QUIC

Quick UDP Internet Connections

MULTIPLEXED STREAM
TRANSPORT OVER UDP

Jim Roskind <jar@google.com>

To paraphrase a famous quote: | apologize in advance for the length of this document,
and if | had more time, | would surely have written less.

First Draft 2012-04
Revised: 2013-06-24
Minor Edit: 2013-12-2

Table of Contents

Table of Contents
OVERVIEW
MOTIVATIONS
SPDY SUPPORT MOTIVATIONS
GOALS
JUSTIFICATIONS AND SOME IMPLICATIONS
WHY NOT USE SCTP over DTLS?
CONNECTION ESTABLISHMENT LATENCY OF SCTP over DTLS
EFFICIENT UTILIZATION OF BANDWIDTH FOR SCTP over DTLS
PACKET LOSS RETRANSMISSION LATENCY
Expected API Elements
API CONCEPTS

STREAM CHARACTERISTICS
IN-SEQUENCE DATA DELIVERY
CONNECTION STATUS
PROTOCOL PHILOSOPHY
CONNECTING VIA CONNECTIONLESS UDP: OVERCOMING NATs
CID: THE KEY TO CONNECTION IDENTIFICATION
NAT BINDING KEEP-ALIVE
UDP PACKET FRAGMENTATION
CONNECTION ESTABLISHMENT and RESUMPTION
STARTUP DDOS ATTACKS
SECURITY CREDENTIALS
HIGH LEVEL OVERVIEW OF CONNECTION SCENARIOS
FIRST EVER CONNECTION: Usually 1 RTT, sometimes 2 RTTs
REPEAT CONNECTION: Usually 0 RTT; sometimes 1 RTT: rarely 2 RTT
PROOF OF OWNERSHIP OF CLIENT IP ADDRESS

GENERATING PROOF OF OWNERSHIP/CONTROL OF CLIENT IP
ADDRESS

STEADY STATE

CONNECTION STRUCTURE

SECURITY: TAMPER RESISTANCE, PRIVACY, AUTHENTICITY
ISOLATED-PACKET-ENCRYPTION

PACKET LOSS
CONGESTION AVOIDANCE
ATTACK MITIGATION FOR OPTIMISTIC ACK ATTACKS
PLAUSIBLE ERROR CORRECTING PATTERNS
PACING TO REDUCE PACKET LOSS
RETRANSMISSION RECOVERY FROM PACKET LOSS
PROACTIVE SPECULATIVE RETRANSMISSION

BUFFER BLOAT
LOCAL BUFFER CONTROL

STREAM-BASED FLOW CONTROL
IDLE ENTRY

IDLE DEPARTURE
NAT TABLE RESET
CONTINUATION WITH FULL CONNECTION STATE
CRYPTOGRAPHIC ELEMENTS
RESERVED CRYPTOGRAPHIC COMMUNICATIONS STREAM
CRYPTOGRAPHIC HEAD-OF-LINE BLOCKING
ENCRYPTION AND AUTHENTICATION

SESSION KEY UPGRADE
PROTOCOL DETAILS: SPECIFICATION RATIONALE
DEPLOYMENT ISSUES
ALTERNATE PROTOCOL HEADER
INITIAL (CONNECTION ESTABLISHMENT) PACKET DEFAULTS
PROTOCOL OVERVIEW OF ELEMENTS
FRAMING
QUIC PACKET FRAMING OVERVIEW
Header: Public Flags
Header: CID
Header: QUIC Version
Header: Packet Sequence Number
Payload Framing Overview
Payload: Private Flags
Private Flags: Entropy Bit
Private Flags: FEC Final Bit
Payload: FEC Group Number
Payload: Self Identifying Frames
Frames Within the Payload
STREAM_FRAME
ACK_FRAME
CONGESTION_CONTROL_FRAME
RST_STREAM_FRAME
CONNECTION_CLOSE_FRAME
GOAWAY_STREAM_FRAME
CONNECTION RESET ALTERNATIVES
MALICIOUS RETURN ADDRESS REWRITING
CRYPTOGRAPHIC STARTUP OVERVIEW
1-RTT Fallback
2-RTT Worst Case Fallback
PROTOCOL GLOSSARY
Amplification Attack
Buffer Bloat
Connection
EEC
Frame
CID
Packet
Stream

ACKNOWLEDGEMENTS
CHANGE NOTES

OVERVIEW

This is a working document, for group discussion and editing, which we expect to evolve
into a somewhat fleshed out design document. The expectation is that we will flesh out
a design for a tunneling protocol, running atop UDP, which can multiplex a large number
of streams between two endpoints (a client, which initiates the overall connection, and a
server). Each stream may, for example, be nearly equivalent to an independent TCP
connection.

The eventual protocol may likely strongly resemble SCTP, using encryption strongly
resembling DTLS, running atop UDP. Having an agreed list of goals and motivations
should allow us to determine how much of such near-standards can be integrated, and
where innovation and variations on such themes is needed, or useful.

MOTIVATIONS

We wish to reduce latency throughout the Internet, providing a more responsive set of
user interactions. Over time, bandwidth throughout the world will grow, but round trip
times, governed by the speed of light, will not diminish. We need a protocol to move
requests, responses, and interactions through the internet with less latency along with
fewer time-consuming retransmits, and we believe that current approaches are holding
us all back. This section points at underlying issues that we wish to resolve.

Preamble: TCP and TLS (SSL) are excellent protocols, delivering remarkable results.
This section will describe issues and shortcomings for our specific applications, which
should not be viewed as a complaint about those remarkable pieces of work.

Pairs of IP addresses and sockets are finite resources. Today, too many distinct
connections are routinely made between clients and servers, utilizing a multitude of
sockets, and often carrying redundant information. A multiplexed transport has the
potential for unifying the traffic and reducing the port utilization count. A multiplexed
transport can unify reporting and responses to channel characteristics (packet loss,
etc.), and also allow higher level application protocols (such as SPDY) to reduce or
compress redundant data transmissions (such as headers). In the presence of layer-3

load-balancers, a multiplexed transport has the potential to allow the different data
flows, coming and going to a client, to be served on a single server.

The two primary support motivations for this transport are to better support SPDY, and
to further coalesce traffic. SPDY currently runs over TCP, but has encountered a few
performance limitations.

