DECLARE_INSTRUCTION(ArrayGet);
6086
6087 protected:
6088 DEFAULT_COPY_CONSTRUCTOR(ArrayGet);
6089
6090 private:
6091 // We treat a String as an array, creating the HArrayGet from String.charAt()
6092 // intrinsic in the instruction simplifier. We can always determine whether
6093 // a particular HArrayGet is actually a String.charAt() by looking at the type
6094 // of the input but that requires holding the mutator lock, so we prefer to use
6095 // a flag, so that code generators don't need to do the locking.
6096 static constexpr size_t kFlagIsStringCharAt = kNumberOfGenericPackedBits;
6097 static constexpr size_t kNumberOfArrayGetPackedBits = kFlagIsStringCharAt + 1;
6098 static_assert(kNumberOfArrayGetPackedBits <= HInstruction::kMaxNumberOfPackedBits,
6099 "Too many packed fields.");
6100 };
6101
6102 class HArraySet final : public HExpression<3> {
6103 public:
HArraySet(HInstruction * array,HInstruction * index,HInstruction * value,DataType::Type expected_component_type,uint32_t dex_pc)6104 HArraySet(HInstruction* array,
6105 HInstruction* index,
6106 HInstruction* value,
6107 DataType::Type expected_component_type,
6108 uint32_t dex_pc)
6109 : HArraySet(array,
6110 index,
6111 value,
6112 expected_component_type,
6113 // Make a best guess for side effects now, may be refined during SSA building.
6114 ComputeSideEffects(GetComponentType(value->GetType(), expected_component_type)),
6115 dex_pc) {
6116 }
6117
HArraySet(HInstruction * array,HInstruction * index,HInstruction * value,DataType::Type expected_component_type,SideEffects side_effects,uint32_t dex_pc)6118 HArraySet(HInstruction* array,
6119 HInstruction* index,
6120 HInstruction* value,
6121 DataType::Type expected_component_type,
6122 SideEffects side_effects,
6123 uint32_t dex_pc)
6124 : HExpression(kArraySet, side_effects, dex_pc) {
6125 SetPackedField<ExpectedComponentTypeField>(expected_component_type);
6126 SetPackedFlag<kFlagNeedsTypeCheck>(value->GetType() == DataType::Type::kReference);
6127 SetPackedFlag<kFlagValueCanBeNull>(true);
6128 SetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(false);
6129 SetRawInputAt(0, array);
6130 SetRawInputAt(1, index);
6131 SetRawInputAt(2, value);
6132 }
6133
IsClonable()6134 bool IsClonable() const override { return true; }
6135
NeedsEnvironment()6136 bool NeedsEnvironment() const override {
6137 // We call a runtime method to throw ArrayStoreException.
6138 return NeedsTypeCheck();
6139 }
6140
6141 // Can throw ArrayStoreException.
CanThrow()6142 bool CanThrow() const override { return NeedsTypeCheck(); }
6143
CanDoImplicitNullCheckOn(HInstruction * obj ATTRIBUTE_UNUSED)6144 bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const override {
6145 // TODO: Same as for ArrayGet.
6146 return false;
6147 }
6148
ClearNeedsTypeCheck()6149 void ClearNeedsTypeCheck() {
6150 SetPackedFlag<kFlagNeedsTypeCheck>(false);
6151 }
6152
ClearValueCanBeNull()6153 void ClearValueCanBeNull() {
6154 SetPackedFlag<kFlagValueCanBeNull>(false);
6155 }
6156
SetStaticTypeOfArrayIsObjectArray()6157 void SetStaticTypeOfArrayIsObjectArray() {
6158 SetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(true);
6159 }
6160
GetValueCanBeNull()6161 bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); }
NeedsTypeCheck()6162 bool NeedsTypeCheck() const { return GetPackedFlag<kFlagNeedsTypeCheck>(); }
StaticTypeOfArrayIsObjectArray()6163 bool StaticTypeOfArrayIsObjectArray() const {
6164 return GetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>();
6165 }
6166
GetArray()6167 HInstruction* GetArray() const { return InputAt(0); }
GetIndex()6168 HInstruction* GetIndex() const { return InputAt(1); }
GetValue()6169 HInstruction* GetValue() const { return InputAt(2); }
6170
GetComponentType()6171 DataType::Type GetComponentType() const {
6172 return GetComponentType(GetValue()->GetType(), GetRawExpectedComponentType());
6173 }
6174
GetComponentType(DataType::Type value_type,DataType::Type expected_component_type)6175 static DataType::Type GetComponentType(DataType::Type value_type,
6176 DataType::Type expected_component_type) {
6177 // The Dex format does not type floating point index operations. Since the
6178 // `expected_component_type` comes from SSA building and can therefore not
6179 // be correct, we also check what is the value type. If it is a floating
6180 // point type, we must use that type.
