1 /*
2  * Copyright (C) 2017 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "Operations"
18 
19 #include "QuantizedLSTM.h"
20 
21 #include "CpuExecutor.h"
22 #include "CpuOperationUtils.h"
23 #include "HalInterfaces.h"
24 
25 #include "Tracing.h"
26 
27 #include <public/gemmlowp.h>
28 #include <tensorflow/lite/kernels/internal/reference/legacy_reference_ops.h>
29 #include <algorithm>
30 #include <vector>
31 
32 namespace android {
33 namespace nn {
34 
35 namespace {
36 
37 using namespace hal;
38 
39 template <typename T>
GetBuffer(RunTimeOperandInfo * operand)40 inline T* GetBuffer(RunTimeOperandInfo* operand) {
41     return reinterpret_cast<T*>(operand->buffer);
42 }
43 
44 template <typename T>
GetBuffer(const RunTimeOperandInfo * operand)45 inline const T* GetBuffer(const RunTimeOperandInfo* operand) {
46     return reinterpret_cast<const T*>(operand->buffer);
47 }
48 
49 using tflite::Dims;
50 
51 // The function below is taken from TF Lite implementation in order to decouple
52 // NN API from TF Lite dependency. Original function, with a description of its
53 // parameters and types can be found by this link:
54 // https://github.com/tensorflow/tensorflow/blob/0d697e5fc4c05c699eea0764364104ea500ccc68/tensorflow/contrib/lite/kernels/internal/reference/reference_ops.h#L1926
55 //
56 // clang-format off
57 template <int StateIntegerBits>
quantizedLstmStep(const uint8_t * input_data_uint8,const Dims<4> & input_dims,const uint8_t * prev_activ_data_uint8,const Dims<4> & prev_activ_dims,const uint8_t * weights_data_uint8,const Dims<4> & weights_dims,const int32_t * bias_data_int32,const Dims<4> & bias_dims,const int16_t * prevCellState_data_int16,const Dims<4> & prevCellState_dims,int16_t * output_state_data_int16,const Dims<4> & output_state_dims,uint8_t * output_activ_data_uint8,const Dims<4> & output_activ_dims,uint8_t * concat_temp_data_uint8,const Dims<4> & concat_temp_dims,int16_t * activ_temp_data_int16,const Dims<4> & activ_temp_dims,int32_t weights_zero_point,int32_t accum_multiplier,int accum_shift)58 void quantizedLstmStep(const uint8_t* input_data_uint8, const Dims<4>& input_dims,
59                        const uint8_t* prev_activ_data_uint8,
60                        const Dims<4>& prev_activ_dims, const uint8_t* weights_data_uint8,
61                        const Dims<4>& weights_dims, const int32_t* bias_data_int32,
62                        const Dims<4>& bias_dims, const int16_t* prevCellState_data_int16,
63                        const Dims<4>& prevCellState_dims, int16_t* output_state_data_int16,
64                        const Dims<4>& output_state_dims, uint8_t* output_activ_data_uint8,
65                        const Dims<4>& output_activ_dims, uint8_t* concat_temp_data_uint8,
66                        const Dims<4>& concat_temp_dims, int16_t* activ_temp_data_int16,
67                        const Dims<4>& activ_temp_dims, int32_t weights_zero_point,
68                        int32_t accum_multiplier, int accum_shift) {
69   // Gather dimensions information, and perform consistency checks.
