1 /*
2 * Copyright 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "jit.h"
18
19 #include <dlfcn.h>
20
21 #include "art_method-inl.h"
22 #include "base/enums.h"
23 #include "base/file_utils.h"
24 #include "base/logging.h" // For VLOG.
25 #include "base/memfd.h"
26 #include "base/memory_tool.h"
27 #include "base/runtime_debug.h"
28 #include "base/scoped_flock.h"
29 #include "base/utils.h"
30 #include "class_root-inl.h"
31 #include "compilation_kind.h"
32 #include "debugger.h"
33 #include "dex/type_lookup_table.h"
34 #include "gc/space/image_space.h"
35 #include "entrypoints/entrypoint_utils-inl.h"
36 #include "entrypoints/runtime_asm_entrypoints.h"
37 #include "image-inl.h"
38 #include "interpreter/interpreter.h"
39 #include "jit-inl.h"
40 #include "jit_code_cache.h"
41 #include "jni/java_vm_ext.h"
42 #include "mirror/method_handle_impl.h"
43 #include "mirror/var_handle.h"
44 #include "oat_file.h"
45 #include "oat_file_manager.h"
46 #include "oat_quick_method_header.h"
47 #include "profile/profile_boot_info.h"
48 #include "profile/profile_compilation_info.h"
49 #include "profile_saver.h"
50 #include "runtime.h"
51 #include "runtime_options.h"
52 #include "stack.h"
53 #include "stack_map.h"
54 #include "thread-inl.h"
55 #include "thread_list.h"
56
57 using android::base::unique_fd;
58
59 namespace art {
60 namespace jit {
61
62 static constexpr bool kEnableOnStackReplacement = true;
63
64 // Maximum permitted threshold value.
65 static constexpr uint32_t kJitMaxThreshold = std::numeric_limits<uint16_t>::max();
66
67 // Different compilation threshold constants. These can be overridden on the command line.
68
69 // Non-debug default
70 static constexpr uint32_t kJitDefaultCompileThreshold = 20 * kJitSamplesBatchSize;
71 // Fast-debug build.
72 static constexpr uint32_t kJitStressDefaultCompileThreshold = 2 * kJitSamplesBatchSize;
73 // Slow-debug build.
74 static constexpr uint32_t kJitSlowStressDefaultCompileThreshold = 2;
75
76 // Different warm-up threshold constants. These default to the equivalent compile thresholds divided
77 // by 2, but can be overridden at the command-line.
78 static constexpr uint32_t kJitDefaultWarmUpThreshold = kJitDefaultCompileThreshold / 2;
79 static constexpr uint32_t kJitStressDefaultWarmUpThreshold = kJitStressDefaultCompileThreshold / 2;
80 static constexpr uint32_t kJitSlowStressDefaultWarmUpThreshold =
81 kJitSlowStressDefaultCompileThreshold / 2;
82
83 DEFINE_RUNTIME_DEBUG_FLAG(Jit, kSlowMode);
84
85 // JIT compiler
86 void* Jit::jit_library_handle_ = nullptr;
87 JitCompilerInterface* Jit::jit_compiler_ = nullptr;
88 JitCompilerInterface* (*Jit::jit_load_)(void) = nullptr;
89
CreateFromRuntimeArguments(const RuntimeArgumentMap & options)90 JitOptions* JitOptions::CreateFromRuntimeArguments(const RuntimeArgumentMap& options) {
91 auto* jit_options = new JitOptions;
92 jit_options->use_jit_compilation_ = options.GetOrDefault(RuntimeArgumentMap::UseJitCompilation);
93 jit_options->use_tiered_jit_compilation_ =
94 options.GetOrDefault(RuntimeArgumentMap::UseTieredJitCompilation);
95
96 jit_options->code_cache_initial_capacity_ =
97 options.GetOrDefault(RuntimeArgumentMap::JITCodeCacheInitialCapacity);
98 jit_options->code_cache_max_capacity_ =
99 options.GetOrDefault(RuntimeArgumentMap::JITCodeCacheMaxCapacity);
100 jit_options->dump_info_on_shutdown_ =
101 options.Exists(RuntimeArgumentMap::DumpJITInfoOnShutdown);
102 jit_options->profile_saver_options_ =
103 options.GetOrDefault(RuntimeArgumentMap::ProfileSaverOpts);
104 jit_options->thread_pool_pthread_priority_ =
105 options.GetOrDefault(RuntimeArgumentMap::JITPoolThreadPthreadPriority);
106
107 // Set default compile threshold to aid with checking defaults.
108 jit_options->compile_threshold_ =
109 kIsDebugBuild
110 ? (Jit::kSlowMode
111 ? kJitSlowStressDefaultCompileThreshold
112 : kJitStressDefaultCompileThreshold)
113 : kJitDefaultCompileThreshold;
114
115 // When not running in slow-mode, thresholds are quantized to kJitSamplesbatchsize.
116 const uint32_t kJitThresholdStep = Jit::kSlowMode ? 1u : kJitSamplesBatchSize;
117
118 // Set default warm-up threshold to aid with checking defaults.
119 jit_options->warmup_threshold_ =
120 kIsDebugBuild ? (Jit::kSlowMode
121 ? kJitSlowStressDefaultWarmUpThreshold
122 : kJitStressDefaultWarmUpThreshold)
123 : kJitDefaultWarmUpThreshold;
124
125 // Warmup threshold should be less than compile threshold (so long as compile threshold is not
126 // zero == JIT-on-first-use).
127 DCHECK_LT(jit_options->warmup_threshold_, jit_options->compile_threshold_);
128 DCHECK_EQ(RoundUp(jit_options->warmup_threshold_, kJitThresholdStep),
129 jit_options->warmup_threshold_);
130
131 if (options.Exists(RuntimeArgumentMap::JITCompileThreshold)) {
132 jit_options->compile_threshold_ = *options.Get(RuntimeArgumentMap::JITCompileThreshold);
133 }
134 jit_options->compile_threshold_ = RoundUp(jit_options->compile_threshold_, kJitThresholdStep);
135
136 if (options.Exists(RuntimeArgumentMap::JITWarmupThreshold)) {
137 jit_options->warmup_threshold_ = *options.Get(RuntimeArgumentMap::JITWarmupThreshold);
138 }
139 jit_options->warmup_threshold_ = RoundUp(jit_options->warmup_threshold_, kJitThresholdStep);
140
141 if (options.Exists(RuntimeArgumentMap::JITOsrThreshold)) {
142 jit_options->osr_threshold_ = *options.Get(RuntimeArgumentMap::JITOsrThreshold);
143 } else {
144 jit_options->osr_threshold_ = jit_options->compile_threshold_ * 2;
145 if (jit_options->osr_threshold_ > kJitMaxThreshold) {
146 jit_options->osr_threshold_ =
147 RoundDown(kJitMaxThreshold, kJitThresholdStep);
148 }
149 }
150 jit_options->osr_threshold_ = RoundUp(jit_options->osr_threshold_, kJitThresholdStep);
151
152 // Enforce ordering constraints between thresholds if not jit-on-first-use (when the compile
153 // threshold is 0).
154 if (jit_options->compile_threshold_ != 0) {
155 // Clamp thresholds such that OSR > compile > warm-up (see Jit::MaybeCompileMethod).
156 jit_options->osr_threshold_ = std::clamp(jit_options->osr_threshold_,
157 2u * kJitThresholdStep,
158 RoundDown(kJitMaxThreshold, kJitThresholdStep));
159 jit_options->compile_threshold_ = std::clamp(jit_options->compile_threshold_,
160 kJitThresholdStep,
161 jit_options->osr_threshold_ - kJitThresholdStep);
162 jit_options->warmup_threshold_ =
163 std::clamp(jit_options->warmup_threshold_,
164 0u,
165 jit_options->compile_threshold_ - kJitThresholdStep);
166 }
167
168 if (options.Exists(RuntimeArgumentMap::JITPriorityThreadWeight)) {
169 jit_options->priority_thread_weight_ =
170 *options.Get(RuntimeArgumentMap::JITPriorityThreadWeight);
171 if (jit_options->priority_thread_weight_ > jit_options->warmup_threshold_) {
172 LOG(FATAL) << "Priority thread weight is above the warmup threshold.";
173 } else if (jit_options->priority_thread_weight_ == 0) {
174 LOG(FATAL) << "Priority thread weight cannot be 0.";
175 }
176 } else {
177 jit_options->priority_thread_weight_ = std::max(
178 jit_options->warmup_threshold_ / Jit::kDefaultPriorityThreadWeightRatio,
179 static_cast<size_t>(1));
180 }
181
182 if (options.Exists(RuntimeArgumentMap::JITInvokeTransitionWeight)) {
183 jit_options->invoke_transition_weight_ =
184 *options.Get(RuntimeArgumentMap::JITInvokeTransitionWeight);
185 if (jit_options->invoke_transition_weight_ > jit_options->warmup_threshold_) {
186 LOG(FATAL) << "Invoke transition weight is above the warmup threshold.";
187 } else if (jit_options->invoke_transition_weight_ == 0) {
188 LOG(FATAL) << "Invoke transition weight cannot be 0.";
189 }
190 } else {
191 jit_options->invoke_transition_weight_ = std::max(
192 jit_options->warmup_threshold_ / Jit::kDefaultInvokeTransitionWeightRatio,
193 static_cast<size_t>(1));
194 }
195
196 return jit_options;
197 }
198
DumpInfo(std::ostream & os)199 void Jit::DumpInfo(std::ostream& os) {
200 code_cache_->Dump(os);
201 cumulative_timings_.Dump(os);
202 MutexLock mu(Thread::Current(), lock_);
203 memory_use_.PrintMemoryUse(os);
204 }
205
DumpForSigQuit(std::ostream & os)206 void Jit::DumpForSigQuit(std::ostream& os) {
207 DumpInfo(os);
208 ProfileSaver::DumpInstanceInfo(os);
209 }
210
AddTimingLogger(const TimingLogger & logger)211 void Jit::AddTimingLogger(const TimingLogger& logger) {
212 cumulative_timings_.AddLogger(logger);
213 }
214
Jit(JitCodeCache * code_cache,JitOptions * options)215 Jit::Jit(JitCodeCache* code_cache, JitOptions* options)
216 : code_cache_(code_cache),
217 options_(options),
218 boot_completed_lock_("Jit::boot_completed_lock_"),
219 cumulative_timings_("JIT timings"),
220 memory_use_("Memory used for compilation", 16),
221 lock_("JIT memory use lock"),
222 zygote_mapping_methods_(),
223 fd_methods_(-1),
224 fd_methods_size_(0) {}
225
Create(JitCodeCache * code_cache,JitOptions * options)226 Jit* Jit::Create(JitCodeCache* code_cache, JitOptions* options) {
227 if (jit_load_ == nullptr) {
228 LOG(WARNING) << "Not creating JIT: library not loaded";
229 return nullptr;
230 }
231 jit_compiler_ = (jit_load_)();
232 if (jit_compiler_ == nullptr) {
233 LOG(WARNING) << "Not creating JIT: failed to allocate a compiler";
234 return nullptr;
235 }
236 std::unique_ptr<Jit> jit(new Jit(code_cache, options));
237
238 // If the code collector is enabled, check if that still holds:
239 // With 'perf', we want a 1-1 mapping between an address and a method.