6181 return ((value_type == DataType::Type::kFloat32) || (value_type == DataType::Type::kFloat64))
6182 ? value_type
6183 : expected_component_type;
6184 }
6185
GetRawExpectedComponentType()6186 DataType::Type GetRawExpectedComponentType() const {
6187 return GetPackedField<ExpectedComponentTypeField>();
6188 }
6189
ComputeSideEffects(DataType::Type type)6190 static SideEffects ComputeSideEffects(DataType::Type type) {
6191 return SideEffects::ArrayWriteOfType(type).Union(SideEffectsForArchRuntimeCalls(type));
6192 }
6193
SideEffectsForArchRuntimeCalls(DataType::Type value_type)6194 static SideEffects SideEffectsForArchRuntimeCalls(DataType::Type value_type) {
6195 return (value_type == DataType::Type::kReference) ? SideEffects::CanTriggerGC()
6196 : SideEffects::None();
6197 }
6198
6199 DECLARE_INSTRUCTION(ArraySet);
6200
6201 protected:
6202 DEFAULT_COPY_CONSTRUCTOR(ArraySet);
6203
6204 private:
6205 static constexpr size_t kFieldExpectedComponentType = kNumberOfGenericPackedBits;
6206 static constexpr size_t kFieldExpectedComponentTypeSize =
6207 MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast));
6208 static constexpr size_t kFlagNeedsTypeCheck =
6209 kFieldExpectedComponentType + kFieldExpectedComponentTypeSize;
6210 static constexpr size_t kFlagValueCanBeNull = kFlagNeedsTypeCheck + 1;
6211 // Cached information for the reference_type_info_ so that codegen
6212 // does not need to inspect the static type.
6213 static constexpr size_t kFlagStaticTypeOfArrayIsObjectArray = kFlagValueCanBeNull + 1;
6214 static constexpr size_t kNumberOfArraySetPackedBits =
6215 kFlagStaticTypeOfArrayIsObjectArray + 1;
6216 static_assert(kNumberOfArraySetPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
6217 using ExpectedComponentTypeField =
6218 BitField<DataType::Type, kFieldExpectedComponentType, kFieldExpectedComponentTypeSize>;
6219 };
6220
6221 class HArrayLength final : public HExpression<1> {
6222 public:
6223 HArrayLength(HInstruction* array, uint32_t dex_pc, bool is_string_length = false)
HExpression(kArrayLength,DataType::Type::kInt32,SideEffects::None (),dex_pc)6224 : HExpression(kArrayLength, DataType::Type::kInt32, SideEffects::None(), dex_pc) {
6225 SetPackedFlag<kFlagIsStringLength>(is_string_length);
6226 // Note that arrays do not change length, so the instruction does not
6227 // depend on any write.
6228 SetRawInputAt(0, array);
6229 }
6230
IsClonable()6231 bool IsClonable() const override { return true; }
CanBeMoved()6232 bool CanBeMoved() const override { return true; }
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)6233 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
6234 return true;
6235 }
CanDoImplicitNullCheckOn(HInstruction * obj)6236 bool CanDoImplicitNullCheckOn(HInstruction* obj) const override {
6237 return obj == InputAt(0);
6238 }
6239
IsStringLength()6240 bool IsStringLength() const { return GetPackedFlag<kFlagIsStringLength>(); }
6241
6242 DECLARE_INSTRUCTION(ArrayLength);
6243
6244 protected:
6245 DEFAULT_COPY_CONSTRUCTOR(ArrayLength);
6246
6247 private:
6248 // We treat a String as an array, creating the HArrayLength from String.length()
6249 // or String.isEmpty() intrinsic in the instruction simplifier. We can always
6250 // determine whether a particular HArrayLength is actually a String.length() by
6251 // looking at the type of the input but that requires holding the mutator lock, so
6252 // we prefer to use a flag, so that code generators don't need to do the locking.
6253 static constexpr size_t kFlagIsStringLength = kNumberOfGenericPackedBits;
6254 static constexpr size_t kNumberOfArrayLengthPackedBits = kFlagIsStringLength + 1;
6255 static_assert(kNumberOfArrayLengthPackedBits <= HInstruction::kMaxNumberOfPackedBits,
6256 "Too many packed fields.");
6257 };
6258
6259 class HBoundsCheck final : public HExpression<2> {
6260 public:
6261 // `HBoundsCheck` can trigger GC, as it may call the `IndexOutOfBoundsException`
6262 // constructor. However it can only do it on a fatal slow path so execution never returns to the
6263 // instruction following the current one; thus 'SideEffects::None()' is used.