70   const int outer_size =
71       MatchingFlatSizeSkipDim(input_dims, 0, prev_activ_dims, prevCellState_dims,
72                               output_state_dims, output_activ_dims);
73   TFLITE_CHECK_EQ(ArraySize(weights_dims, 2), 1);
74   TFLITE_CHECK_EQ(ArraySize(weights_dims, 3), 1);
75   const int input_depth = ArraySize(input_dims, 0);
76   const int prev_activ_depth = ArraySize(prev_activ_dims, 0);
77   const int total_input_depth = prev_activ_depth + input_depth;
78   TFLITE_CHECK_EQ(ArraySize(weights_dims, 0), total_input_depth);
79   TFLITE_CHECK_EQ(MatchingArraySize(bias_dims, 1, bias_dims, 2, bias_dims, 3),
80                   1);
81   const int intern_activ_depth =
82       MatchingArraySize(weights_dims, 1, bias_dims, 0);
83   TFLITE_CHECK_EQ(intern_activ_depth % 4, 0);
84   const int output_depth =
85       MatchingArraySize(prevCellState_dims, 0, prev_activ_dims, 0,
86                         output_state_dims, 0, output_activ_dims, 0);
87   TFLITE_CHECK_EQ(output_depth, intern_activ_depth / 4);
88   const int fc_batches = FlatSizeSkipDim(activ_temp_dims, 0);
89   const int fc_output_depth =
90       MatchingArraySize(weights_dims, 1, activ_temp_dims, 0);
91   const int fc_accum_depth = ArraySize(weights_dims, 0);
92   TFLITE_CHECK_EQ(fc_output_depth, 4 * output_depth);
93 
94   // Depth-concatenate prev_activ and input data together.
95   uint8_t const* concat_input_arrays_data[2] = {input_data_uint8,
96                                                 prev_activ_data_uint8};
97   Dims<4> const* concat_input_arrays_dims[2] = {&input_dims, &prev_activ_dims};
98   tflite::reference_ops::Concatenation<tflite::FusedActivationFunctionType::kNone, uint8_t>(
99       0, concat_input_arrays_data, concat_input_arrays_dims, 2,
100       concat_temp_data_uint8, concat_temp_dims);
101 
102   // Implementation of the fully connected node inside the LSTM cell.
103   // The operands are 8-bit integers, the accumulators are internally 32bit
104   // integers, and the output is 16-bit fixed-point with 3 integer bits so
105   // the output range is [-2^3, 2^3] == [-8, 8]. The rationale for that
106   // is explained in the function comment above.
107   for (int b = 0; b < fc_batches; ++b) {
108     for (int out_c = 0; out_c < fc_output_depth; ++out_c) {
109       // Internal accumulation.
110       // Initialize accumulator with the bias-value.
111       int32_t accum = bias_data_int32[out_c];
112       // Accumulation loop.
113       for (int d = 0; d < fc_accum_depth; ++d) {
114         int16_t input_val = concat_temp_data_uint8[b * fc_accum_depth + d] - 128;
115         int16_t weights_val =
116             weights_data_uint8[out_c * fc_accum_depth + d] - weights_zero_point;
117         accum += input_val * weights_val;
118       }
119       // Down-scale the final int32 accumulator to the scale used by our
120       // (16-bit, using 3 integer bits) fixed-point format. The quantized
121       // multiplier and shift here have been pre-computed offline
122       // (e.g. by toco).
123       accum =
124           tflite::MultiplyByQuantizedMultiplier(accum, accum_multiplier, accum_shift);
125       // Saturate, cast to int16, and store to the temporary activations array.
126       accum = std::max(-32768, std::min(32767, accum));
127       activ_temp_data_int16[out_c + fc_output_depth * b] = accum;
128     }
129   }
130 
131   // Rest of the LSTM cell: tanh and logistic math functions, and some adds
132   // and muls, all done in 16-bit fixed-point.
133   for (int b = 0; b < outer_size; ++b) {
134     for (int c = 0; c < output_depth; ++c) {
135       // Define the fixed-point data types that we will use here. All use
136       // int16 as the underlying integer type i.e. all are 16-bit fixed-point.
137       // They only differ by the number of integral vs. fractional bits,
138       // determining the range of values that they can represent.
139       //
140       // F0 uses 0 integer bits, range [-1, 1].