240 // We aren't able to keep method pointers live during the instrumentation method entry trampoline
241 // so we will just disable jit-gc if we are doing that.
242 if (code_cache->GetGarbageCollectCode()) {
243 code_cache->SetGarbageCollectCode(!jit_compiler_->GenerateDebugInfo() &&
244 !Runtime::Current()->GetInstrumentation()->AreExitStubsInstalled());
245 }
246
247 VLOG(jit) << "JIT created with initial_capacity="
248 << PrettySize(options->GetCodeCacheInitialCapacity())
249 << ", max_capacity=" << PrettySize(options->GetCodeCacheMaxCapacity())
250 << ", compile_threshold=" << options->GetCompileThreshold()
251 << ", profile_saver_options=" << options->GetProfileSaverOptions();
252
253 // We want to know whether the compiler is compiling baseline, as this
254 // affects how we GC ProfilingInfos.
255 for (const std::string& option : Runtime::Current()->GetCompilerOptions()) {
256 if (option == "--baseline") {
257 options->SetUseBaselineCompiler();
258 break;
259 }
260 }
261
262 // Notify native debugger about the classes already loaded before the creation of the jit.
263 jit->DumpTypeInfoForLoadedTypes(Runtime::Current()->GetClassLinker());
264 return jit.release();
265 }
266
267 template <typename T>
LoadSymbol(T * address,const char * name,std::string * error_msg)268 bool Jit::LoadSymbol(T* address, const char* name, std::string* error_msg) {
269 *address = reinterpret_cast<T>(dlsym(jit_library_handle_, name));
270 if (*address == nullptr) {
271 *error_msg = std::string("JIT couldn't find ") + name + std::string(" entry point");
272 return false;
273 }
274 return true;
275 }
276
LoadCompilerLibrary(std::string * error_msg)277 bool Jit::LoadCompilerLibrary(std::string* error_msg) {
278 jit_library_handle_ = dlopen(
279 kIsDebugBuild ? "libartd-compiler.so" : "libart-compiler.so", RTLD_NOW);
280 if (jit_library_handle_ == nullptr) {
281 std::ostringstream oss;
282 oss << "JIT could not load libart-compiler.so: " << dlerror();
283 *error_msg = oss.str();
284 return false;
285 }
286 if (!LoadSymbol(&jit_load_, "jit_load", error_msg)) {
287 dlclose(jit_library_handle_);
288 return false;
289 }
290 return true;
291 }
292
CompileMethod(ArtMethod * method,Thread * self,CompilationKind compilation_kind,bool prejit)293 bool Jit::CompileMethod(ArtMethod* method,
294 Thread* self,
295 CompilationKind compilation_kind,
296 bool prejit) {
297 DCHECK(Runtime::Current()->UseJitCompilation());
298 DCHECK(!method->IsRuntimeMethod());
299
300 RuntimeCallbacks* cb = Runtime::Current()->GetRuntimeCallbacks();
301 // Don't compile the method if it has breakpoints.
302 if (cb->IsMethodBeingInspected(method) && !cb->IsMethodSafeToJit(method)) {
303 VLOG(jit) << "JIT not compiling " << method->PrettyMethod()
304 << " due to not being safe to jit according to runtime-callbacks. For example, there"
305 << " could be breakpoints in this method.";
306 return false;
307 }
308
309 if (!method->IsCompilable()) {
310 DCHECK(method->GetDeclaringClass()->IsObsoleteObject() ||
311 method->IsProxyMethod()) << method->PrettyMethod();
312 VLOG(jit) << "JIT not compiling " << method->PrettyMethod() << " due to method being made "
313 << "obsolete while waiting for JIT task to run. This probably happened due to "
314 << "concurrent structural class redefinition.";
315 return false;
316 }
317
318 // Don't compile the method if we are supposed to be deoptimized.
319 instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
320 if (instrumentation->AreAllMethodsDeoptimized() || instrumentation->IsDeoptimized(method)) {
321 VLOG(jit) << "JIT not compiling " << method->PrettyMethod() << " due to deoptimization";
322 return false;
323 }
324
325 JitMemoryRegion* region = GetCodeCache()->GetCurrentRegion();
326 if ((compilation_kind == CompilationKind::kOsr) && GetCodeCache()->IsSharedRegion(*region)) {
327 VLOG(jit) << "JIT not osr compiling "
328 << method->PrettyMethod()
329 << " due to using shared region";
330 return false;
331 }
332
333 // If we get a request to compile a proxy method, we pass the actual Java method
334 // of that proxy method, as the compiler does not expect a proxy method.
335 ArtMethod* method_to_compile = method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
336 if (!code_cache_->NotifyCompilationOf(
337 method_to_compile, self, compilation_kind, prejit, region)) {
338 return false;
339 }
340
341 VLOG(jit) << "Compiling method "
342 << ArtMethod::PrettyMethod(method_to_compile)
343 << " kind=" << compilation_kind;
344 bool success = jit_compiler_->CompileMethod(self, region, method_to_compile, compilation_kind);
345 code_cache_->DoneCompiling(method_to_compile, self, compilation_kind);
346 if (!success) {
347 VLOG(jit) << "Failed to compile method "
348 << ArtMethod::PrettyMethod(method_to_compile)
349 << " kind=" << compilation_kind;
350 }
351 if (kIsDebugBuild) {
352 if (self->IsExceptionPending()) {
353 mirror::Throwable* exception = self->GetException();
354 LOG(FATAL) << "No pending exception expected after compiling "
355 << ArtMethod::PrettyMethod(method)
356 << ": "
357 << exception->Dump();
358 }
359 }
360 return success;
361 }
362
WaitForWorkersToBeCreated()363 void Jit::WaitForWorkersToBeCreated() {
364 if (thread_pool_ != nullptr) {
365 thread_pool_->WaitForWorkersToBeCreated();
366 }
367 }
368
DeleteThreadPool()369 void Jit::DeleteThreadPool() {
370 Thread* self = Thread::Current();
371 if (thread_pool_ != nullptr) {
372 std::unique_ptr<ThreadPool> pool;
373 {
374 ScopedSuspendAll ssa(__FUNCTION__);
375 // Clear thread_pool_ field while the threads are suspended.
376 // A mutator in the 'AddSamples' method will check against it.
377 pool = std::move(thread_pool_);
378 }
379
380 // When running sanitized, let all tasks finish to not leak. Otherwise just clear the queue.
381 if (!kRunningOnMemoryTool) {
382 pool->StopWorkers(self);
383 pool->RemoveAllTasks(self);
384 }
385 // We could just suspend all threads, but we know those threads
386 // will finish in a short period, so it's not worth adding a suspend logic
387 // here. Besides, this is only done for shutdown.
388 pool->Wait(self, false, false);
389 }
390 }
391
StartProfileSaver(const std::string & filename,const std::vector<std::string> & code_paths)392 void Jit::StartProfileSaver(const std::string& filename,
393 const std::vector<std::string>& code_paths) {
394 if (options_->GetSaveProfilingInfo()) {
395 ProfileSaver::Start(options_->GetProfileSaverOptions(), filename, code_cache_, code_paths);
396 }
397 }
398
StopProfileSaver()399 void Jit::StopProfileSaver() {
400 if (options_->GetSaveProfilingInfo() && ProfileSaver::IsStarted()) {
401 ProfileSaver::Stop(options_->DumpJitInfoOnShutdown());
402 }
403 }
404
JitAtFirstUse()405 bool Jit::JitAtFirstUse() {
406 return HotMethodThreshold() == 0;
407 }
408
CanInvokeCompiledCode(ArtMethod * method)409 bool Jit::CanInvokeCompiledCode(ArtMethod* method) {
410 return code_cache_->ContainsPc(method->GetEntryPointFromQuickCompiledCode());
411 }
412
~Jit()413 Jit::~Jit() {
414 DCHECK(!options_->GetSaveProfilingInfo() || !ProfileSaver::IsStarted());
415 if (options_->DumpJitInfoOnShutdown()) {
416 DumpInfo(LOG_STREAM(INFO));
417 Runtime::Current()->DumpDeoptimizations(LOG_STREAM(INFO));
418 }
419 DeleteThreadPool();
420 if (jit_compiler_ != nullptr) {
421 delete jit_compiler_;
422 jit_compiler_ = nullptr;
423 }
424 if (jit_library_handle_ != nullptr) {
425 dlclose(jit_library_handle_);
426 jit_library_handle_ = nullptr;
427 }
428 }
429
NewTypeLoadedIfUsingJit(mirror::Class * type)430 void Jit::NewTypeLoadedIfUsingJit(mirror::Class* type) {
431 if (!Runtime::Current()->UseJitCompilation()) {
432 // No need to notify if we only use the JIT to save profiles.
433 return;
434 }
435 jit::Jit* jit = Runtime::Current()->GetJit();
436 if (jit->jit_compiler_->GenerateDebugInfo()) {
437 jit_compiler_->TypesLoaded(&type, 1);
438 }
439 }
440
DumpTypeInfoForLoadedTypes(ClassLinker * linker)441 void Jit::DumpTypeInfoForLoadedTypes(ClassLinker* linker) {
442 struct CollectClasses : public ClassVisitor {
443 bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES_SHARED(Locks::mutator_lock_) {
444 classes_.push_back(klass.Ptr());
445 return true;
446 }
447 std::vector<mirror::Class*> classes_;
448 };
449
450 if (jit_compiler_->GenerateDebugInfo()) {
451 ScopedObjectAccess so(Thread::Current());
452
453 CollectClasses visitor;
454 linker->VisitClasses(&visitor);
455 jit_compiler_->TypesLoaded(visitor.classes_.data(), visitor.classes_.size());
456 }
457 }
458
459 extern "C" void art_quick_osr_stub(void** stack,
460 size_t stack_size_in_bytes,
461 const uint8_t* native_pc,
462 JValue* result,
463 const char* shorty,
464 Thread* self);
465
PrepareForOsr(ArtMethod * method,uint32_t dex_pc,uint32_t * vregs)466 OsrData* Jit::PrepareForOsr(ArtMethod* method, uint32_t dex_pc, uint32_t* vregs) {
467 if (!kEnableOnStackReplacement) {
468 return nullptr;
469 }
470
471 // Cheap check if the method has been compiled already. That's an indicator that we should
472 // osr into it.