SPDY SUPPORT MOTIVATIONS

SPDY is a multiplexed stream protocol currently implemented over TCP (routinely
employing SSL). Among other things, it can reduce latency by sending all requests as
soon as possible (not waiting for previous GETs to complete), and can reduce
bandwidth utilization by compressing out some redundant traffic. Despite its features
and successes, it has encountered several problems in its quest to be efficient in its use
of resources while providing a latency reduction.

a) Single packet delay induces head-of-line blocking for a stream. Since TCP only
provides a single serialized stream interface, a delay of only one packet causes the
entire set of SPDY streams to pause. A packet is routinely delayed when a packet is
lost, such as due to congestion, and it must be retransmitted. A better multiplexed
transport should delay only one stream when a single packet is lost.

b) Unfavorable congestion avoidance handling by TCP, leading to additional bandwidth
reduction and serialization latency overhead: A single SPDY connection is routinely
used to replace K separate (non-multiplexed) connections. When a single packet of a
SPDY (over TCP) connection is lost, the congestion window for the entire connection
was historically reduced by 50%, courtesy of TCP [TCP CUBIC default congestion
window reduction is roughly 30%, but the factor of 2 simplifies the math in this
paragraph’s exposition]. In contrast, a single packet loss among K non-multiplexed
TCP connections only reduces the congestion window in one TCP connection. With
only one of K streams impacted by a loss, the aggregate congestion window is reduced
by roughly 1/2K of the pre-loss aggregate. With K commonly having a value of 6 (for
multiple HTTP GET requests), a single packet loss causes bandwidth reduction to 11/12
of the pre-loss bandwidth (pre-loss congestion window size). As a result, TCP
congestion avoidance favors sharded (multiple) TCP connections over a multiplexed
TCP connection.

c) TLS (SSL) session resumption delays. A TLS handshake takes at least one
additional RTT before data can be passed successfully. This delay is a function of the

implementation of TLS, and not due to functional requirements of security.

d) TLS historically induced a decryption dependency, where prior packets must be
decrypted before later packets can be decrypted. TLS 1.1 and DTLS predominantly
resolved the in-order dependency by adding explicit initialization vectors, at a cost of
additional bytes per packet. By combining layers in a new protocol, we may be able to
provide initialization vectors with reduced data costs, by leveraging other packetized
data (e.g., packet sequence numbers).

GOALS

We’d like to develop a transport that supports the following goals:

1.

Widespread deployability in today’s internet (i.e., makes it through middle-boxes;
runs on common user client machines without kernel changes, or elevated
privileges)

Reduced head-of-line blocking due to packet loss (losing one packet will not
generally impair other multiplexed streams)

Low latency (minimal round-trip costs, both during setup/resumption, and in
response to packet loss)

a. Significantly reduced connection startup latency (Commonly zero RTT
connection, cryptographic hello, and initial request(s))

b. Attempt to use Forward Error Correcting (FEC) codes to reduce
retransmission latency after packet loss.

Improved support for mobile, in terms of latency and efficiency (as opposed to
TCP connections which are torn down during radio shutdowns)

Congestion avoidance support comparable to, and friendly to, TCP (unified
across multiplexed streams)

a. Individual stream flow control, to prevent a stream with a fast source and
slow sink from flooding memory at receiver end, and allow back-pressure
to appear at the send end.

Privacy assurances comparable to TLS (without requiring in-order transport or
in-order decryption)

Reliable and safe resource requirements scaling, both server-side and client-side
(including reasonable buffer management and aids to avoid facilitating DoS
magnification attacks)

Reduced bandwidth consumption and increased channel status responsiveness
(via unified signaling of channel status across all multiplexed streams)

Reduced packet-count, if not in conflict with other goals.

10. Support reliable transport for multiplexed streams (can simulate TCP on the
multiplexed streams)

11. Efficient demux-mux properties for proxies, if not in conflict with other goals.

12. Reuse, or evolve, existing protocols at any point where it is plausible to do so,
without sacrificing our stated goals (e.g., consider uTP(Ledbat), DCCP, TCP
minion)

JUSTIFICATIONS AND SOME IMPLICATIONS

The number one goal of viability today is clearly a major driver for this protocol
development. With the understanding that middleboxes and firewalls would typically
block or dramatically degrade any transport based on formats other than TCP or UDP,
we will not even consider revolutionary protocols.

All parties would have preferred to satisfy goal 2 (re: congestion based packet loss on
one stream, impacting several streams) by evolving TCP to avoid head-of-line blocking,
but we found there was no apparent way to circumvent TCP’s in-order delivery
interface. Modifications are plausible, but could not be widely deployed until kernel
changes were in place, and that was viewed as a showstopper. In addition, more
significant modifications of TCP would potentially be blocked by today’s middleboxes,
which again would take many years to evolve.

Reduced latency in the face of packet loss (goal 3), as compared with TCP, may
potentially be achieved by predominantly using error correction, rather than
retransmission. Here again, such an extension of TCP did not appear plausible, without
major (slow to deploy, perhaps over 10 years or more) modifications of standard TCP.
We see wide deployment of this protocol as being plausible within 1-2 years, and would
hope that TCP might evolve similarly over a much longer time period.

With the rise of mobile clients, and their tendency to turn off a radio communications,
minimal round-trip latency costs (goal 4) for session continuations (resumptions?) will
be progressively critical. Already today, desktop users benefit greatly from more rapid
session continuations, and we’re hoping that QUIC will take this to the ultimate goal of
zero RTT for session resumption, including cryptographic negotiations (most of the
time).

Congestion avoidance algorithms are critical to protecting the Internet. To the greatest
extent possible we’ll provide a TCP friendly and compatible protocol, to coexist fairly
with TCP’s highly evolved and universally deployed congestion avoidance approaches.

We anticipate plausible improvements in agility and notification, courtesy of having a
multitude of streams adjusted (re: congestion window?) in unison based on overall
losses in all multiplexed streams.

Experience with SPDY development has taught us that the only way to prevent
middleboxes from maligning a new protocol built atop UDP or TCP (e.g., misconstruing
it for a “known” protocol, and making “less than helpful” changes), is to encrypt as much
of the payload and control structure as feasible. As a result we plan to employ security
elements including tamper resistance, privacy, replay protection, and authentication,
that is similar to what is provided via TLS (perhaps DTLS like).

Compression will not be directly incorporated into the transport, beyond header
compression comparable to SPDY, as the transport may not be aware of
privacy/sensitivity restrictions between various segments of data, and must not reveal
(via traffic analysis) similarities in what should be isolated groups of data. SPDY’s
current “continuously adaptive” compression of headers is mildly problematic, as
headers for “other streams” can’t be decompressed until all prior headers (which are fed
into the evolving compression context) have been received. QUIC may initially support
such SPDY-like header compression at the expense of head-of-line blocking among
such compressed packets, but we should be able to experiment with variations that
reduce this dependency. Given the effectiveness of SPDY-like header compression, it
may often be the case that very few packets will actually contain headers, further
mitigating the potential downside.