6264 HBoundsCheck(HInstruction* index,
6265 HInstruction* length,
6266 uint32_t dex_pc,
6267 bool is_string_char_at = false)
6268 : HExpression(kBoundsCheck, index->GetType(), SideEffects::None(), dex_pc) {
6269 DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(index->GetType()));
6270 SetPackedFlag<kFlagIsStringCharAt>(is_string_char_at);
6271 SetRawInputAt(0, index);
6272 SetRawInputAt(1, length);
6273 }
6274
IsClonable()6275 bool IsClonable() const override { return true; }
CanBeMoved()6276 bool CanBeMoved() const override { return true; }
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)6277 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
6278 return true;
6279 }
6280
NeedsEnvironment()6281 bool NeedsEnvironment() const override { return true; }
6282
CanThrow()6283 bool CanThrow() const override { return true; }
6284
IsStringCharAt()6285 bool IsStringCharAt() const { return GetPackedFlag<kFlagIsStringCharAt>(); }
6286
GetIndex()6287 HInstruction* GetIndex() const { return InputAt(0); }
6288
6289 DECLARE_INSTRUCTION(BoundsCheck);
6290
6291 protected:
6292 DEFAULT_COPY_CONSTRUCTOR(BoundsCheck);
6293
6294 private:
6295 static constexpr size_t kFlagIsStringCharAt = kNumberOfGenericPackedBits;
6296 static constexpr size_t kNumberOfBoundsCheckPackedBits = kFlagIsStringCharAt + 1;
6297 static_assert(kNumberOfBoundsCheckPackedBits <= HInstruction::kMaxNumberOfPackedBits,
6298 "Too many packed fields.");
6299 };
6300
6301 class HSuspendCheck final : public HExpression<0> {
6302 public:
6303 explicit HSuspendCheck(uint32_t dex_pc = kNoDexPc)
HExpression(kSuspendCheck,SideEffects::CanTriggerGC (),dex_pc)6304 : HExpression(kSuspendCheck, SideEffects::CanTriggerGC(), dex_pc),
6305 slow_path_(nullptr) {
6306 }
6307
IsClonable()6308 bool IsClonable() const override { return true; }
6309
NeedsEnvironment()6310 bool NeedsEnvironment() const override {
6311 return true;
6312 }
6313
SetSlowPath(SlowPathCode * slow_path)6314 void SetSlowPath(SlowPathCode* slow_path) { slow_path_ = slow_path; }
GetSlowPath()6315 SlowPathCode* GetSlowPath() const { return slow_path_; }
6316
6317 DECLARE_INSTRUCTION(SuspendCheck);
6318
6319 protected:
6320 DEFAULT_COPY_CONSTRUCTOR(SuspendCheck);
6321
6322 private:
6323 // Only used for code generation, in order to share the same slow path between back edges
6324 // of a same loop.
6325 SlowPathCode* slow_path_;
6326 };
6327
6328 // Pseudo-instruction which provides the native debugger with mapping information.
6329 // It ensures that we can generate line number and local variables at this point.
6330 class HNativeDebugInfo : public HExpression<0> {
6331 public:
HNativeDebugInfo(uint32_t dex_pc)6332 explicit HNativeDebugInfo(uint32_t dex_pc)
6333 : HExpression<0>(kNativeDebugInfo, SideEffects::None(), dex_pc) {
6334 }
6335
NeedsEnvironment()6336 bool NeedsEnvironment() const override {
6337 return true;
6338 }
6339
6340 DECLARE_INSTRUCTION(NativeDebugInfo);
6341
6342 protected:
6343 DEFAULT_COPY_CONSTRUCTOR(NativeDebugInfo);
6344 };
6345
6346 /**
6347 * Instruction to load a Class object.
6348 */
6349 class HLoadClass final : public HInstruction {
6350 public:
6351 // Determines how to load the Class.
6352 enum class LoadKind {
6353 // We cannot load this class. See HSharpening::SharpenLoadClass.
6354 kInvalid = -1,
6355
6356 // Use the Class* from the method's own ArtMethod*.
6357 kReferrersClass,
6358
6359 // Use PC-relative boot image Class* address that will be known at link time.
6360 // Used for boot image classes referenced by boot image code.
6361 kBootImageLinkTimePcRelative,
6362
6363 // Load from an entry in the .data.bimg.rel.ro using a PC-relative load.
6364 // Used for boot image classes referenced by apps in AOT-compiled code.
6365 kBootImageRelRo,
6366
6367 // Load from an entry in the .bss section using a PC-relative load.
6368 // Used for classes outside boot image referenced by AOT-compiled app and boot image code.
6369 kBssEntry,
6370
6371 // Use a known boot image Class* address, embedded in the code by the codegen.
6372 // Used for boot image classes referenced by apps in JIT-compiled code.
6373 kJitBootImageAddress,
6374
6375 // Load from the root table associated with the JIT compiled method.
6376 kJitTableAddress,
6377
6378 // Load using a simple runtime call. This is the fall-back load kind when
6379 // the codegen is unable to use another appropriate kind.
6380 kRuntimeCall,
6381
6382 kLast = kRuntimeCall
6383 };
6384
HLoadClass(HCurrentMethod * current_method,dex::TypeIndex type_index,const DexFile & dex_file,Handle<mirror::Class> klass,bool is_referrers_class,uint32_t dex_pc,bool needs_access_check)6385 HLoadClass(HCurrentMethod* current_method,
6386 dex::TypeIndex type_index,
6387 const DexFile& dex_file,
6388 Handle<mirror::Class> klass,
6389 bool is_referrers_class,
6390 uint32_t dex_pc,
6391 bool needs_access_check)
6392 : HInstruction(kLoadClass,
6393 DataType::Type::kReference,
6394 SideEffectsForArchRuntimeCalls(),
6395 dex_pc),
6396 special_input_(HUserRecord<HInstruction*>(current_method)),
6397 type_index_(type_index),
6398 dex_file_(dex_file),
6399 klass_(klass) {
6400 // Referrers class should not need access check. We never inline unverified
6401 // methods so we can't possibly end up in this situation.