473 if (!GetCodeCache()->ContainsPc(method->GetEntryPointFromQuickCompiledCode())) {
474 return nullptr;
475 }
476
477 // Fetch some data before looking up for an OSR method. We don't want thread
478 // suspension once we hold an OSR method, as the JIT code cache could delete the OSR
479 // method while we are being suspended.
480 CodeItemDataAccessor accessor(method->DexInstructionData());
481 const size_t number_of_vregs = accessor.RegistersSize();
482 std::string method_name(VLOG_IS_ON(jit) ? method->PrettyMethod() : "");
483 OsrData* osr_data = nullptr;
484
485 {
486 ScopedAssertNoThreadSuspension sts("Holding OSR method");
487 const OatQuickMethodHeader* osr_method = GetCodeCache()->LookupOsrMethodHeader(method);
488 if (osr_method == nullptr) {
489 // No osr method yet, just return to the interpreter.
490 return nullptr;
491 }
492
493 CodeInfo code_info(osr_method);
494
495 // Find stack map starting at the target dex_pc.
496 StackMap stack_map = code_info.GetOsrStackMapForDexPc(dex_pc);
497 if (!stack_map.IsValid()) {
498 // There is no OSR stack map for this dex pc offset. Just return to the interpreter in the
499 // hope that the next branch has one.
500 return nullptr;
501 }
502
503 // We found a stack map, now fill the frame with dex register values from the interpreter's
504 // shadow frame.
505 DexRegisterMap vreg_map = code_info.GetDexRegisterMapOf(stack_map);
506 DCHECK_EQ(vreg_map.size(), number_of_vregs);
507
508 size_t frame_size = osr_method->GetFrameSizeInBytes();
509
510 // Allocate memory to put shadow frame values. The osr stub will copy that memory to
511 // stack.
512 // Note that we could pass the shadow frame to the stub, and let it copy the values there,
513 // but that is engineering complexity not worth the effort for something like OSR.
514 osr_data = reinterpret_cast<OsrData*>(malloc(sizeof(OsrData) + frame_size));
515 if (osr_data == nullptr) {
516 return nullptr;
517 }
518 memset(osr_data, 0, sizeof(OsrData) + frame_size);
519 osr_data->frame_size = frame_size;
520
521 // Art ABI: ArtMethod is at the bottom of the stack.
522 osr_data->memory[0] = method;
523
524 if (vreg_map.empty()) {
525 // If we don't have a dex register map, then there are no live dex registers at
526 // this dex pc.
527 } else {
528 for (uint16_t vreg = 0; vreg < number_of_vregs; ++vreg) {
529 DexRegisterLocation::Kind location = vreg_map[vreg].GetKind();
530 if (location == DexRegisterLocation::Kind::kNone) {
531 // Dex register is dead or uninitialized.
532 continue;
533 }
534
535 if (location == DexRegisterLocation::Kind::kConstant) {
536 // We skip constants because the compiled code knows how to handle them.
537 continue;
538 }
539
540 DCHECK_EQ(location, DexRegisterLocation::Kind::kInStack);
541
542 int32_t vreg_value = vregs[vreg];
543 int32_t slot_offset = vreg_map[vreg].GetStackOffsetInBytes();
544 DCHECK_LT(slot_offset, static_cast<int32_t>(frame_size));
545 DCHECK_GT(slot_offset, 0);
546 (reinterpret_cast<int32_t*>(osr_data->memory))[slot_offset / sizeof(int32_t)] = vreg_value;
547 }
548 }
549
550 osr_data->native_pc = stack_map.GetNativePcOffset(kRuntimeISA) +
551 osr_method->GetEntryPoint();
552 VLOG(jit) << "Jumping to "
553 << method_name
554 << "@"
555 << std::hex << reinterpret_cast<uintptr_t>(osr_data->native_pc);
556 }
557 return osr_data;
558 }
559
MaybeDoOnStackReplacement(Thread * thread,ArtMethod * method,uint32_t dex_pc,int32_t dex_pc_offset,JValue * result)560 bool Jit::MaybeDoOnStackReplacement(Thread* thread,
561 ArtMethod* method,
562 uint32_t dex_pc,
563 int32_t dex_pc_offset,
564 JValue* result) {
565 Jit* jit = Runtime::Current()->GetJit();
566 if (jit == nullptr) {
567 return false;
568 }
569
570 if (UNLIKELY(__builtin_frame_address(0) < thread->GetStackEnd())) {
571 // Don't attempt to do an OSR if we are close to the stack limit. Since
572 // the interpreter frames are still on stack, OSR has the potential
573 // to stack overflow even for a simple loop.
574 // b/27094810.
575 return false;
576 }
577
578 // Get the actual Java method if this method is from a proxy class. The compiler
579 // and the JIT code cache do not expect methods from proxy classes.
580 method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
581
582 // Before allowing the jump, make sure no code is actively inspecting the method to avoid
583 // jumping from interpreter to OSR while e.g. single stepping. Note that we could selectively
584 // disable OSR when single stepping, but that's currently hard to know at this point.
585 if (Runtime::Current()->GetRuntimeCallbacks()->IsMethodBeingInspected(method)) {
586 return false;
587 }
588
589 ShadowFrame* shadow_frame = thread->GetManagedStack()->GetTopShadowFrame();
590 OsrData* osr_data = jit->PrepareForOsr(method,
591 dex_pc + dex_pc_offset,
592 shadow_frame->GetVRegArgs(0));
593
594 if (osr_data == nullptr) {
595 return false;
596 }
597
598 {
599 thread->PopShadowFrame();
600 ManagedStack fragment;
601 thread->PushManagedStackFragment(&fragment);
602 (*art_quick_osr_stub)(osr_data->memory,
603 osr_data->frame_size,
604 osr_data->native_pc,
605 result,
606 method->GetShorty(),
607 thread);
608
609 if (UNLIKELY(thread->GetException() == Thread::GetDeoptimizationException())) {
610 thread->DeoptimizeWithDeoptimizationException(result);
611 }
612 thread->PopManagedStackFragment(fragment);
613 }
614 free(osr_data);
615 thread->PushShadowFrame(shadow_frame);
616 VLOG(jit) << "Done running OSR code for " << method->PrettyMethod();
617 return true;
618 }
619
AddMemoryUsage(ArtMethod * method,size_t bytes)620 void Jit::AddMemoryUsage(ArtMethod* method, size_t bytes) {
621 if (bytes > 4 * MB) {
622 LOG(INFO) << "Compiler allocated "
623 << PrettySize(bytes)
624 << " to compile "
625 << ArtMethod::PrettyMethod(method);
626 }
627 MutexLock mu(Thread::Current(), lock_);
628 memory_use_.AddValue(bytes);
629 }
630
NotifyZygoteCompilationDone()631 void Jit::NotifyZygoteCompilationDone() {
632 if (fd_methods_ == -1) {
633 return;
634 }
635
636 size_t offset = 0;
637 for (gc::space::ImageSpace* space : Runtime::Current()->GetHeap()->GetBootImageSpaces()) {
638 const ImageHeader& header = space->GetImageHeader();
639 const ImageSection& section = header.GetMethodsSection();
640 // Because mremap works at page boundaries, we can only handle methods
641 // within a page range. For methods that falls above or below the range,
642 // the child processes will copy their contents to their private mapping
643 // in `child_mapping_methods`. See `MapBootImageMethods`.
644 uint8_t* page_start = AlignUp(header.GetImageBegin() + section.Offset(), kPageSize);
645 uint8_t* page_end =
646 AlignDown(header.GetImageBegin() + section.Offset() + section.Size(), kPageSize);
647 if (page_end > page_start) {
648 uint64_t capacity = page_end - page_start;
649 memcpy(zygote_mapping_methods_.Begin() + offset, page_start, capacity);
650 offset += capacity;
651 }
652 }
653
654 // Do an msync to ensure we are not affected by writes still being in caches.
655 if (msync(zygote_mapping_methods_.Begin(), fd_methods_size_, MS_SYNC) != 0) {
656 PLOG(WARNING) << "Failed to sync boot image methods memory";
657 code_cache_->GetZygoteMap()->SetCompilationState(ZygoteCompilationState::kNotifiedFailure);
658 return;
659 }
660
661 // We don't need the shared mapping anymore, and we need to drop it in case
662 // the file hasn't been sealed writable.
663 zygote_mapping_methods_ = MemMap::Invalid();
664
665 // Seal writes now. Zygote and children will map the memory private in order
666 // to write to it.
667 if (fcntl(fd_methods_, F_ADD_SEALS, F_SEAL_SEAL | F_SEAL_WRITE) == -1) {
668 PLOG(WARNING) << "Failed to seal boot image methods file descriptor";
669 code_cache_->GetZygoteMap()->SetCompilationState(ZygoteCompilationState::kNotifiedFailure);
670 return;
671 }
672
673 std::string error_str;
674 MemMap child_mapping_methods = MemMap::MapFile(
675 fd_methods_size_,
676 PROT_READ | PROT_WRITE,
677 MAP_PRIVATE,
678 fd_methods_,
679 /* start= */ 0,
680 /* low_4gb= */ false,
681 "boot-image-methods",
682 &error_str);
683
684 if (!child_mapping_methods.IsValid()) {
685 LOG(WARNING) << "Failed to create child mapping of boot image methods: " << error_str;
686 code_cache_->GetZygoteMap()->SetCompilationState(ZygoteCompilationState::kNotifiedFailure);
687 return;
688 }
689
690 // Ensure the contents are the same as before: there was a window between
691 // the memcpy and the sealing where other processes could have changed the
692 // contents.
693 // Note this would not be needed if we could have used F_SEAL_FUTURE_WRITE,
694 // see b/143833776.
695 offset = 0;
696 for (gc::space::ImageSpace* space : Runtime::Current()->GetHeap()->GetBootImageSpaces()) {
697 const ImageHeader& header = space->GetImageHeader();
698 const ImageSection& section = header.GetMethodsSection();
699 // Because mremap works at page boundaries, we can only handle methods
700 // within a page range. For methods that falls above or below the range,
701 // the child processes will copy their contents to their private mapping
702 // in `child_mapping_methods`. See `MapBootImageMethods`.