141       // This is the return type of math functions such as tanh, logistic,
142       // whose range is in [-1, 1].
143       using F0 = gemmlowp::FixedPoint<std::int16_t, 0>;
144       // F3 uses 3 integer bits, range [-8, 8].
145       // This is the range of the previous fully-connected node's output,
146       // which is our input here.
147       using F3 = gemmlowp::FixedPoint<std::int16_t, 3>;
148       // FS uses StateIntegerBits integer bits, range [-2^StateIntegerBits,
149       // 2^StateIntegerBits]. It's used to represent the internal state, whose
150       // number of integer bits is currently dictated by the model. See comment
151       // on the StateIntegerBits template parameter above.
152       using FS = gemmlowp::FixedPoint<std::int16_t, StateIntegerBits>;
153       // Implementation of input gate, using fixed-point logistic function.
154       F3 input_gate_input = F3::FromRaw(
155           activ_temp_data_int16[b * fc_output_depth + 0 * output_depth + c]);
156       F0 input_gate_output = gemmlowp::logistic(input_gate_input);
157       // Implementation of input modulation gate, using fixed-point tanh
158       // function.
159       F3 input_modulation_gate_input = F3::FromRaw(
160           activ_temp_data_int16[b * fc_output_depth + 1 * output_depth + c]);
161       F0 input_modulation_gate_output =
162           gemmlowp::tanh(input_modulation_gate_input);
163       // Implementation of forget gate, using fixed-point logistic function.
164       F3 forget_gate_input = F3::FromRaw(
165           activ_temp_data_int16[b * fc_output_depth + 2 * output_depth + c]);
166       F0 forget_gate_output = gemmlowp::logistic(forget_gate_input);
167       // Implementation of output gate, using fixed-point logistic function.
168       F3 output_gate_input = F3::FromRaw(
169           activ_temp_data_int16[b * fc_output_depth + 3 * output_depth + c]);
170       F0 output_gate_output = gemmlowp::logistic(output_gate_input);
171       // Implementation of internal multiplication nodes, still in fixed-point.
172       F0 input_times_input_modulation =
173           input_gate_output * input_modulation_gate_output;
174       FS prevCellState = FS::FromRaw(prevCellState_data_int16[b * output_depth + c]);
175       FS prevCellState_times_forget_state = forget_gate_output * prevCellState;
176       // Implementation of internal addition node, saturating.
177       FS new_state = gemmlowp::SaturatingAdd(
178           gemmlowp::Rescale<StateIntegerBits>(input_times_input_modulation),
179           prevCellState_times_forget_state);
180       // Implementation of last internal Tanh node, still in fixed-point.
181       // Since a Tanh fixed-point implementation is specialized for a given
182       // number or integer bits, and each specialization can have a substantial
183       // code size, and we already used above a Tanh on an input with 3 integer
184       // bits, and per the table in the above function comment there is no
185       // significant accuracy to be lost by clamping to [-8, +8] for a
186       // 3-integer-bits representation, let us just do that. This helps people
187       // porting this to targets where code footprint must be minimized.
188       F3 new_state_f3 = gemmlowp::Rescale<3>(new_state);
189       F0 output_activ_int16 = output_gate_output * gemmlowp::tanh(new_state_f3);
190       // Store the new internal state back to memory, as 16-bit integers.
191       // Note: here we store the original value with StateIntegerBits, not
192       // the rescaled 3-integer-bits value fed to tanh.
193       output_state_data_int16[b * output_depth + c] = new_state.raw();
194       // Down-scale the output activations to 8-bit integers, saturating,
195       // and store back to memory.