Privacy mechanisms will need to be incorporated to carefully align encryption blocks
with packet boundaries, or at least redundancy protected byte ranges, so that the
latency impact of packet loss is maximally contained. Note that if these boundaries are
not well aligned, then a single packet loss may effectively preclude deciphering of
adjacent packets, with an undesirable impact on latency.

WHY NOT USE SCTP over DTLS?

One recurring question is: Why not use SCTP (Stream Control Transmission Protocol)
over DTLS (Datagram Transport Layer Security)? SCTP provides (among other things)
stream multiplexing, and DTLS provides SSL quality encryption and authentication over
a UDP stream. In addition to the fact that both of these protocols are in various levels of
standardization, this combination is currently on a standard track, and described in this
Network Working Group Internet Draft.

http://en.wikipedia.org/wiki/Stream_Control_Transmission_Protocol
http://en.wikipedia.org/wiki/Datagram_Transport_Layer_Security
http://tools.ietf.org/html/draft-tuexen-tsvwg-sctp-dtls-encaps-00
http://tools.ietf.org/html/draft-tuexen-tsvwg-sctp-dtls-encaps-00

The largest visible issue with using these protocols relates to our goals in the area of
connection latency, and is perhaps the most critical conflicting element. In addition, we
can also anticipate issues in bandwidth efficiency that may reduce our ability to achieve
the goals of QUIC.

CONNECTION ESTABLISHMENT LATENCY OF SCTP over DTLS

One of the major and believably achievable goals of QUIC, is to predominantly have
zero RTT connection (re)establishment, as was mentioned in goal 3a above. It is highly
doubtful that SCTP over DTLS can come close to achieving that goal.

The fact that SCTP and DTLS are currently implemented as layered protocols, one atop
the other, already instigates an overall connection latency that is the sum of the two
connection latencies. This is seen in section 5.1 of the Draft, where they note:

e A DTLS connection MUST be established before an SCTP association can be
set up.

SCTP (alone) appears to require 1 full round trip in connection establishment prior to
any data transfer. See section 5 of the SCTP RFC 4960 for a discussion of this
requirement.

DTLS appears to routinely require 3 round trips in its connection establishment. DTLS
is modeled after TLS, which defaults to a 2 RTT HELLO exchange at connection
establishment. As noted in section 8.1 of DTLS’s description: DTLS generally uses a
full 3 round trips to negotiate a connection (including cookie exchange). That section
notes that the 3 round trips are comparable to a TLS over TCP connection
establishment, if the TCP’s connection RTT is accumulated with the 2 RTTs for the TLS
HELLO.

As a result, with the above baseline connection round trips, we would anticipate a cost
of roughly 4 round trips to establish an SCTP over DTLS connection. In contrast, we
expect to be able to perform a QUIC connection establishment with zero RTT overhead.
Worst case for QUIC should be one RTT overhead utilizing approaches kindred to SSL
False Start. We anticipate being able to reduce the probability of that False Start case
to very low levels.

It is plausible that some of the connection overhead in SCTP over DTLS could be
reduced, but it is highly doubtful that without major changes and merging of the

http://tools.ietf.org/html/draft-tuexen-tsvwg-sctp-dtls-encaps-00
http://tools.ietf.org/html/rfc4960#section-5
http://crypto.stanford.edu/~nagendra/papers/dtls.pdf

protocols, that a competitive startup latency could be achieved, and the goals of QUIC
met.

EFFICIENT UTILIZATION OF BANDWIDTH FOR SCTP over DTLS

The layering of SCTP over DTLS tends to make it more difficult to most efficiently utilize
bandwidth in UDP packets. As an example, the SCTP transport conveys data to order
packets, and data ranges. At the same time, DTLS is required to separately transport
distinctive packet information in the form of cryptographic initialization vectors, used for
decryption of packets. Integrated protocols, such as QUIC, can utilize the sequencing
information for the stream protocol, as the basis for the initialization vector in packet
decryption. The result of this integration is reduced packet overhead. We anticipate
that this integration will save data space in several additional places, notably increasing
packing efficiency. [TBD: We should provide specific gains, and byte counts, per
packet, to fully flesh out this argument.]

PACKET LOSS RETRANSMISSION LATENCY

Goal 3b suggests that we should attempt to reduce retransmission latency by utilizing
FEC codes. Neither DTLS nor SCTP currently have provisions for using FEC, and it
would appear to be a very significant modification to try to incorporate such. There are
some efforts to add FEC beneath SCTP, so it is perhaps plausible, but it would certainly
be a notable complication As currently defined, packet loss would definitely tend to
induce retransmission latency in those protocols, although it would be restricted
(courtesy of SCTP) to impacting a single stream (at least achieving a goal 2).

Expected API Elements

API CONCEPTS

There are several complexities to be ironed out in establishing an API for multiplexed
streams. At the highest level, we need to have a mechanism that adds new streams to
a connection, as well as separately reading and writing various streams independently.

For each stream, we need a way to access the stream, and to specify characteristics
that should be employed for the stream. Characteristics include, for example, reliability,
and performance tradeoffs (such as jitter reduction via added redundancy, vs.
bandwidth reduction via reduced redundancy).

STREAM CHARACTERISTICS

http://www.cs.technion.ac.il/Courses/Computer-Networks-Lab/projects/summer2001/SCTP/Final_report/

We expect that different streams will have distinct transport characteristics which may
be set or modified by the application. These include such distinct characteristic settings
as:
e Adjustable redundancy levels (trade bandwidth for latency savings)
e Adjustable prioritization levels (modeled after SPDY’s evolving prioritization
schemes).

We expect that some control channel, which may be viewed as an out-of-band stream,
will always be available and may be used to signal state changes for the rest of the
streams. The control channel will likely consist of special purpose frames (control
frames), as well a reserved stream, for cryptographic negotiations.

IN-SEQUENCE DATA DELIVERY

Existing code will surely need services kindred to TCP’s reliable, and in-order-delivery.
As a result, we need an API for a stream that greatly mimics a standard TCP socket.
This will allow a multiplexed stream to be experimentally used with almost any existing
application, with hopefully trivial modifications. We expect this API to mimic the
interfaces provided by SPDY, while masking internal packet loss, and providing data in
each stream (in order) independent of the transmissions of other streams.

