1 /*
2  ** Copyright 2011, The Android Open Source Project
3  **
4  ** Licensed under the Apache License, Version 2.0 (the "License");
5  ** you may not use this file except in compliance with the License.
6  ** You may obtain a copy of the License at
7  **
8  **     http://www.apache.org/licenses/LICENSE-2.0
9  **
10  ** Unless required by applicable law or agreed to in writing, software
11  ** distributed under the License is distributed on an "AS IS" BASIS,
12  ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  ** See the License for the specific language governing permissions and
14  ** limitations under the License.
15  */
16 
17 #ifndef ANDROID_FRAMEWORKS_ML_NN_DRIVER_CACHE_BLOB_CACHE_BLOB_CACHE_H
18 #define ANDROID_FRAMEWORKS_ML_NN_DRIVER_CACHE_BLOB_CACHE_BLOB_CACHE_H
19 
20 #include <stddef.h>
21 
22 #include <functional>
23 #include <memory>
24 #include <utility>
25 #include <vector>
26 
27 namespace android {
28 
29 // A BlobCache is an in-memory cache for binary key/value pairs.  A BlobCache
30 // does NOT provide any thread-safety guarantees.
31 //
32 // The cache contents can be serialized to an in-memory buffer or mmap'd file
33 // and then reloaded in a subsequent execution of the program.  This
34 // serialization is non-portable and the data should only be used by the device
35 // that generated it.
36 class BlobCache {
37    public:
38     enum class Select {
39         RANDOM,  // evict random entries
40         LRU,     // evict least-recently-used entries
41 
42         DEFAULT = RANDOM,
43     };
44 
45     enum class Capacity {
46         // cut back to no more than half capacity; new/replacement
47         // entry still might not fit
48         HALVE,
49 
50         // cut back to whatever is necessary to fit new/replacement
51         // entry
52         FIT,
53 
54         // cut back to no more than half capacity and ensure that
55         // there's enough space for new/replacement entry
56         FIT_HALVE,
57 
58         DEFAULT = HALVE,
59     };
60 
61     // When we're inserting or replacing an entry in the cache, and
62     // there's not enough space, how do we clean the cache?
63     typedef std::pair<Select, Capacity> Policy;
64 
defaultPolicy()65     static Policy defaultPolicy() { return Policy(Select::DEFAULT, Capacity::DEFAULT); }
66 
67     // Create an empty blob cache. The blob cache will cache key/value pairs
68     // with key and value sizes less than or equal to maxKeySize and
69     // maxValueSize, respectively. The total combined size of ALL cache entries
70     // (key sizes plus value sizes) will not exceed maxTotalSize.
71     BlobCache(size_t maxKeySize, size_t maxValueSize, size_t maxTotalSize,
72               Policy policy = defaultPolicy());
73 
74     // set inserts a new binary value into the cache and associates it with the
75     // given binary key.  If the key or value are too large for the cache then
76     // the cache remains unchanged.  This includes the case where a different
77     // value was previously associated with the given key - the old value will
78     // remain in the cache.  If the given key and value are small enough to be
79     // put in the cache (based on the maxKeySize, maxValueSize, and maxTotalSize
80     // values specified to the BlobCache constructor), then the key/value pair
81     // will be in the cache after set returns.  Note, however, that a subsequent
82     // call to set may evict old key/value pairs from the cache.
83     //
84     // Preconditions:
85     //   key != NULL
86     //   0 < keySize
87     //   value != NULL
88     //   0 < valueSize
89     void set(const void* key, size_t keySize, const void* value, size_t valueSize);
90 
91     // get retrieves from the cache the binary value associated with a given
92     // binary key.  If the key is present in the cache then the length of the
93     // binary value associated with that key is returned.  If the key
94     // is not present in the cache then 0 is returned.
95     //
96     // There are two variants of get: one takes a buffer (value, valueSize)
97     // and one takes an allocator (value, alloc).
98     //
99     // For the BUFFER variant, if the value argument is non-NULL and
100     // the size of the cached value is less than valueSize bytes then
101     // the cached value is copied into the buffer pointed to by the
102     // value argument.  If the key is not present in the cache then
103     // the buffer pointed to by the value argument is not modified.
104     //
105     //   Preconditions:
106     //     key != NULL
107     //     0 < keySize
108     //     0 <= valueSize
109     //
110     // For the ALLOCATOR variant, if it is possible to allocate a
111     // buffer for the cached value via a call to the allocator by
112     //
113     //   size_t cached_value_size = ...;
114     //   void* buf = alloc(cached_value_size);
115     //
116     // then the cached value is copied into the newly-allocated buffer
117     // and *value is set to the address of the newly-allocated buffer.