6402 DCHECK(!is_referrers_class || !needs_access_check);
6403
6404 SetPackedField<LoadKindField>(
6405 is_referrers_class ? LoadKind::kReferrersClass : LoadKind::kRuntimeCall);
6406 SetPackedFlag<kFlagNeedsAccessCheck>(needs_access_check);
6407 SetPackedFlag<kFlagIsInBootImage>(false);
6408 SetPackedFlag<kFlagGenerateClInitCheck>(false);
6409 SetPackedFlag<kFlagValidLoadedClassRTI>(false);
6410 }
6411
IsClonable()6412 bool IsClonable() const override { return true; }
6413
6414 void SetLoadKind(LoadKind load_kind);
6415
GetLoadKind()6416 LoadKind GetLoadKind() const {
6417 return GetPackedField<LoadKindField>();
6418 }
6419
HasPcRelativeLoadKind()6420 bool HasPcRelativeLoadKind() const {
6421 return GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative ||
6422 GetLoadKind() == LoadKind::kBootImageRelRo ||
6423 GetLoadKind() == LoadKind::kBssEntry;
6424 }
6425
CanBeMoved()6426 bool CanBeMoved() const override { return true; }
6427
6428 bool InstructionDataEquals(const HInstruction* other) const override;
6429
ComputeHashCode()6430 size_t ComputeHashCode() const override { return type_index_.index_; }
6431
CanBeNull()6432 bool CanBeNull() const override { return false; }
6433
NeedsEnvironment()6434 bool NeedsEnvironment() const override {
6435 return CanCallRuntime();
6436 }
6437
SetMustGenerateClinitCheck(bool generate_clinit_check)6438 void SetMustGenerateClinitCheck(bool generate_clinit_check) {
6439 // The entrypoint the code generator is going to call does not do
6440 // clinit of the class.
6441 DCHECK(!NeedsAccessCheck());
6442 SetPackedFlag<kFlagGenerateClInitCheck>(generate_clinit_check);
6443 }
6444
CanCallRuntime()6445 bool CanCallRuntime() const {
6446 return NeedsAccessCheck() ||
6447 MustGenerateClinitCheck() ||
6448 GetLoadKind() == LoadKind::kRuntimeCall ||
6449 GetLoadKind() == LoadKind::kBssEntry;
6450 }
6451
CanThrow()6452 bool CanThrow() const override {
6453 return NeedsAccessCheck() ||
6454 MustGenerateClinitCheck() ||
6455 // If the class is in the boot image, the lookup in the runtime call cannot throw.
6456 ((GetLoadKind() == LoadKind::kRuntimeCall ||
6457 GetLoadKind() == LoadKind::kBssEntry) &&
6458 !IsInBootImage());
6459 }
6460
GetLoadedClassRTI()6461 ReferenceTypeInfo GetLoadedClassRTI() {
6462 if (GetPackedFlag<kFlagValidLoadedClassRTI>()) {
6463 // Note: The is_exact flag from the return value should not be used.
6464 return ReferenceTypeInfo::CreateUnchecked(klass_, /* is_exact= */ true);
6465 } else {
6466 return ReferenceTypeInfo::CreateInvalid();
6467 }
6468 }
6469
6470 // Loaded class RTI is marked as valid by RTP if the klass_ is admissible.
SetValidLoadedClassRTI()6471 void SetValidLoadedClassRTI() REQUIRES_SHARED(Locks::mutator_lock_) {
6472 DCHECK(klass_ != nullptr);
6473 SetPackedFlag<kFlagValidLoadedClassRTI>(true);
6474 }
6475
GetTypeIndex()6476 dex::TypeIndex GetTypeIndex() const { return type_index_; }
GetDexFile()6477 const DexFile& GetDexFile() const { return dex_file_; }
6478
NeedsDexCacheOfDeclaringClass()6479 bool NeedsDexCacheOfDeclaringClass() const override {
6480 return GetLoadKind() == LoadKind::kRuntimeCall;
6481 }
6482
SideEffectsForArchRuntimeCalls()6483 static SideEffects SideEffectsForArchRuntimeCalls() {
6484 return SideEffects::CanTriggerGC();
6485 }
6486
IsReferrersClass()6487 bool IsReferrersClass() const { return GetLoadKind() == LoadKind::kReferrersClass; }
NeedsAccessCheck()6488 bool NeedsAccessCheck() const { return GetPackedFlag<kFlagNeedsAccessCheck>(); }
IsInBootImage()6489 bool IsInBootImage() const { return GetPackedFlag<kFlagIsInBootImage>(); }
MustGenerateClinitCheck()6490 bool MustGenerateClinitCheck() const { return GetPackedFlag<kFlagGenerateClInitCheck>(); }
6491
MustResolveTypeOnSlowPath()6492 bool MustResolveTypeOnSlowPath() const {
6493 // Check that this instruction has a slow path.