CONNECTION STATUS

The separation between an application and the actual connection has historically made
the use of a connection difficult. For example, when a sending application is finished
sending, it may try to close the connection, but the data may still be queued up locally
and not yet sent (or not yet ACKed, and hence the send buffer cannot be discarded).
Such examples create races which may lead to undefined behavior when closing a
connection, or terminating an application.

To better support an efficient and tight binding with an application, the following current
statistics are plausibly expected to be made visible to the application:

1. RTT (current smoothed estimate)

Packet size (including all overhead; also excluding overhead, only including
payload)

Bandwidth (current smoothed estimate across of entire connection)

Peak Sustained Bandwidth (across entire connection)

Congestion window size (expressed in packets)

Queue size (packets that have been formed, but not yet emitted over a wire)

N

IR o

7. Bytes in queue
8. Per-stream queue size (either bytes per stream, or unsent packets, both??)

Notification should also be provided, or access for the following events [granularity of
notification is TBD, and there should be no requirement on timeliness of the
notifications, but any notification or status should include a best estimate of when the
actual event took place]:

1. Queue size has dropped to zero
2. All required ACKs have been received (connection may be closed with no
transmission state loss.)
a. ACK of specific packet (section of stream?) has been received (not all
streams support this. [Should this be queryable, rather than a
notification??])

PROTOCOL PHILOSOPHY

The protocol has four phases where we need to consider performance efficiency:
Startup; Steady State; Idle Entry; Idle Departure. One critical element is reducing
latency during startup (connection establishment), especially in the case of resumption.
The second challenge is to ensure efficient and low latency performance in a steady
state, when a multitude of streams are keeping the overall connection as full as
congestion avoidance will allow. The third challenge is to efficiently and with low
latency ensure smooth transitions into an idle state, where no streams are currently
supplying data, but the connection is fully established. That transition is notably where
tail-drop (packet loss) in TCP has traditionally incurred significant latency, especially
when a final packet that is lost, and a send-side timeout is required to re-send lost data.

CONNECTING VIA CONNECTIONLESS UDP: OVERCOMING NATs

A most fundamental issue is how to turn UDP datagrams, into a connection based
protocol. This issue is exacerbated by middle boxes and firewall NAT services that do
not assist, and actually can hinder the process.

As an example, consider the case when a middle box, such as a firewall or NAT,
decides to no longer support a specific TCP connection. The middlebox can send a
TCP RST (connection RESET) to both endpoints as part of a tear-down notification. In
contrast, when a NAT service decides to discard a binding used by UDP traffic, there is

no notification, as a UDP datagram is not expected to be a “connection.” Once a UDP
NAT unbinding has taken place, the external endpoint (typically a server) is left with no
means of sending traffic to the client. Worse yet, traffic from the server is typically
black-holed, with no NACK response. With TCP, an attempt to use an unbound port
may result in at least a RST, which is comparable to a NACK. As a further
complication, if a NAT port unbinding takes place, and then a client sends additional
UDP traffic, the NAT service may create a new binding. That new port binding may
have a distinct source-port (as seen by the server), despite the fact that QUIC will need
to view the traffic as a continuation of the existing connection.

Current estimates suggest that it is common for currently deployed NAT boxes to
unbind a UDP port mapping after an idle time in the range of 30 to 120 seconds, and
unbinding may take place sooner. Early unbinding may be caused by LRU NAT table
eviction, or any of a variety of “weaker” implementations, such as pseudo-random hash
table eviction. Both of these unbinding activities are problematic to our protocol, and
must be handled well. In the future, it is possible that REC 4787 may force minimal
timeouts to 120 seconds, and default timeouts to 5 minutes, but that is all future
conjectured acceptance and deployment, and we need to deal with today’s
middleboxes.

Most anticipated traffic between a client and a server is of the form of a client request,
followed by a server response. That structure suggests that (premature) NAT unbinding
might be less critical. Unfortunately, there are numerous situations where the server
response is delayed for extended period of time, including server back-end response
time. As a common and more extreme example, statistics gathered via Chrome show
that roughly 0.5% of all HTTP GET connections receive no response until 60 seconds
after the connection was opened. Such delay is presumed to be caused by “hanging
GETs.” Our protocol needs to be careful to handle such server-side pauses, and still
allow a server to respond with (belated) data on an open stream.

One basic element of NAT translation takes place at a LAN boundary. Unless a client
makes an outbound connection through a NAT, there is generally no way for a server to
contact (respond to?) a client, unless services like UPnP are employed. Given that
PCP (Port Control Protocol: RFC 6887) support is not universal, we will design the
protocol to not depend on such services. We will, at the client side, check for the
presence of this service, and use it when available. As we evolve QUIC, we need to run
experiments to see how often UPnP or PCP is present, and how often it works.

http://tools.ietf.org/html/rfc4787

CID: THE KEY TO CONNECTION IDENTIFICATION

Given that NAT services can vary the WAN-visible source-port over the lifetime of a
connection (via unbinding, and rebinding), it is clear that source-IP address and
source-port are strictly insufficient to define a connection. We overcome any such
confusion by using a CID (Connection IDentifier) which generally persists for the lifetime
of the connection. A CID is a pseudo randomly generated nonce [size is currently set at
64 bits], that is expected to be universally unique. The CID is usually proposed in the
first UDP packet sent by a client to a server, and is present explicitly or implicitly in all
future packets that are exchanged for the lifetime of the connection. It is the defining
key for the connection.

A server can use this CID as a key to identify the specific connection from among many
inbound connections sending UDP packets to a single server port. The CID is also
used by the server to resurrect the current session encryption context for use with
AEAD (Authenticated Encryption with Associated Data). That context conceptually
includes an encryption key, as well as an authentication key. (Note: mutable portions of
the packet, such as source-port, etc., are not included in the Associated Data
authentication).

NAT BINDING KEEP-ALIVE

As noted, NAT port bindings may be discarded without notice by a NAT service. The
only remedy for such a discard is to send additional traffic from a client to the server,
re-establishing an active NAT port mapping. A port binding must be proactively
re-established if there is any chance that a server may attempt to send traffic to the
client, and there is reason to believe that the existing port binding may have been
discarded (timed out).

Proactive establishing of a port binding is expensive, as it is presumably done when
there is no “real” traffic to send. For mobile devices, such keep-alive transmission may
be especially problematic, as they can impact power consumption. As a result, it is
desirable to minimize the frequency of keep-alive transmissions, as well as the absolute
count of such keep-alives.