196       int16_t rescaled_output_activ =
197           gemmlowp::RoundingDivideByPOT(output_activ_int16.raw(), 8);
198       int16_t clamped_output_activ =
199           std::max<int16_t>(-128, std::min<int16_t>(127, rescaled_output_activ));
200       output_activ_data_uint8[b * output_depth + c] =
201           128 + clamped_output_activ;
202     }
203   }
204 }
205 // clang-format on
206 
207 // The function assigns a 2D matrix to a submatrix of the weights at a given row
208 // and column offsets.
assignWeightsSubmatrix(const RunTimeOperandInfo * submatrix,const int32_t offset_row,const int32_t offset_column,const std::vector<uint32_t> & weightsDims,uint8_t * weights)209 void assignWeightsSubmatrix(const RunTimeOperandInfo* submatrix, const int32_t offset_row,
210                             const int32_t offset_column, const std::vector<uint32_t>& weightsDims,
211                             uint8_t* weights) {
212     const uint8_t* submatrixValues = GetBuffer<uint8_t>(submatrix);
213     const std::vector<uint32_t> submatrixDims = submatrix->shape().dimensions;
214     for (uint32_t i = 0; i < submatrixDims[0] * submatrixDims[1]; ++i) {
215         const uint32_t row = i / submatrixDims[1];
216         const uint32_t column = i % submatrixDims[1];
217         weights[(row + offset_row) * weightsDims[1] + column + offset_column] = submatrixValues[i];
218     }
219 }
220 
221 }  // namespace
222 
QuantizedLSTMCell(const Operation & operation,RunTimeOperandInfo * operands)223 QuantizedLSTMCell::QuantizedLSTMCell(const Operation& operation, RunTimeOperandInfo* operands) {
224     input_ = GetInput(operation, operands, kInputTensor);
225 
226     inputToInputWeights_ = GetInput(operation, operands, kInputToInputWeightsTensor);
227     inputToForgetWeights_ = GetInput(operation, operands, kInputToForgetWeightsTensor);
228     inputToCellWeights_ = GetInput(operation, operands, kInputToCellWeightsTensor);
229     inputToOutputWeights_ = GetInput(operation, operands, kInputToOutputWeightsTensor);
230 
231     recurrentToInputWeights_ = GetInput(operation, operands, kRecurrentToInputWeightsTensor);
232     recurrentToForgetWeights_ = GetInput(operation, operands, kRecurrentToForgetWeightsTensor);
233     recurrentToCellWeights_ = GetInput(operation, operands, kRecurrentToCellWeightsTensor);
234     recurrentToOutputWeights_ = GetInput(operation, operands, kRecurrentToOutputWeightsTensor);
235 
236     inputGateBias_ = GetInput(operation, operands, kInputGateBiasTensor);
237     forgetGateBias_ = GetInput(operation, operands, kForgetGateBiasTensor);
238     cellGateBias_ = GetInput(operation, operands, kCellGateBiasTensor);
239     outputGateBias_ = GetInput(operation, operands, kOutputGateBiasTensor);
240 
241     prevCellState_ = GetInput(operation, operands, kPrevCellStateTensor);
242     prevOutput_ = GetInput(operation, operands, kPrevOutputTensor);
243 
244     cellStateOut_ = GetOutput(operation, operands, kCellStateOutTensor);
245     output_ = GetOutput(operation, operands, kOutputTensor);
246 }
247 
prepare(const Operation & operation,RunTimeOperandInfo * operands,Shape * cellStateOutShape,Shape * outputShape)248 bool QuantizedLSTMCell::prepare(const Operation& operation, RunTimeOperandInfo* operands,
249                                 Shape* cellStateOutShape, Shape* outputShape) {
250     auto input = GetInput(operation, operands, kInputTensor);
251     NN_RET_CHECK_EQ(NumDimensions(input), 2);
252     NN_RET_CHECK_EQ(input->scale, 1. / 128.0);
253     NN_RET_CHECK_EQ(input->zeroPoint, 128);
254     const uint32_t numBatches = SizeOfDimension(input, 0);
255     const uint32_t inputSize = SizeOfDimension(input, 1);
256 
257     auto prevOutput = GetInput(operation, operands, kPrevOutputTensor);
258     NN_RET_CHECK_EQ(NumDimensions(prevOutput), 2);
259     NN_RET_CHECK_EQ(SizeOfDimension(prevOutput, 0), numBatches);