6494 DCHECK(GetLoadKind() != LoadKind::kRuntimeCall); // kRuntimeCall calls on main path.
6495 DCHECK(GetLoadKind() == LoadKind::kBssEntry || MustGenerateClinitCheck());
6496 return GetLoadKind() == LoadKind::kBssEntry;
6497 }
6498
MarkInBootImage()6499 void MarkInBootImage() {
6500 SetPackedFlag<kFlagIsInBootImage>(true);
6501 }
6502
6503 void AddSpecialInput(HInstruction* special_input);
6504
6505 using HInstruction::GetInputRecords; // Keep the const version visible.
GetInputRecords()6506 ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
6507 return ArrayRef<HUserRecord<HInstruction*>>(
6508 &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u);
6509 }
6510
GetClass()6511 Handle<mirror::Class> GetClass() const {
6512 return klass_;
6513 }
6514
6515 DECLARE_INSTRUCTION(LoadClass);
6516
6517 protected:
6518 DEFAULT_COPY_CONSTRUCTOR(LoadClass);
6519
6520 private:
6521 static constexpr size_t kFlagNeedsAccessCheck = kNumberOfGenericPackedBits;
6522 static constexpr size_t kFlagIsInBootImage = kFlagNeedsAccessCheck + 1;
6523 // Whether this instruction must generate the initialization check.
6524 // Used for code generation.
6525 static constexpr size_t kFlagGenerateClInitCheck = kFlagIsInBootImage + 1;
6526 static constexpr size_t kFieldLoadKind = kFlagGenerateClInitCheck + 1;
6527 static constexpr size_t kFieldLoadKindSize =
6528 MinimumBitsToStore(static_cast<size_t>(LoadKind::kLast));
6529 static constexpr size_t kFlagValidLoadedClassRTI = kFieldLoadKind + kFieldLoadKindSize;
6530 static constexpr size_t kNumberOfLoadClassPackedBits = kFlagValidLoadedClassRTI + 1;
6531 static_assert(kNumberOfLoadClassPackedBits < kMaxNumberOfPackedBits, "Too many packed fields.");
6532 using LoadKindField = BitField<LoadKind, kFieldLoadKind, kFieldLoadKindSize>;
6533
HasTypeReference(LoadKind load_kind)6534 static bool HasTypeReference(LoadKind load_kind) {
6535 return load_kind == LoadKind::kReferrersClass ||
6536 load_kind == LoadKind::kBootImageLinkTimePcRelative ||
6537 load_kind == LoadKind::kBssEntry ||
6538 load_kind == LoadKind::kRuntimeCall;
6539 }
6540
6541 void SetLoadKindInternal(LoadKind load_kind);
6542
6543 // The special input is the HCurrentMethod for kRuntimeCall or kReferrersClass.
6544 // For other load kinds it's empty or possibly some architecture-specific instruction
6545 // for PC-relative loads, i.e. kBssEntry or kBootImageLinkTimePcRelative.
6546 HUserRecord<HInstruction*> special_input_;
6547
6548 // A type index and dex file where the class can be accessed. The dex file can be:
6549 // - The compiling method's dex file if the class is defined there too.
6550 // - The compiling method's dex file if the class is referenced there.
6551 // - The dex file where the class is defined. When the load kind can only be
6552 // kBssEntry or kRuntimeCall, we cannot emit code for this `HLoadClass`.
6553 const dex::TypeIndex type_index_;
6554 const DexFile& dex_file_;
6555
6556 Handle<mirror::Class> klass_;
6557 };
6558 std::ostream& operator<<(std::ostream& os, HLoadClass::LoadKind rhs);
6559
6560 // Note: defined outside class to see operator<<(., HLoadClass::LoadKind).
SetLoadKind(LoadKind load_kind)6561 inline void HLoadClass::SetLoadKind(LoadKind load_kind) {
6562 // The load kind should be determined before inserting the instruction to the graph.
6563 DCHECK(GetBlock() == nullptr);
6564 DCHECK(GetEnvironment() == nullptr);
6565 SetPackedField<LoadKindField>(load_kind);
6566 if (load_kind != LoadKind::kRuntimeCall && load_kind != LoadKind::kReferrersClass) {
6567 special_input_ = HUserRecord<HInstruction*>(nullptr);
6568 }
6569 if (!NeedsEnvironment()) {
6570 SetSideEffects(SideEffects::None());
6571 }
6572 }
6573
6574 // Note: defined outside class to see operator<<(., HLoadClass::LoadKind).
AddSpecialInput(HInstruction * special_input)6575 inline void HLoadClass::AddSpecialInput(HInstruction* special_input) {
6576 // The special input is used for PC-relative loads on some architectures,
6577 // including literal pool loads, which are PC-relative too.