KEEP-ALIVES: WHEN ARE THEY NEEDED?

To simplify the question of when we need to keep the connection alive, we will assume
that a server will only send traffic to a client while at least one multiplexed stream is
open on the connection. Hence, if a connection is being used for spontaneous

transmission from the server to the client, a stream must be kept open.

KEEP-ALIVES: HOW OFTEN ARE THEY NEEDED?

In some cases, inbound traffic from a server may be sufficient to keep-alive a NAT
binding, but some NAT servers require an outbound packet from the client to reset the
table entry expiration time. An outbound packet also serves to recreate a NAT binding if
the old binding has expired, and hence can heal any problem that might be caused by
mis-timings.

Other UDP based protocols, such as for audio and video streaming, routinely send UDP
keep-alive packets roughly every 15 seconds. We need to experiment to determine
baseline timeout, and adapt to the environment we sense.

In order to monitor the effectiveness of the keep-alives, the server will automatically
send a keep-alive probe after an algorithmically determined (or negotiated) timeout in
idleness (since the last client packet transmission). The client will maintain a
corresponding timer, and will be alerted when the time has expired, and some additional
time has passed (e.g., additional time might be one or more estimated RTTs). The client
will then either ACK that probe packet’s arrival, or effectively NACK the expected probe
packet shortly after it should have arrived. In either case, the client will send a packet,
and ensure that the NAT binding is revitalized. As a result of this process, the endpoints
will be able to shorten the timeout interval (after a NACK), or potentially lengthen the
interval (after an ACK). That adaptive process should converge on the apparent NAT
timeout, but can be clamped to not exceed some limits, so as not to provide a DOS
vector to attackers.

The exact algorithm is TBD. The keep-alive timeout can also be negotiated (example:
server may recognize a mobile network with a NAT service having a long time-to-live
table), or may be persisted from previous connections. After some real world
experimentation, we may decide that some clients, in some environments, are not good
candidates for using QUIC, as their keep-alive requirements are not tolerable for one or
both endpoints.

UDP PACKET FRAGMENTATION

UDP packets that are larger than the MTU on a single link are at risk of being
fragmented at the IP level. Itis TBD whether we’ll mark all of our packets as “do not
fragment,” which would result in uniform loss of packets if the MTU is exceeded. This
section discusses some of the pros and cons, and possible approaches. The most

critical expected realization is that fragmentation in today’s (and tomorrow’s) internet is
becoming progressively less and less common. As a result, this section may be of very
little significance, and any/all decisions on this issue may prove workable.

When a packet is fragmented at the IP level, the initial packet will continue to hold the
UDP source and target port specifiers, as well as a CID, but all latter fragments will be
devoid of such identifying information. The only means of reassembly will be the IP
level “identification” field, which is only 16 bits in length. As a result, if more than
(roughly) the square root of 2216 packets are in transit at the same time, the probability
of a collision (and broken reassembly) will be large. For example, when windows on
connections exceed about 256 packets, there will probably be collisions.

Even if effective congestion windows are “small” (much less than 256 packets), a NAT
router may direct a collection of separate connections toward a single server IP address
(from the IP address of the router). That collection may easily have more than 256
packets in flight at once, competing for unique IP identifiers, and instigating reassembly
collisions (if fragmented).

Collisions, probably based on the identical MTU boundaries, will (in the face of packet
reordering), be virtually impossible to reassemble correctly. As a result, the receiving
party will either abandon the reassembly effort (on some fraction of the fragmented
packets), or it will provide an erroneous reassembly. Packets that are mis-assembled
will be detected as garbled by an authentication hash. As a result, reassembly errors
cannot cause protocol errors that are any worse than discarding the packets that might
be fragmented.

Fragmentation can impact bandwidth utilization, and can wastefully take time from a
target server. Given that the reassembly conflicts are pretty much guaranteed to exist, if
we have any significant fragmentation, it may be desirable to preclude fragmentation,
and avoid wasting reassembly efforts at the server. On the other hand, if this issue is
miniscule, it may be desirable to have slightly better coverage and support the
intermittent fragmentations.

Currently, the OS API does not allow an application level code to detect the fact that IP
fragmentation has taken place. We may seek to enhance our server OS support, so as
to detect fragmentation. With such an API, we can then attempt to work within any
visible MTU limitation. This approach would traditionally avoid error-prone “path MTU
exploration,” and would instead observe and respond to actions taken on actual UDP
packets. [TBD: An attacker might choose to intermittently fragment some packets, so

as to cause us to negotiate down to a lower and less efficient MTU. We may find such
a result unacceptable. If so, we could globally decline to adapt to MTU, or decline to
facilitate transit or reassembly of fragmented packets.]

CONNECTION ESTABLISHMENT and RESUMPTION

To minimize latency at startup, and expedite data responses to a first contact, the very
first packets sent over QUIC will often include session negotiation information as well as
one or more requests. QUIC is designed to speculatively assume the client has
acceptable cryptographic credentials needed for at least a preliminary encryption of a
request, that it has sufficient connection credentials that an anti-DDOS challenge (round
trip) is not needed, and that it has sufficient freshness proof that replay attacks can be
precluded. If the server declines to accept the credentials, additional round-trip
negotiations, comparable to TCP session establishment, or SSL hello negotiations, may
ensue.

STARTUP DDOS ATTACKS

A known problem with rapid startup is denial of service attacks. In such attacks, a
malicious client may provide a fallacious return (response) address, and may try to
cause a server to expend significant computational resources, and/or send significant
traffic to a third-party address. Historically, these attacks on TCP servers have been
avoided by requiring an extra round trip (confirming a return address), and utilization of
SYN cookies. Recent work to extend TCP with TCP Fast Open offers promising
strategies for evolving TCP to include data in the initial SYN packet, with plausibly
acceptable controls on DOS attacks.

QUIC will have to address the issue of expiration of connection credentials, and/or other
mechanisms to preclude replay attacks using those credentials. We expect to design
the protocol, including the cryptographic resumption, to be as robust as the proposed
TCP Fast Open and handling such attacks. That paper includes both
proof-of-ownership for a source IP (based on previous connection history), as well as
automatic fallback to 3-way-handshake style connections (re: add an extra RTT) when a
server is being attacked or appears overloaded. That fact that our protocol consistently
includes end-to-end encryption can assure us that ownership credentials cannot be
trivially stolen (via eavesdropping).