118     // If the allocator returns NULL, or the key is not present in the
119     // cache, then *value is set to NULL.
120     //
121     //   Preconditions:
122     //     key != NULL
123     //     0 < keySize
124     //     value != NULL
125     //
126     // Note that when calling get multiple times with the same key, the later
127     // calls may fail, returning 0, even if earlier calls succeeded.  The return
128     // value must be checked for each call.
129     size_t get(const void* key, size_t keySize, void* value, size_t valueSize);
130     size_t get(const void* key, size_t keySize, void** value, std::function<void*(size_t)> alloc);
131     template <typename T>
get(const void * key,size_t keySize,T ** value,std::function<void * (size_t)> alloc)132     size_t get(const void* key, size_t keySize, T** value, std::function<void*(size_t)> alloc) {
133         void* valueVoid;
134         const size_t size = get(key, keySize, &valueVoid, alloc);
135         *value = static_cast<T*>(valueVoid);
136         return size;
137     }
138 
139     // getFlattenedSize returns the number of bytes needed to store the entire
140     // serialized cache.
141     size_t getFlattenedSize() const;
142 
143     // flatten serializes the current contents of the cache into the memory
144     // pointed to by 'buffer'.  The serialized cache contents can later be
145     // loaded into a BlobCache object using the unflatten method.  The contents
146     // of the BlobCache object will not be modified.
147     //
148     // Preconditions:
149     //   size >= this.getFlattenedSize()
150     int flatten(void* buffer, size_t size) const;
151 
152     // unflatten replaces the contents of the cache with the serialized cache
153     // contents in the memory pointed to by 'buffer'.  The previous contents of
154     // the BlobCache will be evicted from the cache.  If an error occurs while
155     // unflattening the serialized cache contents then the BlobCache will be
156     // left in an empty state.
157     //
158     int unflatten(void const* buffer, size_t size);
159 
160    private:
161     // Copying is disallowed.
162     BlobCache(const BlobCache&);
163     void operator=(const BlobCache&);
164 
165     // A random function helper to get around MinGW not having nrand48()
166     long int blob_random();
167 
168     // Use this in place of a cache entry index to indicate that no
169     // entry is being designated.
170     static const size_t NoEntry = ~size_t(0);
171 
172     // Is this Capacity value one of the *FIT* values?
173     static bool isFit(Capacity capacity);
174 
175     // clean evicts a selected set of entries from the cache to make
176     // room for a new entry or for replacing an entry with a larger
177     // one.  mSelect determines how to pick entries to evict, and
178     // mCapacity determines when to stop evicting entries.
179     //
180     // newEntrySize is the size of the entry we want to add to the
181     // cache, or the new size of the entry we want to replace in the
182     // cache.
183     //
184     // If we are replacing an entry in the cache, then onBehalfOf is
185     // the index of that entry in the cache; otherwise, it is NoEntry.
186     //
187     // Returns true if at least one entry is evicted.
188     bool clean(size_t newEntrySize, size_t onBehalfOf);
189 
190     // isCleanable returns true if the cache is full enough for the clean method
191     // to have some effect, and false otherwise.
192     bool isCleanable() const;
193 
194     // findVictim selects an entry to remove from the cache.  The
195     // cache must not be empty.
196     size_t findVictim();
197 
198     // findDownTo determines how far to clean the cache -- until it
199     // results in a total size that does not exceed the return value
200     // of findDownTo.  newEntrySize and onBehalfOf have the same
201     // meanings they do for clean.
202     size_t findDownTo(size_t newEntrySize, size_t onBehalfOf);
203 
204     // A Blob is an immutable sized unstructured data blob.
205     class Blob {
206        public:
207         Blob(const void* data, size_t size, bool copyData);
208         ~Blob();
209 
210         bool operator<(const Blob& rhs) const;
211 
212         const void* getData() const;
213         size_t getSize() const;
214 
215        private:
216         // Copying is not allowed.
217         Blob(const Blob&);
218         void operator=(const Blob&);
219 
220         // mData points to the buffer containing the blob data.
221         const void* mData;
222 
223         // mSize is the size of the blob data in bytes.
224         size_t mSize;
225 
226         // mOwnsData indicates whether or not this Blob object should free the
227         // memory pointed to by mData when the Blob gets destructed.
228         bool mOwnsData;
229     };
230 
231     // A CacheEntry is a single key/value pair in the cache.