6578 DCHECK(GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative ||
6579 GetLoadKind() == LoadKind::kBootImageRelRo ||
6580 GetLoadKind() == LoadKind::kBssEntry ||
6581 GetLoadKind() == LoadKind::kJitBootImageAddress) << GetLoadKind();
6582 DCHECK(special_input_.GetInstruction() == nullptr);
6583 special_input_ = HUserRecord<HInstruction*>(special_input);
6584 special_input->AddUseAt(this, 0);
6585 }
6586
6587 class HLoadString final : public HInstruction {
6588 public:
6589 // Determines how to load the String.
6590 enum class LoadKind {
6591 // Use PC-relative boot image String* address that will be known at link time.
6592 // Used for boot image strings referenced by boot image code.
6593 kBootImageLinkTimePcRelative,
6594
6595 // Load from an entry in the .data.bimg.rel.ro using a PC-relative load.
6596 // Used for boot image strings referenced by apps in AOT-compiled code.
6597 kBootImageRelRo,
6598
6599 // Load from an entry in the .bss section using a PC-relative load.
6600 // Used for strings outside boot image referenced by AOT-compiled app and boot image code.
6601 kBssEntry,
6602
6603 // Use a known boot image String* address, embedded in the code by the codegen.
6604 // Used for boot image strings referenced by apps in JIT-compiled code.
6605 kJitBootImageAddress,
6606
6607 // Load from the root table associated with the JIT compiled method.
6608 kJitTableAddress,
6609
6610 // Load using a simple runtime call. This is the fall-back load kind when
6611 // the codegen is unable to use another appropriate kind.
6612 kRuntimeCall,
6613
6614 kLast = kRuntimeCall,
6615 };
6616
HLoadString(HCurrentMethod * current_method,dex::StringIndex string_index,const DexFile & dex_file,uint32_t dex_pc)6617 HLoadString(HCurrentMethod* current_method,
6618 dex::StringIndex string_index,
6619 const DexFile& dex_file,
6620 uint32_t dex_pc)
6621 : HInstruction(kLoadString,
6622 DataType::Type::kReference,
6623 SideEffectsForArchRuntimeCalls(),
6624 dex_pc),
6625 special_input_(HUserRecord<HInstruction*>(current_method)),
6626 string_index_(string_index),
6627 dex_file_(dex_file) {
6628 SetPackedField<LoadKindField>(LoadKind::kRuntimeCall);
6629 }
6630
IsClonable()6631 bool IsClonable() const override { return true; }
6632
6633 void SetLoadKind(LoadKind load_kind);
6634
GetLoadKind()6635 LoadKind GetLoadKind() const {
6636 return GetPackedField<LoadKindField>();
6637 }
6638
HasPcRelativeLoadKind()6639 bool HasPcRelativeLoadKind() const {
6640 return GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative ||
6641 GetLoadKind() == LoadKind::kBootImageRelRo ||
6642 GetLoadKind() == LoadKind::kBssEntry;
6643 }
6644
GetDexFile()6645 const DexFile& GetDexFile() const {
6646 return dex_file_;
6647 }
6648
GetStringIndex()6649 dex::StringIndex GetStringIndex() const {
6650 return string_index_;
6651 }
6652
GetString()6653 Handle<mirror::String> GetString() const {
6654 return string_;
6655 }
6656
SetString(Handle<mirror::String> str)6657 void SetString(Handle<mirror::String> str) {
6658 string_ = str;
6659 }
6660
CanBeMoved()6661 bool CanBeMoved() const override { return true; }
6662
6663 bool InstructionDataEquals(const HInstruction* other) const override;
6664
ComputeHashCode()6665 size_t ComputeHashCode() const override { return string_index_.index_; }
6666
6667 // Will call the runtime if we need to load the string through
6668 // the dex cache and the string is not guaranteed to be there yet.
NeedsEnvironment()6669 bool NeedsEnvironment() const override {
6670 LoadKind load_kind = GetLoadKind();
6671 if (load_kind == LoadKind::kBootImageLinkTimePcRelative ||
6672 load_kind == LoadKind::kBootImageRelRo ||
6673 load_kind == LoadKind::kJitBootImageAddress ||
6674 load_kind == LoadKind::kJitTableAddress) {
6675 return false;
6676 }
6677 return true;
6678 }
6679
NeedsDexCacheOfDeclaringClass()6680 bool NeedsDexCacheOfDeclaringClass() const override {
6681 return GetLoadKind() == LoadKind::kRuntimeCall;
6682 }
6683
CanBeNull()6684 bool CanBeNull() const override { return false; }
CanThrow()6685 bool CanThrow() const override { return NeedsEnvironment(); }
6686
SideEffectsForArchRuntimeCalls()6687 static SideEffects SideEffectsForArchRuntimeCalls() {
6688 return SideEffects::CanTriggerGC();
6689 }
6690
6691 void AddSpecialInput(HInstruction* special_input);
6692
6693 using HInstruction::GetInputRecords; // Keep the const version visible.