SECURITY CREDENTIALS

http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/pubs/archive/37517.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en/us/pubs/archive/37517.pdf

A client should retain information about a server from previous contacts with said

server. Retained information should be at least sufficient to support the analog of TLS
session resumption, and should also include server information, such as a server’'s most
recently used public key (historically kept in a cert, with an associated chain to a trusted
root). Clients should speculatively assume that the last known server public key(s) is
still in use (unless there is evidence of revocation or replacement), and attempt to utilize
this information to achieve a zero RTT transmission of encrypted initial payload transfer
(requests?).

Support for encryption where the server doesn’t have a round trip in which to add
randomness into the connection requires that the server maintain state in order to avoid
replay attacks. That state can be limited in time by assuming some amount of clock
sync, and in space by giving the client an ID that identifies the shard (called an orbit in
Snap Start). The server may be unable to establish the uniqueness of the connection, in
which case the client will have to be prepared to re-encrypt and re-transmit everything
that it optimistically sent.

Likewise, if the server’s key has changed, the client will have to re-encrypt and
re-transmit the optimistic, initial flow of data.

The initial flow in a zero-RTT setup is potentially less forward secure than possible so
we should assume that the connection will upgrade to a truly ephemeral key for
subsequent flows on the same connection. Although the default setting supporting
0-RTT connection establishment should be the default, it should be possible for a server
to insist that only perfectly-forward-secure encryption be used for even the initial traffic.

HIGH LEVEL OVERVIEW OF CONNECTION SCENARIOS

This section is meant to provide an overview of how QUIC connections will typically
proceed. We’'ll sketch this out emphasizing the number of RTTs that result in each
case. We’'ll also provide the motivation for some of the details that are used to mitigate
potential attacks.

In all cases, the server may select to force a fallback to a slower connection scenario
when it is heavily loaded, or potentially under a DOS attack. In some cases, a server
may select to speculatively risk being minimally victimized by an attack, especially when
the cost of the attack is limited to expending computational resources server side, and
the server is lightly loaded. The descriptions given below attempt to maximally protect
third parties from reflection attacks during the connection formation. Other sections will

address third party attacks during steady state, and roaming.

FIRST EVER CONNECTION: Usually 1 RTT, sometimes 2 RTTs

In this scenario, a client contacts the server, and its initial hello message indicates that
the client has never before visited the server, and hence it cannot speculate about a
public key. The initial message from the client may include some randomness that will
expedite a session negotiation. The entire client message will fit in a single packet, and
should pad/fill that packet. By filling the first client-generated packet, we are assured
that a full-packet-response can be sent by the server, and that it will typically be no
larger than the client’s first packet. This full-packet will also raise the bandwidth cost for
any attacker (supplying a false return address), diminishing the potential, if any, for any
reflected amplification. At the same time, this full-packet is a negligible cost to an
honest client, which should rarely have to use this connection strategy, and will shortly
exchange data that will dwarf the few extra bytes that are used as padding in this first
packet.

The server will respond with a server certificate, which can usually fit in a single packet.
Typical certificate sizes are 1-1.5KB, and for example Google’s current mail.google.com
certificate is about 806 bytes. In order to minimize the size of this server response, the
server will only include the hashes of the certificate chain (rather than a complete list of
certificates in a certificate chain). Minimizing this server response reduces (or
eliminates) any reflected amplification potential. The hashes of the certificate chain are
sent as a speculation that the client will likely be able to decode the hashes, and then
validate the chain. In addition, the server includes in this response the moral equivalent
to a SYN Cookie, which is a very-short-lived proof that the recipient controls the
targeted client source IP and port. Note that it is very short lived, because it is sent in
the clear, and could be misappropriated by a malicious third party.

When the client receives the above packet, it can attempt to validate the enclosed
server certificate. The first step in validating the certificate is to decode the certificate
chain hashes. If the client is unable to decode sufficiently the certificate chain hashes,
or the certificate chain appears to not validate the server certificate, then the client
enters into the 2 RTT case, and is forced to send a request to the server for the fully
elaborated certificate chain. That request is sent along with the SYN Cookie, which
allows the server to safely send the additional packets to the client (without risk of a
misdirected amplification attack).

Eventually (after either 1 or 2 round trips), the client will then have both an authenticated
server certificate, and also a short lived analog of a SYN Cookie. With that information,

the client can proceed into the 0 RTT case described below, and be recognized
instantly as the trusted owner of the client return IP address and port. It is possible that
additional entropy may have been exchanged as well, that might expedite or allow
cryptographic negotiations, but is not critical to this overview.

REPEAT CONNECTION: Usually O RTT; sometimes 1 RTT; rarely 2 RTT

In a repeat connection, a client will speculate that the server is still using the server
certificate that was seen and (previously) validated. In addition, the client may be in
possession of proof that it has control over its return IP address and port. Proof may
include the analog of the SYN Cookie described in the “First Ever Connection” section
above, or may include an analog of the TCP Fast Open cookie, which is longer lived
(valid for a much longer period of time).

To proceed with this connection, a client will construct the makings of the analog of a
TLS Session Master Secret for inclusion in a message. Techniques used in SSL Snap
Start will be used for this construction, so as to mitigate replay attacks. Also included in
the constructed (and encrypted) message will be the “proof” of control over the client’s
IP address, as well as any QUIC negotiable items, such as proposed congestion
avoidance algorithm, etc. The encryption of the proof (such as the analog of the TCP
Fast Open cookie) will ensure that an eavesdropper cannot steal and abuse such proof.

The above cryptographic hello message will be sent to the server in a single packet.
After sending that hello, the client can then encrypt, authenticate and send additional
data packet(s), such as are required to open streams, make requests, etc. [To reduce
the impact of packet loss, which could delay the entire connection establishment, those
packets will potentially be sent more than once. For example, it is likely that the crypto
hello packet would be sent, and then the data packets, then a resend of the crypto hello
packet (possibly after a slight pacing delay?), then a resend of the data packets. TBD
we may use some retransmission logic and timeouts that are set shorter than usual.]

When the receiver gets the cryptographic hello packet, it will evaluate its contents. If
the speculated server public key is no longer in use, or the message’s proposed
negotiation results are not acceptable to the server, then the server may reject the
contents of the packet, and treat it instead as kindred to the “First Ever Connected”
case, described above. In that case, the data packets that later arrive utilizing the
proposed Master Secret will be discarded (there is no way to decrypt them at the server
side).