232     class CacheEntry {
233        public:
234         CacheEntry();
235         CacheEntry(const std::shared_ptr<Blob>& key, const std::shared_ptr<Blob>& value,
236                    uint32_t recency);
237         CacheEntry(const CacheEntry& ce);
238 
239         bool operator<(const CacheEntry& rhs) const;
240         const CacheEntry& operator=(const CacheEntry&);
241 
242         std::shared_ptr<Blob> getKey() const;
243         std::shared_ptr<Blob> getValue() const;
244 
245         void setValue(const std::shared_ptr<Blob>& value);
246 
247         uint32_t getRecency() const;
248         void setRecency(uint32_t recency);
249 
250        private:
251         // mKey is the key that identifies the cache entry.
252         std::shared_ptr<Blob> mKey;
253 
254         // mValue is the cached data associated with the key.
255         std::shared_ptr<Blob> mValue;
256 
257         // mRecency is the last "time" (as indicated by
258         // BlobCache::mAccessCount) that this entry was accessed.
259         uint32_t mRecency;
260     };
261 
262     // A Header is the header for the entire BlobCache serialization format. No
263     // need to make this portable, so we simply write the struct out.
264     struct Header {
265         // mMagicNumber is the magic number that identifies the data as
266         // serialized BlobCache contents.  It must always contain 'Blb$'.
267         uint32_t mMagicNumber;
268 
269         // mBlobCacheVersion is the serialization format version.
270         uint32_t mBlobCacheVersion;
271 
272         // mDeviceVersion is the device-specific version of the cache.  This can
273         // be used to invalidate the cache.
274         uint32_t mDeviceVersion;
275 
276         // mNumEntries is number of cache entries following the header in the
277         // data.
278         size_t mNumEntries;
279 
280         // mBuildId is the build id of the device when the cache was created.
281         // When an update to the build happens (via an OTA or other update) this
282         // is used to invalidate the cache.
283         int mBuildIdLength;
284         char mBuildId[];
285     };
286 
287     // An EntryHeader is the header for a serialized cache entry.  No need to
288     // make this portable, so we simply write the struct out.  Each EntryHeader
289     // is followed imediately by the key data and then the value data.
290     //
291     // The beginning of each serialized EntryHeader is 4-byte aligned, so the
292     // number of bytes that a serialized cache entry will occupy is:
293     //
294     //   ((sizeof(EntryHeader) + keySize + valueSize) + 3) & ~3
295     //
296     struct EntryHeader {
297         // mKeySize is the size of the entry key in bytes.
298         size_t mKeySize;
299 
300         // mValueSize is the size of the entry value in bytes.
301         size_t mValueSize;
302 
303         // mData contains both the key and value data for the cache entry.  The
304         // key comes first followed immediately by the value.
305         uint8_t mData[];
306     };
307 
308     // mMaxKeySize is the maximum key size that will be cached. Calls to
309     // BlobCache::set with a keySize parameter larger than mMaxKeySize will
310     // simply not add the key/value pair to the cache.
311     const size_t mMaxKeySize;
312 
313     // mMaxValueSize is the maximum value size that will be cached. Calls to
314     // BlobCache::set with a valueSize parameter larger than mMaxValueSize will
315     // simply not add the key/value pair to the cache.
316     const size_t mMaxValueSize;
317 
318     // mMaxTotalSize is the maximum size that all cache entries can occupy. This
319     // includes space for both keys and values. When a call to BlobCache::set
320     // would otherwise cause this limit to be exceeded, either the key/value
321     // pair passed to BlobCache::set will not be cached or other cache entries
322     // will be evicted from the cache to make room for the new entry.
323     const size_t mMaxTotalSize;
324 
325     // mPolicySelect indicates how we pick entries to evict from the cache.
326     const Select mPolicySelect;
327 
328     // mPolicyCapacity indicates how we decide when to stop evicting
329     // entries from the cache.
330     const Capacity mPolicyCapacity;
331 
332     // mTotalSize is the total combined size of all keys and values currently in
333     // the cache.
334     size_t mTotalSize;
335 
336     // mAccessCount is the number of times an entry has been
337     // added/replaced by set(), or its content (not just its size)
338     // retrieved by get().  It serves as a clock for recognizing how
339     // recently an entry was accessed, for the Select::LRU policy.
340     uint32_t mAccessCount;
341 
342     // mRandState is the pseudo-random number generator state. It is passed to
343     // nrand48 to generate random numbers when needed.
344     unsigned short mRandState[3];
345 
346     // mCacheEntries stores all the cache entries that are resident in memory.
347     // Cache entries are added to it by the 'set' method.
348     std::vector<CacheEntry> mCacheEntries;
349 };
350 
351 }  // namespace android
352 
353 #endif  // ANDROID_FRAMEWORKS_ML_NN_DRIVER_CACHE_BLOB_CACHE_BLOB_CACHE_H
354