GetInputRecords()6694 ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
6695 return ArrayRef<HUserRecord<HInstruction*>>(
6696 &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u);
6697 }
6698
6699 DECLARE_INSTRUCTION(LoadString);
6700
6701 protected:
6702 DEFAULT_COPY_CONSTRUCTOR(LoadString);
6703
6704 private:
6705 static constexpr size_t kFieldLoadKind = kNumberOfGenericPackedBits;
6706 static constexpr size_t kFieldLoadKindSize =
6707 MinimumBitsToStore(static_cast<size_t>(LoadKind::kLast));
6708 static constexpr size_t kNumberOfLoadStringPackedBits = kFieldLoadKind + kFieldLoadKindSize;
6709 static_assert(kNumberOfLoadStringPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
6710 using LoadKindField = BitField<LoadKind, kFieldLoadKind, kFieldLoadKindSize>;
6711
6712 void SetLoadKindInternal(LoadKind load_kind);
6713
6714 // The special input is the HCurrentMethod for kRuntimeCall.
6715 // For other load kinds it's empty or possibly some architecture-specific instruction
6716 // for PC-relative loads, i.e. kBssEntry or kBootImageLinkTimePcRelative.
6717 HUserRecord<HInstruction*> special_input_;
6718
6719 dex::StringIndex string_index_;
6720 const DexFile& dex_file_;
6721
6722 Handle<mirror::String> string_;
6723 };
6724 std::ostream& operator<<(std::ostream& os, HLoadString::LoadKind rhs);
6725
6726 // Note: defined outside class to see operator<<(., HLoadString::LoadKind).
SetLoadKind(LoadKind load_kind)6727 inline void HLoadString::SetLoadKind(LoadKind load_kind) {
6728 // The load kind should be determined before inserting the instruction to the graph.
6729 DCHECK(GetBlock() == nullptr);
6730 DCHECK(GetEnvironment() == nullptr);
6731 DCHECK_EQ(GetLoadKind(), LoadKind::kRuntimeCall);
6732 SetPackedField<LoadKindField>(load_kind);
6733 if (load_kind != LoadKind::kRuntimeCall) {
6734 special_input_ = HUserRecord<HInstruction*>(nullptr);
6735 }
6736 if (!NeedsEnvironment()) {
6737 SetSideEffects(SideEffects::None());
6738 }
6739 }
6740
6741 // Note: defined outside class to see operator<<(., HLoadString::LoadKind).
AddSpecialInput(HInstruction * special_input)6742 inline void HLoadString::AddSpecialInput(HInstruction* special_input) {
6743 // The special input is used for PC-relative loads on some architectures,
6744 // including literal pool loads, which are PC-relative too.
6745 DCHECK(GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative ||
6746 GetLoadKind() == LoadKind::kBootImageRelRo ||
6747 GetLoadKind() == LoadKind::kBssEntry ||
6748 GetLoadKind() == LoadKind::kJitBootImageAddress) << GetLoadKind();
6749 // HLoadString::GetInputRecords() returns an empty array at this point,
6750 // so use the GetInputRecords() from the base class to set the input record.
6751 DCHECK(special_input_.GetInstruction() == nullptr);
6752 special_input_ = HUserRecord<HInstruction*>(special_input);
6753 special_input->AddUseAt(this, 0);
6754 }
6755
6756 class HLoadMethodHandle final : public HInstruction {
6757 public:
HLoadMethodHandle(HCurrentMethod * current_method,uint16_t method_handle_idx,const DexFile & dex_file,uint32_t dex_pc)6758 HLoadMethodHandle(HCurrentMethod* current_method,
6759 uint16_t method_handle_idx,
6760 const DexFile& dex_file,
6761 uint32_t dex_pc)
6762 : HInstruction(kLoadMethodHandle,
6763 DataType::Type::kReference,
6764 SideEffectsForArchRuntimeCalls(),
6765 dex_pc),
6766 special_input_(HUserRecord<HInstruction*>(current_method)),
6767 method_handle_idx_(method_handle_idx),
6768 dex_file_(dex_file) {
6769 }
6770
6771 using HInstruction::GetInputRecords; // Keep the const version visible.
GetInputRecords()6772 ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
6773 return ArrayRef<HUserRecord<HInstruction*>>(
6774 &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u);
6775 }
6776
IsClonable()6777 bool IsClonable() const override { return true; }
6778
GetMethodHandleIndex()6779 uint16_t GetMethodHandleIndex() const { return method_handle_idx_; }
6780
GetDexFile()6781 const DexFile& GetDexFile() const { return dex_file_; }
6782
SideEffectsForArchRuntimeCalls()6783 static SideEffects SideEffectsForArchRuntimeCalls() {
6784 return SideEffects::CanTriggerGC();
6785 }
6786
6787 DECLARE_INSTRUCTION(LoadMethodHandle);
6788
6789 protected:
6790 DEFAULT_COPY_CONSTRUCTOR(LoadMethodHandle);
6791
6792 private:
6793 // The special input is the HCurrentMethod for kRuntimeCall.