260     NN_RET_CHECK_EQ(prevOutput->scale, 1. / 128.0);
261     NN_RET_CHECK_EQ(prevOutput->zeroPoint, 128);
262     const uint32_t outputSize = SizeOfDimension(prevOutput, 1);
263 
264     auto inputToInputWeights = GetInput(operation, operands, kInputToInputWeightsTensor);
265     const float weightsScale = inputToInputWeights->scale;
266     NN_RET_CHECK(weightsScale != 0);
267     const float weightsZeroPoint = inputToInputWeights->zeroPoint;
268 
269     auto checkWeightsShape = [&](const RunTimeOperandInfo* weights, uint32_t columns) -> bool {
270         NN_RET_CHECK_EQ(NumDimensions(weights), 2);
271         NN_RET_CHECK_EQ(SizeOfDimension(weights, 0), outputSize);
272         NN_RET_CHECK_EQ(SizeOfDimension(weights, 1), columns);
273         NN_RET_CHECK_EQ(weights->scale, weightsScale);
274         NN_RET_CHECK_EQ(weights->zeroPoint, weightsZeroPoint);
275         return true;
276     };
277 
278     auto inputToForgetWeights = GetInput(operation, operands, kInputToForgetWeightsTensor);
279     auto inputToCellWeights = GetInput(operation, operands, kInputToCellWeightsTensor);
280     auto inputToOutputWeights = GetInput(operation, operands, kInputToOutputWeightsTensor);
281     NN_RET_CHECK(checkWeightsShape(inputToInputWeights, inputSize));
282     NN_RET_CHECK(checkWeightsShape(inputToForgetWeights, inputSize));
283     NN_RET_CHECK(checkWeightsShape(inputToCellWeights, inputSize));
284     NN_RET_CHECK(checkWeightsShape(inputToOutputWeights, inputSize));
285 
286     auto recurrentToInputWeights = GetInput(operation, operands, kRecurrentToInputWeightsTensor);
287     auto recurrentToForgetWeights = GetInput(operation, operands, kRecurrentToForgetWeightsTensor);
288     auto recurrentToCellWeights = GetInput(operation, operands, kRecurrentToCellWeightsTensor);
289     auto recurrentToOutputWeights = GetInput(operation, operands, kRecurrentToOutputWeightsTensor);
290     NN_RET_CHECK(checkWeightsShape(recurrentToInputWeights, outputSize));
291     NN_RET_CHECK(checkWeightsShape(recurrentToForgetWeights, outputSize));
292     NN_RET_CHECK(checkWeightsShape(recurrentToCellWeights, outputSize));
293     NN_RET_CHECK(checkWeightsShape(recurrentToOutputWeights, outputSize));
294 
295     auto inputGateBias = GetInput(operation, operands, kInputGateBiasTensor);
296     const float biasScale = inputGateBias->scale;
297     NN_RET_CHECK_EQ(biasScale, weightsScale / 128.0);
298     const float biasZeroPoint = inputGateBias->zeroPoint;
299     NN_RET_CHECK_EQ(biasZeroPoint, 0);
300 
301     auto checkBiasShape = [&](const RunTimeOperandInfo* bias) -> bool {
302         NN_RET_CHECK_EQ(NumDimensions(bias), 1);
303         NN_RET_CHECK_EQ(SizeOfDimension(bias, 0), outputSize);
304         NN_RET_CHECK_EQ(bias->scale, biasScale);
305         NN_RET_CHECK_EQ(bias->zeroPoint, biasZeroPoint);
306         return true;
307     };
308 
309     auto forgetGateBias = GetInput(operation, operands, kForgetGateBiasTensor);
310     auto cellGateBias = GetInput(operation, operands, kCellGateBiasTensor);
311     auto outputGateBias = GetInput(operation, operands, kOutputGateBiasTensor);
312     NN_RET_CHECK(checkBiasShape(inputGateBias));
313     NN_RET_CHECK(checkBiasShape(forgetGateBias));
314     NN_RET_CHECK(checkBiasShape(cellGateBias));
315     NN_RET_CHECK(checkBiasShape(outputGateBias));
316 
317     auto prevCellState = GetInput(operation, operands, kPrevCellStateTensor);
318     NN_CHECK_EQ(NumDimensions(prevCellState), 2);
319     NN_CHECK_EQ(SizeOfDimension(prevCellState, 0), numBatches);
320     NN_CHECK_EQ(SizeOfDimension(prevCellState, 1), outputSize);
321     NN_CHECK_EQ(prevCellState->zeroPoint, 0);
322     // Cell state range for quantized LSTM is a function of StateIntegerBits and
323     // can be calculated as:
324     // [-2^StateIntegerBits, 2^StateIntegerBits * 32767/32768].