If the public key is still acceptable, and the hello message is acceptable, then the proof

http://tools.ietf.org/html/draft-agl-tls-snapstart-00
http://tools.ietf.org/html/draft-agl-tls-snapstart-00

of control of the client IP and port is considered. In the common case, the proof of
control of the client IP is sufficient, and the data packets that follow can be decrypted,
processed, and acted upon (just as we do with an HTTP GET after a TCP channel has
completed a SYN + ACK round trip).

PROOF OF OWNERSHIP OF CLIENT IP ADDRESS

There are several reasons for the proof of ownership of the client IP to be insufficient.
Many of these reasons relate to how busy a server is, and how likely it is to be under a
resource utilization attack, which may then raise or lower the bar for the proofs.
Similarly, if the proof is older it may be deemed less trustworthy. Finally, if the proof is
not directly applicable, but is a proof for a “nearby IP” (actual IP, vs. proof supplied IP),
then it may be deemed more trustworthy than proof for a more distantly related IP. If
the proof is not sufficiently trusted, then the server may send a rejection (probing)
packet to assure that the client return IP and port is authentic.

GENERATING PROOF OF OWNERSHIP/CONTROL OF CLIENT IP ADDRESS

During a connection, a QUIC server may create and transmit a statement that a client is
using a specific IP address and port, at a specific time. Such a statement will include a
MAC generated by a server secret, so that the server can authenticate that statement
as proof in a 0-RTT “Repeat Connection.” A server may push updates of this statement
(with more recent timestamps) during a connection.

A client may assemble a list of one or more such proofs for distinct IP addresses. For
instance, it may attain a proof of ownership of an IP address used by a home Wi-Fi
firewall, as well as an IP address used in a 3G mobile connection. In cases where
roaming is plausible, or likely, a client may supply a server with several of the ownership
proofs in anticipation of future roaming. When a server is made aware of possible
roaming in advance (and of the specific IP addresses that may come into play), it can
then typically immediately respond to a change of client return IP address, without
delaying the transition to perform a probe.

STEADY STATE

Each stream within the QUIC connection will have a unique stream identifier associated
with it.

Byte stream based data transport will be modeled after TCP, with byte ranges provided
with payload data. Byte ranges will select positions within each byte stream.

CONNECTION STRUCTURE

Streams will be partitioned into frames for placement into (UDP) packets. Whenever
possible, any particular packet's payload should come from only one stream. Such
dedication will reduce the probability that a single packet loss will impede progress of
more than one stream. When there is not sufficient data in a stream to fill a packet,
then frames from more than one stream may be packed into a single packet. Such
packing should reduce the packet-count-overhead, and diminish serialization latency.

SECURITY: TAMPER RESISTANCE, PRIVACY, AUTHENTICITY

Given a packet, we need a way to identify the cryptographic context. The context will be
associated with a CID present in each (UDP) packet.

Packets will be protected with AEAD (Authenticated Encryption with Associated Data)
keyed on a shared secret held in the cryptographic context. We expect that roughly 8
bytes of authentication overhead will be needed in each packet, but the details are TBD
based on the state of the art standards.

Each packet needs some initialization vector (IV) bytes of nonce for use in encrypting.
The nonce needs to be unique for every packet. An AEAD algorithm will be selected for
which the nonce can be a simple counter (i.e., must be unique, but predictability of the
IV is acceptable), and will be based on the packet sequence number.

We should provide support to pad packets to reduce vulnerability to traffic analysis. At
this point, anti-traffic-analysis is probably not sufficiently well understood to design
countermeasures that use that ability.

The security protocol should be designed to minimize round trips. We have experience
with zero RTT security protocols and we can do significantly better than (D)TLS.

ISOLATED-PACKET-ENCRYPTION

In any isolated-packet-encryption mode, we avoid having encryption add to latency
beyond that which is mandated by a delayed packet. For example, if decryption of a
packet required either the plaintext or ciphertext of some other packet (e.g., some
cipher block chaining mode), then we would not have an isolated-packet-encryption
property. Without that property, the delay (loss?) of a packet would delay the decoding
of another packet, and be unacceptable.

PACKET LOSS

Packet loss in the Internet is broadly estimated to be in the range of 1-2% of all packets.
These numbers have been confirmed by tests of clients, such as Chrome, recording
stats for test streams of UDP packets to server farms around the world. The primary
cause for packet loss is believed to be congestion, where routers perform switching
operations, and output buffer sizes are exceeded. This issue is fundamental to the
design of the Internet, and TCP, where packet loss is used as a signal of congestion,
and the protocol is required to respond by reducing the flow across the congested path.
Packet loss can also be caused by analog factors on transmission lines, but such losses
are believed to be much lower in rate, and hence negligible in our design.

Packet loss will be handled by two mechanisms: Packet-level error correcting codes,
and lost data retransmission. The ultimate fallback when all else fails will be
retransmission of lost data. When data is retransmitted in QUIC as a response to a lost
packet, the original packet is not retransmitted. Instead, the encapsulated data is
placed in a new packet, and that new packet is sent.

For reduced latency of shorter streams, and for the tail-end of some (all?) streams,
redundant information may be added by the protocol to facilitate error correction, and
reduce the need for retransmission. For larger streams, where serialization latency is
deemed to be the dominant factor (by the application that constructs and send the
stream), the use of FEC redundancy may be reduced or eliminated for most packets of
the stream.

CONGESTION AVOIDANCE

Although TCP uses congestion windows, we are currently planning on also
experimenting with using a bandwidth estimator, and pacing packets evenly to not
exceed the estimated available bandwidth. We also plan to monitor changes in
transmission delay, and use that to detect that intermediate buffers are growing
(available bandwidth was exceeded), or that intermediate buffers are empty (increase in
pace rate does not impact latency, and one-way-latency is at a minimum). We expect
this approach to give us a much smoother range of bandwidth transmissions rates, and
a much faster tracking of available bandwidth (hopefully much faster than “TCP
slow-start”). Similar technology is already in use in WebRTC.

Packet loss will be presumed to be a sign of congestion along the path of some packets
in the connection, and will be handled analogously to the way TCP currently handles it.

An explicit negative acknowledgement (NACK) will be transmitted to the source of the
congested connection when a receiver decides that a packet loss has taken place.

In response to a NACK, a transmitter should alter its rate of transmission, such as by
reducing the congestion window, or adding additional wait times between paced
transmissions of UDP packets. The adjustment made to the sender’s transmission rate
should be similar in spirit to what is performed by TCP. The response should be
roughly equivalent, in overall impact, to what would take place in TCP if all multiplexed
streams were separate TCP connections, and one of those hypothetical TCP streams
received notification of a packet loss (congestion). For instance, we’'d expect the sum of
the congestion windows of those hypothetical TCP connections to change almost
similarly to the way our single QUIC congestion window changes. The goal of this
similarity is to be “TCP Friendly,” and neither dominate flows (impeding TCP activity),
nor relinquishing control (allowing TCP to dominate utilization).