703 uint8_t* page_start = AlignUp(header.GetImageBegin() + section.Offset(), kPageSize);
704 uint8_t* page_end =
705 AlignDown(header.GetImageBegin() + section.Offset() + section.Size(), kPageSize);
706 if (page_end > page_start) {
707 uint64_t capacity = page_end - page_start;
708 if (memcmp(child_mapping_methods.Begin() + offset, page_start, capacity) != 0) {
709 LOG(WARNING) << "Contents differ in boot image methods data";
710 code_cache_->GetZygoteMap()->SetCompilationState(
711 ZygoteCompilationState::kNotifiedFailure);
712 return;
713 }
714 offset += capacity;
715 }
716 }
717
718 // Future spawned processes don't need the fd anymore.
719 fd_methods_.reset();
720
721 // In order to have the zygote and children share the memory, we also remap
722 // the memory into the zygote process.
723 offset = 0;
724 for (gc::space::ImageSpace* space : Runtime::Current()->GetHeap()->GetBootImageSpaces()) {
725 const ImageHeader& header = space->GetImageHeader();
726 const ImageSection& section = header.GetMethodsSection();
727 // Because mremap works at page boundaries, we can only handle methods
728 // within a page range. For methods that falls above or below the range,
729 // the child processes will copy their contents to their private mapping
730 // in `child_mapping_methods`. See `MapBootImageMethods`.
731 uint8_t* page_start = AlignUp(header.GetImageBegin() + section.Offset(), kPageSize);
732 uint8_t* page_end =
733 AlignDown(header.GetImageBegin() + section.Offset() + section.Size(), kPageSize);
734 if (page_end > page_start) {
735 uint64_t capacity = page_end - page_start;
736 if (mremap(child_mapping_methods.Begin() + offset,
737 capacity,
738 capacity,
739 MREMAP_FIXED | MREMAP_MAYMOVE,
740 page_start) == MAP_FAILED) {
741 // Failing to remap is safe as the process will just use the old
742 // contents.
743 PLOG(WARNING) << "Failed mremap of boot image methods of " << space->GetImageFilename();
744 }
745 offset += capacity;
746 }
747 }
748
749 LOG(INFO) << "Successfully notified child processes on sharing boot image methods";
750
751 // Mark that compilation of boot classpath is done, and memory can now be
752 // shared. Other processes will pick up this information.
753 code_cache_->GetZygoteMap()->SetCompilationState(ZygoteCompilationState::kNotifiedOk);
754
755 // The private mapping created for this process has been mremaped. We can
756 // reset it.
757 child_mapping_methods.Reset();
758 }
759
760 class JitCompileTask final : public Task {
761 public:
762 enum class TaskKind {
763 kAllocateProfile,
764 kCompile,
765 kPreCompile,
766 };
767
JitCompileTask(ArtMethod * method,TaskKind task_kind,CompilationKind compilation_kind)768 JitCompileTask(ArtMethod* method, TaskKind task_kind, CompilationKind compilation_kind)
769 : method_(method), kind_(task_kind), compilation_kind_(compilation_kind), klass_(nullptr) {
770 ScopedObjectAccess soa(Thread::Current());
771 // For a non-bootclasspath class, add a global ref to the class to prevent class unloading
772 // until compilation is done.
773 // When we precompile, this is either with boot classpath methods, or main
774 // class loader methods, so we don't need to keep a global reference.
775 if (method->GetDeclaringClass()->GetClassLoader() != nullptr &&
776 kind_ != TaskKind::kPreCompile) {
777 klass_ = soa.Vm()->AddGlobalRef(soa.Self(), method_->GetDeclaringClass());
778 CHECK(klass_ != nullptr);
779 }
780 }
781
~JitCompileTask()782 ~JitCompileTask() {
783 if (klass_ != nullptr) {
784 ScopedObjectAccess soa(Thread::Current());
785 soa.Vm()->DeleteGlobalRef(soa.Self(), klass_);
786 }
787 }
788
Run(Thread * self)789 void Run(Thread* self) override {
790 {
791 ScopedObjectAccess soa(self);
792 switch (kind_) {
793 case TaskKind::kCompile:
794 case TaskKind::kPreCompile: {
795 Runtime::Current()->GetJit()->CompileMethod(
796 method_,
797 self,
798 compilation_kind_,
799 /* prejit= */ (kind_ == TaskKind::kPreCompile));
800 break;
801 }
802 case TaskKind::kAllocateProfile: {
803 if (ProfilingInfo::Create(self, method_, /* retry_allocation= */ true)) {
804 VLOG(jit) << "Start profiling " << ArtMethod::PrettyMethod(method_);
805 }
806 break;
807 }
808 }
809 }
810 ProfileSaver::NotifyJitActivity();
811 }
812
Finalize()813 void Finalize() override {
814 delete this;
815 }
816
817 private:
818 ArtMethod* const method_;
819 const TaskKind kind_;
820 const CompilationKind compilation_kind_;
821 jobject klass_;
822
823 DISALLOW_IMPLICIT_CONSTRUCTORS(JitCompileTask);
824 };
825
GetProfileFile(const std::string & dex_location)826 static std::string GetProfileFile(const std::string& dex_location) {
827 // Hardcoded assumption where the profile file is.
828 // TODO(ngeoffray): this is brittle and we would need to change change if we
829 // wanted to do more eager JITting of methods in a profile. This is
830 // currently only for system server.
831 return dex_location + ".prof";
832 }
833
GetBootProfileFile(const std::string & profile)834 static std::string GetBootProfileFile(const std::string& profile) {
835 // The boot profile can be found next to the compilation profile, with a
836 // different extension.
837 return ReplaceFileExtension(profile, "bprof");
838 }
839
840 /**
841 * A JIT task to run after all profile compilation is done.
842 */
843 class JitDoneCompilingProfileTask final : public SelfDeletingTask {
844 public:
JitDoneCompilingProfileTask(const std::vector<const DexFile * > & dex_files)845 explicit JitDoneCompilingProfileTask(const std::vector<const DexFile*>& dex_files)
846 : dex_files_(dex_files) {}
847
Run(Thread * self ATTRIBUTE_UNUSED)848 void Run(Thread* self ATTRIBUTE_UNUSED) override {
849 // Madvise DONTNEED dex files now that we're done compiling methods.
850 for (const DexFile* dex_file : dex_files_) {
851 if (IsAddressKnownBackedByFileOrShared(dex_file->Begin())) {
852 int result = madvise(const_cast<uint8_t*>(AlignDown(dex_file->Begin(), kPageSize)),
853 RoundUp(dex_file->Size(), kPageSize),
854 MADV_DONTNEED);
855 if (result == -1) {
856 PLOG(WARNING) << "Madvise failed";
857 }
858 }
859 }
860
861 if (Runtime::Current()->IsZygote()) {
862 // Record that we are done compiling the profile.
863 Runtime::Current()->GetJit()->GetCodeCache()->GetZygoteMap()->SetCompilationState(
864 ZygoteCompilationState::kDone);
865 }
866 }
867
868 private:
869 std::vector<const DexFile*> dex_files_;
870
871 DISALLOW_COPY_AND_ASSIGN(JitDoneCompilingProfileTask);
872 };
873
874 /**
875 * A JIT task to run Java verification of boot classpath classes that were not
876 * verified at compile-time.
877 */
878 class ZygoteVerificationTask final : public Task {
879 public:
ZygoteVerificationTask()880 ZygoteVerificationTask() {}
881
Run(Thread * self)882 void Run(Thread* self) override {
883 // We are going to load class and run verification, which may also need to load
884 // classes. If the thread cannot load classes (typically when the runtime is
885 // debuggable), then just return.
886 if (!self->CanLoadClasses()) {
887 return;
888 }
889 Runtime* runtime = Runtime::Current();
890 ClassLinker* linker = runtime->GetClassLinker();
891 const std::vector<const DexFile*>& boot_class_path =
892 runtime->GetClassLinker()->GetBootClassPath();
893 ScopedObjectAccess soa(self);
894 StackHandleScope<1> hs(self);
895 MutableHandle<mirror::Class> klass = hs.NewHandle<mirror::Class>(nullptr);
896 uint64_t start_ns = ThreadCpuNanoTime();
897 uint64_t number_of_classes = 0;
898 for (const DexFile* dex_file : boot_class_path) {
899 if (dex_file->GetOatDexFile() != nullptr &&
900 dex_file->GetOatDexFile()->GetOatFile() != nullptr) {
901 // If backed by an .oat file, we have already run verification at
902 // compile-time. Note that some classes may still have failed
903 // verification there if they reference updatable mainline module
904 // classes.
905 continue;
906 }
907 for (uint32_t i = 0; i < dex_file->NumClassDefs(); ++i) {
908 const dex::ClassDef& class_def = dex_file->GetClassDef(i);
909 const char* descriptor = dex_file->GetClassDescriptor(class_def);
910 ScopedNullHandle<mirror::ClassLoader> null_loader;
911 klass.Assign(linker->FindClass(self, descriptor, null_loader));
912 if (klass == nullptr) {
913 self->ClearException();
914 LOG(WARNING) << "Could not find " << descriptor;
915 continue;
916 }
917 ++number_of_classes;
918 if (linker->VerifyClass(self, klass) == verifier::FailureKind::kHardFailure) {
919 DCHECK(self->IsExceptionPending());
920 LOG(FATAL) << "Methods in the boot classpath failed to verify: "
921 << self->GetException()->Dump();
922 }
923 CHECK(!self->IsExceptionPending());
924 }
925 }
926 LOG(INFO) << "Verified "
927 << number_of_classes
928 << " classes from mainline modules in "
929 << PrettyDuration(ThreadCpuNanoTime() - start_ns);
930 }
931 };
932
933 class ZygoteTask final : public Task {
934 public:
ZygoteTask()935 ZygoteTask() {}
936
Run(Thread * self)937 void Run(Thread* self) override {
938 Runtime* runtime = Runtime::Current();
939 uint32_t added_to_queue = 0;
940 for (gc::space::ImageSpace* space : Runtime::Current()->GetHeap()->GetBootImageSpaces()) {
941 const std::string& profile_file = space->GetProfileFile();
942 if (profile_file.empty()) {
943 continue;
944 }
945 LOG(INFO) << "JIT Zygote looking at profile " << profile_file;
946
947 const std::vector<const DexFile*>& boot_class_path =
948 runtime->GetClassLinker()->GetBootClassPath();
949 ScopedNullHandle<mirror::ClassLoader> null_handle;
950 // We add to the queue for zygote so that we can fork processes in-between
951 // compilations.