6794 HUserRecord<HInstruction*> special_input_;
6795
6796 const uint16_t method_handle_idx_;
6797 const DexFile& dex_file_;
6798 };
6799
6800 class HLoadMethodType final : public HInstruction {
6801 public:
HLoadMethodType(HCurrentMethod * current_method,dex::ProtoIndex proto_index,const DexFile & dex_file,uint32_t dex_pc)6802 HLoadMethodType(HCurrentMethod* current_method,
6803 dex::ProtoIndex proto_index,
6804 const DexFile& dex_file,
6805 uint32_t dex_pc)
6806 : HInstruction(kLoadMethodType,
6807 DataType::Type::kReference,
6808 SideEffectsForArchRuntimeCalls(),
6809 dex_pc),
6810 special_input_(HUserRecord<HInstruction*>(current_method)),
6811 proto_index_(proto_index),
6812 dex_file_(dex_file) {
6813 }
6814
6815 using HInstruction::GetInputRecords; // Keep the const version visible.
GetInputRecords()6816 ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
6817 return ArrayRef<HUserRecord<HInstruction*>>(
6818 &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u);
6819 }
6820
IsClonable()6821 bool IsClonable() const override { return true; }
6822
GetProtoIndex()6823 dex::ProtoIndex GetProtoIndex() const { return proto_index_; }
6824
GetDexFile()6825 const DexFile& GetDexFile() const { return dex_file_; }
6826
SideEffectsForArchRuntimeCalls()6827 static SideEffects SideEffectsForArchRuntimeCalls() {
6828 return SideEffects::CanTriggerGC();
6829 }
6830
6831 DECLARE_INSTRUCTION(LoadMethodType);
6832
6833 protected:
6834 DEFAULT_COPY_CONSTRUCTOR(LoadMethodType);
6835
6836 private:
6837 // The special input is the HCurrentMethod for kRuntimeCall.
6838 HUserRecord<HInstruction*> special_input_;
6839
6840 const dex::ProtoIndex proto_index_;
6841 const DexFile& dex_file_;
6842 };
6843
6844 /**
6845 * Performs an initialization check on its Class object input.
6846 */
6847 class HClinitCheck final : public HExpression<1> {
6848 public:
HClinitCheck(HLoadClass * constant,uint32_t dex_pc)6849 HClinitCheck(HLoadClass* constant, uint32_t dex_pc)
6850 : HExpression(
6851 kClinitCheck,
6852 DataType::Type::kReference,
6853 SideEffects::AllExceptGCDependency(), // Assume write/read on all fields/arrays.
6854 dex_pc) {
6855 SetRawInputAt(0, constant);
6856 }
6857 // TODO: Make ClinitCheck clonable.
CanBeMoved()6858 bool CanBeMoved() const override { return true; }
InstructionDataEquals(const HInstruction * other ATTRIBUTE_UNUSED)6859 bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
6860 return true;
6861 }
6862
NeedsEnvironment()6863 bool NeedsEnvironment() const override {
6864 // May call runtime to initialize the class.
6865 return true;
6866 }
6867
CanThrow()6868 bool CanThrow() const override { return true; }
6869
GetLoadClass()6870 HLoadClass* GetLoadClass() const {
6871 DCHECK(InputAt(0)->IsLoadClass());
6872 return InputAt(0)->AsLoadClass();
6873 }
6874
6875 DECLARE_INSTRUCTION(ClinitCheck);
6876
6877
6878 protected:
6879 DEFAULT_COPY_CONSTRUCTOR(ClinitCheck);
6880 };
6881
6882 class HStaticFieldGet final : public HExpression<1> {
6883 public:
HStaticFieldGet(HInstruction * cls,ArtField * field,DataType::Type field_type,MemberOffset field_offset,bool is_volatile,uint32_t field_idx,uint16_t declaring_class_def_index,const DexFile & dex_file,uint32_t dex_pc)6884 HStaticFieldGet(HInstruction* cls,
6885 ArtField* field,
6886 DataType::Type field_type,
6887 MemberOffset field_offset,
6888 bool is_volatile,
6889 uint32_t field_idx,
6890 uint16_t declaring_class_def_index,
6891 const DexFile& dex_file,
6892 uint32_t dex_pc)
6893 : HExpression(kStaticFieldGet,
6894 field_type,
6895 SideEffects::FieldReadOfType(field_type, is_volatile),
6896 dex_pc),
6897 field_info_(field,
6898 field_offset,
6899 field_type,
6900 is_volatile,
6901 field_idx,
6902 declaring_class_def_index,
6903 dex_file) {
6904 SetRawInputAt(0, cls);
6905 }
6906
6907
IsClonable()6908 bool IsClonable() const override { return true; }
CanBeMoved()6909 bool CanBeMoved() const override { return !IsVolatile(); }
6910
InstructionDataEquals(const HInstruction * other)6911 bool InstructionDataEquals(const HInstruction* other) const override {
6912 const HStaticFieldGet* other_get = other->AsStaticFieldGet();
6913 return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
6914 }
6915
ComputeHashCode()6916 size_t ComputeHashCode() const override {
6917 return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
6918 }
6919
GetFieldInfo()6920 const FieldInfo& GetFieldInfo() const { return field_info_; }
GetFieldOffset()6921 MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
GetFieldType()6922