325     // Therefore, for a fixed StateIntegerBits parameter, cell state scale is
326     // equal to 2^StateIntegerBits * 2^(-15) = 2^(StateIntegerBits - 15) and
327     // therefore:
328     // StateIntegerBits = log2(cell state scale) + 15
329     int stateScaleLog2Rounded;
330     NN_CHECK(tflite::CheckedLog2(prevCellState->scale, &stateScaleLog2Rounded));
331     const int stateIntegerBits = 15 + stateScaleLog2Rounded;
332     // We only support StateIntegerBits == 4
333     NN_CHECK(stateIntegerBits == 4);
334 
335     *cellStateOutShape = prevCellState->shape();
336     *outputShape = prevOutput->shape();
337     return true;
338 }
339 
340 // The function contatenates 8 input weight matrices into one. Resulting matrix
341 // has a shape [4 * outputSize, outputSize + inputSize]. The matrix is
342 // constructed as follows:
343 // +-----------------------------------+
344 // | recurrentToInput  | inputToInput  |
345 // |-------------------+---------------|
346 // | recurrentToCell   | inputToCell   |
347 // |-------------------+---------------|
348 // | recurrentToForget | inputToForget |
349 // |-------------------+---------------|
350 // | recurrentToOutput | inputToOutput |
351 // +-----------------------------------+
concatenateWeights(const std::vector<uint32_t> & weightsDims,uint8_t * weights)352 void QuantizedLSTMCell::concatenateWeights(const std::vector<uint32_t>& weightsDims,
353                                            uint8_t* weights) {
354     const int outputSize = SizeOfDimension(inputToInputWeights_, 0);
355 
356     assignWeightsSubmatrix(inputToInputWeights_, 0 * outputSize, outputSize, weightsDims, weights);
357     assignWeightsSubmatrix(inputToCellWeights_, 1 * outputSize, outputSize, weightsDims, weights);
358     assignWeightsSubmatrix(inputToForgetWeights_, 2 * outputSize, outputSize, weightsDims, weights);
359     assignWeightsSubmatrix(inputToOutputWeights_, 3 * outputSize, outputSize, weightsDims, weights);
360     assignWeightsSubmatrix(recurrentToInputWeights_, 0 * outputSize, 0, weightsDims, weights);
361     assignWeightsSubmatrix(recurrentToCellWeights_, 1 * outputSize, 0, weightsDims, weights);
362     assignWeightsSubmatrix(recurrentToForgetWeights_, 2 * outputSize, 0, weightsDims, weights);
363     assignWeightsSubmatrix(recurrentToOutputWeights_, 3 * outputSize, 0, weightsDims, weights);
364 }
365 
366 // The function concatenate four bias vectors of shape [outputSize] into one
367 // vector of shape [4 * outputSize].