952 if (Runtime::Current()->IsPrimaryZygote()) {
953 std::string boot_profile = GetBootProfileFile(profile_file);
954 // We avoid doing compilation at boot for the secondary zygote, as apps
955 // forked from it are not critical for boot.
956 added_to_queue += runtime->GetJit()->CompileMethodsFromBootProfile(
957 self, boot_class_path, boot_profile, null_handle, /* add_to_queue= */ true);
958 }
959 added_to_queue += runtime->GetJit()->CompileMethodsFromProfile(
960 self, boot_class_path, profile_file, null_handle, /* add_to_queue= */ true);
961 }
962
963 JitCodeCache* code_cache = runtime->GetJit()->GetCodeCache();
964 code_cache->GetZygoteMap()->Initialize(added_to_queue);
965 }
966
Finalize()967 void Finalize() override {
968 delete this;
969 }
970
971 private:
972 DISALLOW_COPY_AND_ASSIGN(ZygoteTask);
973 };
974
975 class JitProfileTask final : public Task {
976 public:
JitProfileTask(const std::vector<std::unique_ptr<const DexFile>> & dex_files,jobject class_loader)977 JitProfileTask(const std::vector<std::unique_ptr<const DexFile>>& dex_files,
978 jobject class_loader) {
979 ScopedObjectAccess soa(Thread::Current());
980 StackHandleScope<1> hs(soa.Self());
981 Handle<mirror::ClassLoader> h_loader(hs.NewHandle(
982 soa.Decode<mirror::ClassLoader>(class_loader)));
983 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
984 for (const auto& dex_file : dex_files) {
985 dex_files_.push_back(dex_file.get());
986 // Register the dex file so that we can guarantee it doesn't get deleted
987 // while reading it during the task.
988 class_linker->RegisterDexFile(*dex_file.get(), h_loader.Get());
989 }
990 // We also create our own global ref to use this class loader later.
991 class_loader_ = soa.Vm()->AddGlobalRef(soa.Self(), h_loader.Get());
992 }
993
Run(Thread * self)994 void Run(Thread* self) override {
995 ScopedObjectAccess soa(self);
996 StackHandleScope<1> hs(self);
997 Handle<mirror::ClassLoader> loader = hs.NewHandle<mirror::ClassLoader>(
998 soa.Decode<mirror::ClassLoader>(class_loader_));
999
1000 std::string profile = GetProfileFile(dex_files_[0]->GetLocation());
1001 std::string boot_profile = GetBootProfileFile(profile);
1002
1003 Jit* jit = Runtime::Current()->GetJit();
1004
1005 jit->CompileMethodsFromBootProfile(
1006 self,
1007 dex_files_,
1008 boot_profile,
1009 loader,
1010 /* add_to_queue= */ false);
1011
1012 jit->CompileMethodsFromProfile(
1013 self,
1014 dex_files_,
1015 profile,
1016 loader,
1017 /* add_to_queue= */ true);
1018 }
1019
Finalize()1020 void Finalize() override {
1021 delete this;
1022 }
1023
~JitProfileTask()1024 ~JitProfileTask() {
1025 ScopedObjectAccess soa(Thread::Current());
1026 soa.Vm()->DeleteGlobalRef(soa.Self(), class_loader_);
1027 }
1028
1029 private:
1030 std::vector<const DexFile*> dex_files_;
1031 jobject class_loader_;
1032
1033 DISALLOW_COPY_AND_ASSIGN(JitProfileTask);
1034 };
1035
CopyIfDifferent(void * s1,const void * s2,size_t n)1036 static void CopyIfDifferent(void* s1, const void* s2, size_t n) {
1037 if (memcmp(s1, s2, n) != 0) {
1038 memcpy(s1, s2, n);
1039 }
1040 }
1041
MapBootImageMethods()1042 void Jit::MapBootImageMethods() {
1043 if (Runtime::Current()->IsJavaDebuggable()) {
1044 LOG(INFO) << "Not mapping boot image methods due to process being debuggable";
1045 return;
1046 }
1047 CHECK_NE(fd_methods_.get(), -1);
1048 if (!code_cache_->GetZygoteMap()->CanMapBootImageMethods()) {
1049 LOG(WARNING) << "Not mapping boot image methods due to error from zygote";
1050 // We don't need the fd anymore.
1051 fd_methods_.reset();
1052 return;
1053 }
1054
1055 std::string error_str;
1056 MemMap child_mapping_methods = MemMap::MapFile(
1057 fd_methods_size_,
1058 PROT_READ | PROT_WRITE,
1059 MAP_PRIVATE,
1060 fd_methods_,
1061 /* start= */ 0,
1062 /* low_4gb= */ false,
1063 "boot-image-methods",
1064 &error_str);
1065
1066 // We don't need the fd anymore.
1067 fd_methods_.reset();
1068
1069 if (!child_mapping_methods.IsValid()) {
1070 LOG(WARNING) << "Failed to create child mapping of boot image methods: " << error_str;
1071 return;
1072 }
1073 size_t offset = 0;
1074 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1075 for (gc::space::ImageSpace* space : Runtime::Current()->GetHeap()->GetBootImageSpaces()) {
1076 const ImageHeader& header = space->GetImageHeader();
1077 const ImageSection& section = header.GetMethodsSection();
1078 uint8_t* page_start = AlignUp(header.GetImageBegin() + section.Offset(), kPageSize);
1079 uint8_t* page_end =
1080 AlignDown(header.GetImageBegin() + section.Offset() + section.Size(), kPageSize);
1081 if (page_end <= page_start) {
1082 // Section doesn't contain one aligned entire page.
1083 continue;
1084 }
1085 uint64_t capacity = page_end - page_start;
1086 // Walk over methods in the boot image, and check for ones whose class is
1087 // not initialized in the process, but are in the zygote process. For
1088 // such methods, we need their entrypoints to be stubs that do the
1089 // initialization check.
1090 header.VisitPackedArtMethods([&](ArtMethod& method) NO_THREAD_SAFETY_ANALYSIS {
1091 // Methods in the boot image should never have their single
1092 // implementation flag set (and therefore never have a `data_` pointing
1093 // to an ArtMethod for single implementation).
1094 CHECK(method.IsIntrinsic() || !method.HasSingleImplementationFlag());
1095 if (method.IsRuntimeMethod()) {
1096 return;
1097 }
1098 if (method.GetDeclaringClassUnchecked()->IsVisiblyInitialized() ||
1099 !method.IsStatic() ||
1100 method.IsConstructor()) {
1101 // Method does not need any stub.
1102 return;
1103 }
1104
1105 // We are going to mremap the child mapping into the image:
1106 //
1107 // ImageSection ChildMappingMethods
1108 //
1109 // section start --> -----------
1110 // | |
1111 // | |
1112 // page_start --> | | <----- -----------
1113 // | | | |
1114 // | | | |
1115 // | | | |
1116 // | | | |
1117 // | | | |
1118 // | | | |
1119 // | | | |
1120 // page_end --> | | <----- -----------
1121 // | |
1122 // section end --> -----------
1123
1124
1125 uint8_t* pointer = reinterpret_cast<uint8_t*>(&method);
1126 // Note: We could refactor this to only check if the ArtMethod entrypoint is inside the
1127 // page region. This would remove the need for the edge case handling below.
1128 if (pointer >= page_start && pointer + sizeof(ArtMethod) < page_end) {
1129 // For all the methods in the mapping, put the entrypoint to the
1130 // resolution stub.
1131 ArtMethod* new_method = reinterpret_cast<ArtMethod*>(
1132 child_mapping_methods.Begin() + offset + (pointer - page_start));
1133 const void* code = new_method->GetEntryPointFromQuickCompiledCode();
1134 if (!class_linker->IsQuickGenericJniStub(code) &&
1135 !class_linker->IsQuickToInterpreterBridge(code) &&
1136 !class_linker->IsQuickResolutionStub(code)) {
1137 LOG(INFO) << "Putting back the resolution stub to an ArtMethod";
1138 new_method->SetEntryPointFromQuickCompiledCode(GetQuickResolutionStub());
1139 }
1140 } else if (pointer < page_start && (pointer + sizeof(ArtMethod)) > page_start) {
1141 LOG(INFO) << "Copying parts of the contents of an ArtMethod spanning page_start";
1142 // If the method spans `page_start`, copy the contents of the child
1143 // into the pages we are going to remap into the image.
1144 //
1145 // section start --> -----------
1146 // | |
1147 // | |
1148 // page_start --> |/////////| -----------
1149 // |/////////| -> copy -> |/////////|
1150 // | | | |
1151 //
1152 CopyIfDifferent(child_mapping_methods.Begin() + offset,
1153 page_start,
1154 pointer + sizeof(ArtMethod) - page_start);
1155 } else if (pointer < page_end && (pointer + sizeof(ArtMethod)) > page_end) {
1156 LOG(INFO) << "Copying parts of the contents of an ArtMethod spanning page_end";
1157 // If the method spans `page_end`, copy the contents of the child
1158 // into the pages we are going to remap into the image.
1159 //
1160 // | | | |
1161 // |/////////| -> copy -> |/////////|
1162 // page_end --> |/////////| -----------
1163 // | |
1164 // section end --> -----------
1165 //
1166 size_t bytes_to_copy = (page_end - pointer);
1167 CopyIfDifferent(child_mapping_methods.Begin() + offset + capacity - bytes_to_copy,
1168 page_end - bytes_to_copy,
1169 bytes_to_copy);
1170 }
1171 }, space->Begin(), kRuntimePointerSize);
1172
1173 // Map the memory in the boot image range.
1174 if (mremap(child_mapping_methods.Begin() + offset,
1175 capacity,
1176 capacity,
1177 MREMAP_FIXED | MREMAP_MAYMOVE,
1178 page_start) == MAP_FAILED) {
1179 PLOG(WARNING) << "Fail to mremap boot image methods for " << space->GetImageFilename();
1180 }
1181 offset += capacity;
1182 }
1183
1184 // The private mapping created for this process has been mremaped. We can
1185 // reset it.
1186 child_mapping_methods.Reset();
1187 LOG(INFO) << "Successfully mapped boot image methods";
1188 }
1189
1190 // Return whether a boot image has a profile. This means we'll need to pre-JIT
1191 // methods in that profile for performance.
HasImageWithProfile()1192 static bool HasImageWithProfile() {
1193 for (gc::space::ImageSpace* space : Runtime::Current()->GetHeap()->GetBootImageSpaces()) {
1194 if (!space->GetProfileFile().empty()) {
1195 return true;
1196 }
1197 }
1198 return false;
1199 }
1200
CreateThreadPool()1201 void Jit::CreateThreadPool() {
1202 // There is a DCHECK in the 'AddSamples' method to ensure the tread pool
1203 // is not null when we instrument.