concatenateBiases(uint32_t outputSize,int32_t * bias)368 void QuantizedLSTMCell::concatenateBiases(uint32_t outputSize, int32_t* bias) {
369     memcpy(bias + 0 * outputSize, GetBuffer<int32_t>(inputGateBias_), sizeof(int32_t) * outputSize);
370     memcpy(bias + 1 * outputSize, GetBuffer<int32_t>(cellGateBias_), sizeof(int32_t) * outputSize);
371     memcpy(bias + 2 * outputSize, GetBuffer<int32_t>(forgetGateBias_),
372            sizeof(int32_t) * outputSize);
373     memcpy(bias + 3 * outputSize, GetBuffer<int32_t>(outputGateBias_),
374            sizeof(int32_t) * outputSize);
375 }
376 
eval()377 bool QuantizedLSTMCell::eval() {
378     NNTRACE_COMP("QuantizedLSTM::eval");
379 
380     Shape weightsShape;
381     weightsShape.dimensions = {4 * SizeOfDimension(prevOutput_, 1),
382                                SizeOfDimension(input_, 1) + SizeOfDimension(prevOutput_, 1)};
383     std::vector<uint8_t> weights(getNumberOfElements(weightsShape));
384     concatenateWeights(weightsShape.dimensions, weights.data());
385 
386     Shape biasShape;
387     biasShape.dimensions = {getSizeOfDimension(weightsShape, 0)};
388     std::vector<int32_t> bias(getNumberOfElements(biasShape));
389     concatenateBiases(SizeOfDimension(prevOutput_, 1), bias.data());
390 
391     Shape concatTempShape;
392     concatTempShape.dimensions = {SizeOfDimension(input_, 0), getSizeOfDimension(weightsShape, 1)};
393 
394     Shape activationTempShape;
395     activationTempShape.dimensions = {SizeOfDimension(input_, 0),
396                                       getSizeOfDimension(weightsShape, 0)};
397 
398     std::vector<uint8_t> concatTemp(getNumberOfElements(concatTempShape));
399     std::vector<int16_t> activationTemp(getNumberOfElements(activationTempShape));
400 
401     // From https://arxiv.org/pdf/1712.05877, for a fully-connected layer,
402     // accumulator multiplier is equal to:
403     // (input scale) * (weights scale) / (fully-connected output scale)
404     // In our case fully-connected output scale is fixed and equal to
405     // 2^(-12) (See LSTMCell definition in TF Lite for more details on that).
406     // But bias scale is set to (input scale) * (weights scale) (also from the
407     // paper), so we can multiply it to an inverse of the fc-output scale to get
408     // the multiplier value:
409     double realAccumMultiplier = 4096 * inputGateBias_->scale;
410     int32_t accumMultiplier;
411     int accumShift;
412     tflite::QuantizeMultiplier(realAccumMultiplier, &accumMultiplier, &accumShift);
413     quantizedLstmStep<4>(
414             // Inputs.
415             GetBuffer<const uint8_t>(input_), convertShapeToDims(input_->shape()),
416             GetBuffer<const uint8_t>(prevOutput_), convertShapeToDims(prevOutput_->shape()),
417             weights.data(), convertShapeToDims(weightsShape), bias.data(),
418             convertShapeToDims(biasShape), GetBuffer<const int16_t>(prevCellState_),
419             convertShapeToDims(prevCellState_->shape()),
420             // Outputs.
421             GetBuffer<int16_t>(cellStateOut_), convertShapeToDims(cellStateOut_->shape()),
422             GetBuffer<uint8_t>(output_), convertShapeToDims(output_->shape()), concatTemp.data(),
423             convertShapeToDims(concatTempShape), activationTemp.data(),
424             convertShapeToDims(activationTempShape), inputToInputWeights_->zeroPoint,
425             accumMultiplier, accumShift);
426     return true;
427 }
428 
429 }  // namespace nn
430 }  // namespace android
431