1204
1205 // We need peers as we may report the JIT thread, e.g., in the debugger.
1206 constexpr bool kJitPoolNeedsPeers = true;
1207 thread_pool_.reset(new ThreadPool("Jit thread pool", 1, kJitPoolNeedsPeers));
1208
1209 thread_pool_->SetPthreadPriority(options_->GetThreadPoolPthreadPriority());
1210 Start();
1211
1212 Runtime* runtime = Runtime::Current();
1213 if (runtime->IsZygote()) {
1214 // To speed up class lookups, generate a type lookup table for
1215 // dex files not backed by oat file.
1216 for (const DexFile* dex_file : runtime->GetClassLinker()->GetBootClassPath()) {
1217 if (dex_file->GetOatDexFile() == nullptr) {
1218 TypeLookupTable type_lookup_table = TypeLookupTable::Create(*dex_file);
1219 type_lookup_tables_.push_back(
1220 std::make_unique<art::OatDexFile>(std::move(type_lookup_table)));
1221 dex_file->SetOatDexFile(type_lookup_tables_.back().get());
1222 }
1223 }
1224
1225 // Add a task that will verify boot classpath jars that were not
1226 // pre-compiled.
1227 thread_pool_->AddTask(Thread::Current(), new ZygoteVerificationTask());
1228 }
1229
1230 if (runtime->IsZygote() && HasImageWithProfile() && UseJitCompilation()) {
1231 // If we have an image with a profile, request a JIT task to
1232 // compile all methods in that profile.
1233 thread_pool_->AddTask(Thread::Current(), new ZygoteTask());
1234
1235 // And create mappings to share boot image methods memory from the zygote to
1236 // child processes.
1237
1238 // Compute the total capacity required for the boot image methods.
1239 uint64_t total_capacity = 0;
1240 for (gc::space::ImageSpace* space : Runtime::Current()->GetHeap()->GetBootImageSpaces()) {
1241 const ImageHeader& header = space->GetImageHeader();
1242 const ImageSection& section = header.GetMethodsSection();
1243 // Mappings need to be at the page level.
1244 uint8_t* page_start = AlignUp(header.GetImageBegin() + section.Offset(), kPageSize);
1245 uint8_t* page_end =
1246 AlignDown(header.GetImageBegin() + section.Offset() + section.Size(), kPageSize);
1247 if (page_end > page_start) {
1248 total_capacity += (page_end - page_start);
1249 }
1250 }
1251
1252 // Create the child and zygote mappings to the boot image methods.
1253 if (total_capacity > 0) {
1254 // Start with '/boot' and end with '.art' to match the pattern recognized
1255 // by android_os_Debug.cpp for boot images.
1256 const char* name = "/boot-image-methods.art";
1257 unique_fd mem_fd = unique_fd(art::memfd_create(name, /* flags= */ MFD_ALLOW_SEALING));
1258 if (mem_fd.get() == -1) {
1259 PLOG(WARNING) << "Could not create boot image methods file descriptor";
1260 return;
1261 }
1262 if (ftruncate(mem_fd.get(), total_capacity) != 0) {
1263 PLOG(WARNING) << "Failed to truncate boot image methods file to " << total_capacity;
1264 return;
1265 }
1266 std::string error_str;
1267
1268 // Create the shared mapping eagerly, as this prevents other processes
1269 // from adding the writable seal.
1270 zygote_mapping_methods_ = MemMap::MapFile(
1271 total_capacity,
1272 PROT_READ | PROT_WRITE,
1273 MAP_SHARED,
1274 mem_fd,
1275 /* start= */ 0,
1276 /* low_4gb= */ false,
1277 "boot-image-methods",
1278 &error_str);
1279
1280 if (!zygote_mapping_methods_.IsValid()) {
1281 LOG(WARNING) << "Failed to create zygote mapping of boot image methods: " << error_str;
1282 return;
1283 }
1284 if (zygote_mapping_methods_.MadviseDontFork() != 0) {
1285 LOG(WARNING) << "Failed to madvise dont fork boot image methods";
1286 zygote_mapping_methods_ = MemMap();
1287 return;
1288 }
1289
1290 // We should use the F_SEAL_FUTURE_WRITE flag, but this has unexpected
1291 // behavior on private mappings after fork (the mapping becomes shared between
1292 // parent and children), see b/143833776.
1293 // We will seal the write once we are done writing to the shared mapping.
1294 if (fcntl(mem_fd, F_ADD_SEALS, F_SEAL_SHRINK | F_SEAL_GROW) == -1) {
1295 PLOG(WARNING) << "Failed to seal boot image methods file descriptor";
1296 zygote_mapping_methods_ = MemMap();
1297 return;
1298 }
1299 fd_methods_ = unique_fd(mem_fd.release());
1300 fd_methods_size_ = total_capacity;
1301 }
1302 }
1303 }
1304
RegisterDexFiles(const std::vector<std::unique_ptr<const DexFile>> & dex_files,jobject class_loader)1305 void Jit::RegisterDexFiles(const std::vector<std::unique_ptr<const DexFile>>& dex_files,
1306 jobject class_loader) {
1307 if (dex_files.empty()) {
1308 return;
1309 }
1310 Runtime* runtime = Runtime::Current();
1311 // If the runtime is debuggable, no need to precompile methods.
1312 if (runtime->IsSystemServer() &&
1313 UseJitCompilation() && HasImageWithProfile() &&
1314 !runtime->IsJavaDebuggable()) {
1315 thread_pool_->AddTask(Thread::Current(), new JitProfileTask(dex_files, class_loader));
1316 }
1317 }
1318
CompileMethodFromProfile(Thread * self,ClassLinker * class_linker,uint32_t method_idx,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,bool add_to_queue,bool compile_after_boot)1319 bool Jit::CompileMethodFromProfile(Thread* self,
1320 ClassLinker* class_linker,
1321 uint32_t method_idx,
1322 Handle<mirror::DexCache> dex_cache,
1323 Handle<mirror::ClassLoader> class_loader,
1324 bool add_to_queue,
1325 bool compile_after_boot) {
1326 ArtMethod* method = class_linker->ResolveMethodWithoutInvokeType(
1327 method_idx, dex_cache, class_loader);
1328 if (method == nullptr) {
1329 self->ClearException();
1330 return false;
1331 }
1332 if (!method->IsCompilable() || !method->IsInvokable()) {
1333 return false;
1334 }
1335 if (method->IsPreCompiled()) {
1336 // Already seen by another profile.
1337 return false;
1338 }
1339 const void* entry_point = method->GetEntryPointFromQuickCompiledCode();
1340 if (class_linker->IsQuickToInterpreterBridge(entry_point) ||
1341 class_linker->IsQuickGenericJniStub(entry_point) ||
1342 // We explicitly check for the stub. The trampoline is for methods backed by
1343 // a .oat file that has a compiled version of the method.
1344 (entry_point == GetQuickResolutionStub())) {
1345 method->SetPreCompiled();
1346 if (!add_to_queue) {
1347 CompileMethod(method, self, CompilationKind::kOptimized, /* prejit= */ true);
1348 } else {
1349 Task* task = new JitCompileTask(
1350 method, JitCompileTask::TaskKind::kPreCompile, CompilationKind::kOptimized);
1351 if (compile_after_boot) {
1352 MutexLock mu(Thread::Current(), boot_completed_lock_);
1353 if (!boot_completed_) {
1354 tasks_after_boot_.push_back(task);
1355 return true;
1356 }
1357 DCHECK(tasks_after_boot_.empty());
1358 }
1359 thread_pool_->AddTask(self, task);
1360 return true;
1361 }
1362 }
1363 return false;
1364 }
1365
CompileMethodsFromBootProfile(Thread * self,const std::vector<const DexFile * > & dex_files,const std::string & profile_file,Handle<mirror::ClassLoader> class_loader,bool add_to_queue)1366 uint32_t Jit::CompileMethodsFromBootProfile(
1367 Thread* self,
1368 const std::vector<const DexFile*>& dex_files,
1369 const std::string& profile_file,
1370 Handle<mirror::ClassLoader> class_loader,
1371 bool add_to_queue) {
1372 unix_file::FdFile profile(profile_file.c_str(), O_RDONLY, true);
1373
1374 if (profile.Fd() == -1) {
1375 PLOG(WARNING) << "No boot profile: " << profile_file;
1376 return 0u;
1377 }
1378
1379 ProfileBootInfo profile_info;
1380 if (!profile_info.Load(profile.Fd(), dex_files)) {
1381 LOG(ERROR) << "Could not load profile file: " << profile_file;
1382 return 0u;
1383 }
1384
1385 ScopedObjectAccess soa(self);
1386 VariableSizedHandleScope handles(self);
1387 std::vector<Handle<mirror::DexCache>> dex_caches;
1388 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1389 for (const DexFile* dex_file : profile_info.GetDexFiles()) {
1390 dex_caches.push_back(handles.NewHandle(class_linker->FindDexCache(self, *dex_file)));
1391 }
1392
1393 uint32_t added_to_queue = 0;
1394 for (const std::pair<uint32_t, uint32_t>& pair : profile_info.GetMethods()) {
1395 if (CompileMethodFromProfile(self,
1396 class_linker,
1397 pair.second,
1398 dex_caches[pair.first],
1399 class_loader,
1400 add_to_queue,
1401 /*compile_after_boot=*/false)) {
1402 ++added_to_queue;
1403 }
1404 }
1405 return added_to_queue;
1406 }
1407
CompileMethodsFromProfile(Thread * self,const std::vector<const DexFile * > & dex_files,const std::string & profile_file,Handle<mirror::ClassLoader> class_loader,bool add_to_queue)1408 uint32_t Jit::CompileMethodsFromProfile(
1409 Thread* self,
1410 const std::vector<const DexFile*>& dex_files,
1411 const std::string& profile_file,
1412 Handle<mirror::ClassLoader> class_loader,
1413 bool add_to_queue) {
1414
1415 if (profile_file.empty()) {
1416 LOG(WARNING) << "Expected a profile file in JIT zygote mode";
1417 return 0u;
1418 }
1419
1420 // We don't generate boot profiles on device, therefore we don't
1421 // need to lock the file.
1422 unix_file::FdFile profile(profile_file.c_str(), O_RDONLY, true);
1423
1424 if (profile.Fd() == -1) {
1425 PLOG(WARNING) << "No profile: " << profile_file;
1426 return 0u;
1427 }
1428
1429 ProfileCompilationInfo profile_info;
1430 if (!profile_info.Load(profile.Fd())) {
1431 LOG(ERROR) << "Could not load profile file";
1432 return 0u;
1433 }
1434 ScopedObjectAccess soa(self);
1435 StackHandleScope<1> hs(self);
1436 MutableHandle<mirror::DexCache> dex_cache = hs.NewHandle<mirror::DexCache>(nullptr);
1437 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1438 uint32_t added_to_queue = 0u;
1439 for (const DexFile* dex_file : dex_files) {
1440 if (LocationIsOnArtModule(dex_file->GetLocation().c_str())) {
1441 // The ART module jars are already preopted.
1442 continue;
1443 }
1444
1445 std::set<dex::TypeIndex> class_types;
1446 std::set<uint16_t> all_methods;
1447 if (!profile_info.GetClassesAndMethods(*dex_file,
1448 &class_types,
1449 &all_methods,
1450 &all_methods,
1451 &all_methods)) {
1452 // This means the profile file did not reference the dex file, which is the case
1453 // if there's no classes and methods of that dex file in the profile.
1454 continue;
1455 }
1456 dex_cache.Assign(class_linker->FindDexCache(self, *dex_file));
1457 CHECK(dex_cache != nullptr) << "Could not find dex cache for " << dex_file->GetLocation();
1458
1459 for (uint16_t method_idx : all_methods) {
1460 if (CompileMethodFromProfile(self,
1461 class_linker,
1462 method_idx,
1463 dex_cache,
1464 class_loader,
1465 add_to_queue,
1466 /*compile_after_boot=*/true)) {
1467 ++added_to_queue;
1468 }
1469 }
1470 }
1471
1472 // Add a task to run when all compilation is done.
1473 JitDoneCompilingProfileTask* task = new JitDoneCompilingProfileTask(dex_files);
1474 MutexLock mu(Thread::Current(), boot_completed_lock_);
1475 if (!boot_completed_) {
1476 tasks_after_boot_.push_back(task);
1477 } else {
1478 DCHECK(tasks_after_boot_.empty());
1479 thread_pool_->AddTask(self, task);
1480 }
1481 return added_to_queue;
1482 }
1483
IgnoreSamplesForMethod(ArtMethod * method)1484 bool Jit::IgnoreSamplesForMethod(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) {
1485 if (method->IsClassInitializer() || !method->IsCompilable() || method->IsPreCompiled()) {
1486 // We do not want to compile such methods.
1487 return true;
1488 }
1489 if (method->IsNative()) {
1490 ObjPtr<mirror::Class> klass = method->GetDeclaringClass();
1491 if (klass == GetClassRoot<mirror::MethodHandle>() ||
1492 klass == GetClassRoot<mirror::VarHandle>()) {
1493 // MethodHandle and VarHandle invocation methods are required to throw an
1494 // UnsupportedOperationException if invoked reflectively. We achieve this by having native
1495 // implementations that raise the exception. We need to disable JIT compilation of these JNI
1496 // methods as it can lead to transitioning between JIT compiled JNI stubs and generic JNI
1497 // stubs. Since these stubs have different stack representations we can then crash in stack
1498 // walking (b/78151261).
1499 return true;
1500 }
1501 }
1502 return false;
1503 }
1504
MaybeCompileMethod(Thread * self,ArtMethod * method,uint32_t old_count,uint32_t new_count,bool with_backedges)1505 bool Jit::MaybeCompileMethod(Thread* self,
1506 ArtMethod* method,
1507 uint32_t old_count,
1508 uint32_t new_count,
1509 bool with_backedges) {
1510 if (thread_pool_ == nullptr) {
1511 return false;
1512 }
1513 if (UNLIKELY(method->IsPreCompiled()) && !with_backedges /* don't check for OSR */) {
1514 if (!NeedsClinitCheckBeforeCall(method) ||
1515 method->GetDeclaringClass()->IsVisiblyInitialized()) {
1516 const void* entry_point = code_cache_->GetSavedEntryPointOfPreCompiledMethod(method);
1517 if (entry_point != nullptr) {
1518 Runtime::Current()->GetInstrumentation()->UpdateMethodsCode(method, entry_point);
1519 return true;
1520 }
1521 }
1522 }
1523
1524 if (IgnoreSamplesForMethod(method)) {
1525 return false;
1526 }
1527 if (HotMethodThreshold() == 0) {
1528 // Tests might request JIT on first use (compiled synchronously in the interpreter).
1529 return false;
1530 }
1531 DCHECK_GT(WarmMethodThreshold(), 0);
1532 DCHECK_GT(HotMethodThreshold(), WarmMethodThreshold());
1533 DCHECK_GT(OSRMethodThreshold(), HotMethodThreshold());
1534 DCHECK_GE(PriorityThreadWeight(), 1);
1535 DCHECK_LE(PriorityThreadWeight(), HotMethodThreshold());
1536
1537 if (old_count < WarmMethodThreshold() && new_count >= WarmMethodThreshold()) {
1538 // Note: Native method have no "warm" state or profiling info.
1539 if (!method->IsNative() &&
1540 (method->GetProfilingInfo(kRuntimePointerSize) == nullptr) &&
1541 code_cache_->CanAllocateProfilingInfo() &&
1542 !options_->UseTieredJitCompilation()) {
1543 bool success = ProfilingInfo::Create(self, method, /* retry_allocation= */ false);
1544 if (success) {
1545 VLOG(jit) << "Start profiling " << method->PrettyMethod();
1546 }
1547
1548 if (thread_pool_ == nullptr) {
1549 // Calling ProfilingInfo::Create might put us in a suspended state, which could
1550 // lead to the thread pool being deleted when we are shutting down.
1551 return false;
1552 }
1553
1554 if (!success) {
1555 // We failed allocating. Instead of doing the collection on the Java thread, we push
1556 // an allocation to a compiler thread, that will do the collection.
1557 thread_pool_->AddTask(
1558 self,
1559 new JitCompileTask(method,
1560 JitCompileTask::TaskKind::kAllocateProfile,
1561 CompilationKind::kOptimized)); // Arbitrary compilation kind.
1562 }
1563 }
1564 }
1565 if (UseJitCompilation()) {
1566 if (old_count < HotMethodThreshold() && new_count >= HotMethodThreshold()) {
1567 if (!code_cache_->ContainsPc(method->GetEntryPointFromQuickCompiledCode())) {
1568 DCHECK(thread_pool_ != nullptr);
1569 CompilationKind compilation_kind =
1570 (options_->UseTieredJitCompilation() || options_->UseBaselineCompiler())
1571 ? CompilationKind::kBaseline
1572 : CompilationKind::kOptimized;
1573 thread_pool_->AddTask(
1574 self,
1575 new JitCompileTask(method, JitCompileTask::TaskKind::kCompile, compilation_kind));
1576 }
1577 }
1578 if (old_count < OSRMethodThreshold() && new_count >= OSRMethodThreshold()) {
1579 if (!with_backedges) {
1580 return false;
1581 }
1582 DCHECK(!method->IsNative()); // No back edges reported for native methods.
1583 if (!code_cache_->IsOsrCompiled(method)) {
1584 DCHECK(thread_pool_ != nullptr);
1585 thread_pool_->AddTask(
1586 self,
1587 new JitCompileTask(method, JitCompileTask::TaskKind::kCompile, CompilationKind::kOsr));
1588 }
1589 }
1590 }
1591 return true;
1592 }
1593
EnqueueOptimizedCompilation(ArtMethod * method,Thread * self)1594 void Jit::EnqueueOptimizedCompilation(ArtMethod* method, Thread* self) {
1595 if (thread_pool_ == nullptr) {
1596 return;
1597 }
1598 // We arrive here after a baseline compiled code has reached its baseline
1599 // hotness threshold. If tiered compilation is enabled, enqueue a compilation
1600 // task that will compile optimize the method.
1601 if (options_->UseTieredJitCompilation()) {
1602 thread_pool_->AddTask(
1603 self,
1604 new JitCompileTask(method,
1605 JitCompileTask::TaskKind::kCompile,
1606 CompilationKind::kOptimized));
1607 }
1608 }
1609
1610 class ScopedSetRuntimeThread {
1611 public:
ScopedSetRuntimeThread(Thread * self)1612 explicit ScopedSetRuntimeThread(Thread* self)
1613 : self_(self), was_runtime_thread_(self_->IsRuntimeThread()) {
1614 self_->SetIsRuntimeThread(true);
1615 }
1616
~ScopedSetRuntimeThread()1617 ~ScopedSetRuntimeThread() {
1618 self_->SetIsRuntimeThread(was_runtime_thread_);
1619 }
1620
1621 private:
1622 Thread* self_;
1623 bool was_runtime_thread_;
1624 };
1625
MethodEntered(Thread * thread,ArtMethod * method)1626 void Jit::MethodEntered(Thread* thread, ArtMethod* method) {
1627 Runtime* runtime = Runtime::Current();
1628 if (UNLIKELY(runtime->UseJitCompilation() && JitAtFirstUse())) {
1629 ArtMethod* np_method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
1630 if (np_method->IsCompilable()) {
1631 if (!np_method->IsNative() && GetCodeCache()->CanAllocateProfilingInfo()) {
1632 // The compiler requires a ProfilingInfo object for non-native methods.
1633 ProfilingInfo::Create(thread, np_method, /* retry_allocation= */ true);
1634 }
1635 // TODO(ngeoffray): For JIT at first use, use kPreCompile. Currently we don't due to
1636 // conflicts with jitzygote optimizations.
1637 JitCompileTask compile_task(
1638 method, JitCompileTask::TaskKind::kCompile, CompilationKind::kOptimized);
1639 // Fake being in a runtime thread so that class-load behavior will be the same as normal jit.
1640 ScopedSetRuntimeThread ssrt(thread);
1641 compile_task.Run(thread);
1642 }
1643 return;
1644 }
1645
1646 ProfilingInfo* profiling_info = method->GetProfilingInfo(kRuntimePointerSize);
1647 // Update the entrypoint if the ProfilingInfo has one. The interpreter will call it
1648 // instead of interpreting the method. We don't update it for instrumentation as the entrypoint
1649 // must remain the instrumentation entrypoint.
1650 if ((profiling_info != nullptr) &&
1651 (profiling_info->GetSavedEntryPoint() != nullptr) &&
1652 (method->GetEntryPointFromQuickCompiledCode() != GetQuickInstrumentationEntryPoint())) {
1653 Runtime::Current()->GetInstrumentation()->UpdateMethodsCode(
1654 method, profiling_info->GetSavedEntryPoint());
1655 } else {
1656 AddSamples(thread, method, 1, /* with_backedges= */false);
1657 }
1658 }
1659
InvokeVirtualOrInterface(ObjPtr<mirror::Object> this_object,ArtMethod * caller,uint32_t dex_pc,ArtMethod * callee ATTRIBUTE_UNUSED)1660 void Jit::InvokeVirtualOrInterface(ObjPtr<mirror::Object> this_object,
1661 ArtMethod* caller,
1662 uint32_t dex_pc,
1663 ArtMethod* callee ATTRIBUTE_UNUSED) {
1664 ScopedAssertNoThreadSuspension ants(__FUNCTION__);
1665 DCHECK(this_object != nullptr);
1666 ProfilingInfo* info = caller->GetProfilingInfo(kRuntimePointerSize);
1667 if (info != nullptr) {
1668 info->AddInvokeInfo(dex_pc, this_object->GetClass());
1669 }
1670 }
1671
WaitForCompilationToFinish(Thread * self)1672 void Jit::WaitForCompilationToFinish(Thread* self) {
1673 if (thread_pool_ != nullptr) {
1674 thread_pool_->Wait(self, false, false);
1675 }
1676 }
1677
Stop()1678 void Jit::Stop() {
1679 Thread* self = Thread::Current();
1680 // TODO(ngeoffray): change API to not require calling WaitForCompilationToFinish twice.
1681 WaitForCompilationToFinish(self);
1682 GetThreadPool()->StopWorkers(self);
1683 WaitForCompilationToFinish(self);
1684 }
1685
Start()1686 void Jit::Start() {
1687 GetThreadPool()->StartWorkers(Thread::Current());
1688 }
1689
ScopedJitSuspend()1690 ScopedJitSuspend::ScopedJitSuspend() {
1691 jit::Jit* jit = Runtime::Current()->GetJit();
1692 was_on_ = (jit != nullptr) && (jit->GetThreadPool() != nullptr);
1693 if (was_on_) {
1694 jit->Stop();
1695 }
1696 }
1697
~ScopedJitSuspend()1698 ScopedJitSuspend::~ScopedJitSuspend() {
1699 if (was_on_) {
1700 DCHECK(Runtime::Current()->GetJit() != nullptr);
1701 DCHECK(Runtime::Current()->GetJit()->GetThreadPool() != nullptr);
1702 Runtime::Current()->GetJit()->Start();
1703 }
1704 }
1705
RunPollingThread(void * arg)1706 static void* RunPollingThread(void* arg) {
1707 Jit* jit = reinterpret_cast<Jit*>(arg);
1708 do {
1709 sleep(10);
1710 } while (!jit->GetCodeCache()->GetZygoteMap()->IsCompilationNotified());
1711
1712 // We will suspend other threads: we can only do that if we're attached to the
1713 // runtime.
1714 Runtime* runtime = Runtime::Current();
1715 bool thread_attached = runtime->AttachCurrentThread(
1716 "BootImagePollingThread",
1717 /* as_daemon= */ true,
1718 /* thread_group= */ nullptr,
1719 /* create_peer= */ false);
1720 CHECK(thread_attached);
1721
1722 {
1723 // Prevent other threads from running while we are remapping the boot image
1724 // ArtMethod's. Native threads might still be running, but they cannot
1725 // change the contents of ArtMethod's.
1726 ScopedSuspendAll ssa(__FUNCTION__);
1727 runtime->GetJit()->MapBootImageMethods();
1728 }
1729
1730 Runtime::Current()->DetachCurrentThread();
1731 return nullptr;
1732 }
1733
PostForkChildAction(bool is_system_server,bool is_zygote)1734 void Jit::PostForkChildAction(bool is_system_server, bool is_zygote) {
1735 // Clear the potential boot tasks inherited from the zygote.
1736 {
1737 MutexLock mu(Thread::Current(), boot_completed_lock_);
1738 tasks_after_boot_.clear();
1739 }
1740
1741 Runtime* const runtime = Runtime::Current();
1742 // Check if we'll need to remap the boot image methods.
1743 if (!is_zygote && fd_methods_ != -1) {
1744 // Create a thread that will poll the status of zygote compilation, and map
1745 // the private mapping of boot image methods.
1746 // For child zygote, we instead query IsCompilationNotified() post zygote fork.
1747 zygote_mapping_methods_.ResetInForkedProcess();
1748 pthread_t polling_thread;
1749 pthread_attr_t attr;
1750 CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
1751 CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED),
1752 "PTHREAD_CREATE_DETACHED");
1753 CHECK_PTHREAD_CALL(
1754 pthread_create,
1755 (&polling_thread, &attr, RunPollingThread, reinterpret_cast<void*>(this)),
1756 "Methods maps thread");
1757 }
1758
1759 if (is_zygote || runtime->IsSafeMode()) {
1760 // Delete the thread pool, we are not going to JIT.
1761 thread_pool_.reset(nullptr);
1762 return;
1763 }
1764 // At this point, the compiler options have been adjusted to the particular configuration
1765 // of the forked child. Parse them again.
1766 jit_compiler_->ParseCompilerOptions();
1767
1768 // Adjust the status of code cache collection: the status from zygote was to not collect.
1769 code_cache_->SetGarbageCollectCode(!jit_compiler_->GenerateDebugInfo() &&
1770 !Runtime::Current()->GetInstrumentation()->AreExitStubsInstalled());
1771
1772 if (is_system_server && HasImageWithProfile()) {
1773 // Disable garbage collection: we don't want it to delete methods we're compiling
1774 // through boot and system server profiles.
1775 // TODO(ngeoffray): Fix this so we still collect deoptimized and unused code.
1776 code_cache_->SetGarbageCollectCode(false);
1777 }
1778
1779 // We do this here instead of PostZygoteFork, as NativeDebugInfoPostFork only
1780 // applies to a child.
1781 NativeDebugInfoPostFork();
1782 }
1783
PreZygoteFork()1784 void Jit::PreZygoteFork() {
1785 if (thread_pool_ == nullptr) {
1786 return;
1787 }
1788 thread_pool_->DeleteThreads();
1789
1790 NativeDebugInfoPreFork();
1791 }
1792
PostZygoteFork()1793 void Jit::PostZygoteFork() {
1794 if (thread_pool_ == nullptr) {
1795 // If this is a child zygote, check if we need to remap the boot image
1796 // methods.
1797 if (Runtime::Current()->IsZygote() &&
1798 fd_methods_ != -1 &&
1799 code_cache_->GetZygoteMap()->IsCompilationNotified()) {
1800 ScopedSuspendAll ssa(__FUNCTION__);
1801 MapBootImageMethods();
1802 }
1803 return;
1804 }
1805 if (Runtime::Current()->IsZygote() &&
1806 code_cache_->GetZygoteMap()->IsCompilationDoneButNotNotified()) {
1807 // Copy the boot image methods data to the mappings we created to share
1808 // with the children. We do this here as we are the only thread running and
1809 // we don't risk other threads concurrently updating the ArtMethod's.
1810 CHECK_EQ(GetTaskCount(), 1);
1811 NotifyZygoteCompilationDone();
1812 CHECK(code_cache_->GetZygoteMap()->IsCompilationNotified());
1813 }
1814 thread_pool_->CreateThreads();
1815 }
1816
BootCompleted()1817 void Jit::BootCompleted() {
1818 Thread* self = Thread::Current();
1819 std::deque<Task*> tasks;
1820 {
1821 MutexLock mu(self, boot_completed_lock_);
1822 tasks = std::move(tasks_after_boot_);
1823 boot_completed_ = true;
1824 }
1825 for (Task* task : tasks) {
1826 thread_pool_->AddTask(self, task);
1827 }
1828 }
1829
CanEncodeMethod(ArtMethod * method,bool is_for_shared_region) const1830 bool Jit::CanEncodeMethod(ArtMethod* method, bool is_for_shared_region) const {
1831 return !is_for_shared_region ||
1832 Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(method->GetDeclaringClass());
1833 }
1834
CanEncodeClass(ObjPtr<mirror::Class> cls,bool is_for_shared_region) const1835 bool Jit::CanEncodeClass(ObjPtr<mirror::Class> cls, bool is_for_shared_region) const {
1836 return !is_for_shared_region || Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(cls);
1837 }
1838
CanEncodeString(ObjPtr<mirror::String> string,bool is_for_shared_region) const1839 bool Jit::CanEncodeString(ObjPtr<mirror::String> string, bool is_for_shared_region) const {
1840 return !is_for_shared_region || Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(string);
1841 }
1842
CanAssumeInitialized(ObjPtr<mirror::Class> cls,bool is_for_shared_region) const1843 bool Jit::CanAssumeInitialized(ObjPtr<mirror::Class> cls, bool is_for_shared_region) const {
1844 if (!is_for_shared_region) {
1845 return cls->IsInitialized();
1846 } else {
1847 // Look up the class status in the oat file.
1848 const DexFile& dex_file = *cls->GetDexCache()->GetDexFile();
1849 const OatDexFile* oat_dex_file = dex_file.GetOatDexFile();
1850 // In case we run without an image there won't be a backing oat file.
1851 if (oat_dex_file == nullptr || oat_dex_file->GetOatFile() == nullptr) {
1852 return false;
1853 }
1854 uint16_t class_def_index = cls->GetDexClassDefIndex();
1855 return oat_dex_file->GetOatClass(class_def_index).GetStatus() >= ClassStatus::kInitialized;
1856 }
1857 }
1858
EnqueueCompilationFromNterp(ArtMethod * method,Thread * self)1859 void Jit::EnqueueCompilationFromNterp(ArtMethod* method, Thread* self) {
1860 if (thread_pool_ == nullptr) {
1861 return;
1862 }
1863 if (GetCodeCache()->ContainsPc(method->GetEntryPointFromQuickCompiledCode())) {
1864 // If we already have compiled code for it, nterp may be stuck in a loop.
1865 // Compile OSR.
1866 thread_pool_->AddTask(
1867 self,
1868 new JitCompileTask(method, JitCompileTask::TaskKind::kCompile, CompilationKind::kOsr));
1869 return;
1870 }
1871 if (GetCodeCache()->CanAllocateProfilingInfo()) {
1872 ProfilingInfo::Create(self, method, /* retry_allocation= */ false);
1873 thread_pool_->AddTask(
1874 self,
1875 new JitCompileTask(method, JitCompileTask::TaskKind::kCompile, CompilationKind::kBaseline));
1876 } else {
1877 thread_pool_->AddTask(
1878 self,
1879 new JitCompileTask(method,
1880 JitCompileTask::TaskKind::kCompile,
1881 CompilationKind::kOptimized));
1882 }
1883 }
1884
1885 } // namespace jit
1886 } // namespace art
1887