Using algorithms similarly friendly to TCP, bandwidth utilization may increase just as
congestion control windows would be expanded when data acknowledgments are
received.

ATTACK MITIGATION FOR OPTIMISTIC ACK ATTACKS

One known attack on TCP that could potentially be worse for QUIC is the Optimistic
ACK Attack. In that attack, a malformed or potentially malicious client consistently
acknowledges packets, even including ones that were not truly received. In TCP, if no
packets are ever (reported) lost, then the bandwidth used by the sender (server?) can
grow without bounds. The result of this attack is that a server may unwittingly flood an
ISP, creating a DOS attack when a single rogue client misleads the server. With QUIC,
our dependence on a receiver to evaluate the potential available bandwidth could cause
a server to even more quickly DOS an ISP.

The defense against this attack is rather straightforward: The client must prove that it
has received packets, and is not encountering packet loss, before a server should
commit to high level bandwidth transmission. So long as the client is provably receiving
all the packets, there is no reason to throttle the service. Once packets are (honestly)
reported lost, the QUIC server will throttle the packet send rate (or outstanding packet
window).

To support the probabilistic proof of receipt, each packet will include approximately one
bit of entropy (one unpredictable bit, which is present in the encrypted payload). It is not
sufficient to rely on the actual data in the payload to supply entropy, as that data may be

http://www.kb.cert.org/vuls/id/102014
http://www.kb.cert.org/vuls/id/102014

predictable to an attacker (e.g.., the payload may have been downloaded before!).
Similarly, the MAC and encryption might not be any more random than the data, given
that those quantities may be deterministically constructed from the data. The one
element of the packet that is at least slightly unpredictable is the time of transmission of
the packet (which is actually included in the MAC region), but an explicitly random bit in
each packet simplified the validation of the proof.

The actual proof of receipt will accompany each QUIC ACK, and it will take the form of a
commutative checksum (i.e., a checksum that is not dependent on the order in which
the checksum is created). The checksum will be 8 bits in length, and will include the
entropy from all the packets that the receiver asserts it has received. If a server ever
detects a mistaken checksum, it will presume that the cause is a malformed receiver,
and will terminate the connection.

The one remaining issue with this mitigation is that the ACKs must include an explicit list
of all packets that have ever been lost (and hence are not included in the checksum).
Given that QUIC allows a sender to decide not to retransmit a lost packet, such an
un-received list may grow over time without bound. To prevent this unbounded growth,
when a sender provides an assertion that it will no longer retransmit packet numbers
prior to K, it also provides the checksum that it expected to be associated with receipt of
all packets up to and including packet K. As a result, a receiver will only need to list the
packets after K, that it is NACKing, along with the checksum it has accumulated (tallying
the entropy in packets after the K'th packet atop the checksum provided for the K’th
packet and earlier)..

If a receiver attempts to perpetrate this attack, it will be tested with each and every ACK
that it sends. It is extremely improbable that a malicious receiver will be able to
repeatedly guess the checksums it needs to provide valid acknowledgements.

PLAUSIBLE ERROR CORRECTING PATTERNS

Unlike traditional error correction on a continuous stream, error correction in the face of
packet loss should make use of the fact that a whole packet is typically lost, or arrives
intact. We presume that a packet level integrity check ensures packets are internally
intact. This loss of “all or nothing” can exploit the same elements that RAID storage
uses to change simple “error detection” schemes into “error correcting” schemes.

An example of a simple block-level error correcting scheme is to send N packet
payloads, and then send the parity (bitwise sum) of all the payloads. That scheme can
be shown to support 1 packet loss error correcting. Although parity is traditionally only

capable of 1 bit error detection (in this case one packet loss), the fact that the lost bits
(if any) are in a known location, allows the lost packet to be recovered (assuming no
more than 1 packet was lost). Such a simple parity scheme has the advantage of being
scalable in terms of redundancy, as a small value of N implies high redundancy
(additional bandwidth used), while a large value of N implies reduced redundancy and
arbitrarily small excess bandwidth. An additional advantage of such a simple scheme is
that the decision on the value of N may be made late, meaning that the sender may
decide to use a smaller value of N (and send a parity packet) when there is no more
data to send, or when the tail of a stream in encountered.

[One caution with using such error correction with large values of N is that the latency
impact of a packet loss, and its associated error recovery, may grow in proportion to N.
As a result, when bounded latency and/or jitter is required, the size of N should be
constrained by roughly RTT * unidirectional_utilized _bandwidth/avg_packet_size. In
that equation, “utilized bandwidth” is the data rate that is expected to be in use, and may
possibly be less than the maximum available bandwidth. Essentially, if it takes the
receiver more than 1 RTT to see the parity bits for the first packet in an N packet block,
there is no latency savings (over a retransmission request).]

The above example is analogous to RAID 3 through RAID 5 configurations. Using a
parity system analogous to RAID 6 based on Reed-Solomon codes, where two parity
packets are sent following N data packets, it should be possible to correct for up to 2
packets lost in the N+2 packets transmitted (without requiring a packet retransmission).

Experiments that were performed on Chrome sending UDP packets suggest that
losses, when packets are paced, are decorrelated enough that the above simple XOR
FEC strategy may be valuable for groups of packets. Unfortunately, there was some
loss correlation, and attempts to recover from larger burst losses (2 packets+) provided
diminishing returns for a large overhead. As a result, we will focus on XOR based FEC
in QUIC.

When error correction is used, the plaintext payloads are gathered, a corresponding
error correction payload is calculated, and an error correction packet conveys the
encrypted payload. As a result, it should not be apparent to an eavesdropper when a
packet containing error correction is transmitted.

PACING TO REDUCE PACKET LOSS

Experiments with Chrome have shown that packet loss can often be reduced by pacing
packets. We believe the pacing reduces fluctuations in the packet flow, and thereby

reduces congestion based losses (i.e., packet drop in routers due to overflows). We
should try to use pacing to further decorrelate our packet loss statistics, increasing the
chance that our packets will be interspersed from external flows.

The current plan for congestion avoidance is based on bandwidth estimation plus
pacing, and hence pacing-reduced loss may fall out of the design. We may need some
better hooks deep into the operating system to better facilitate accurate pacing in OS
level buffering.

Even with the baseline TCP like congestion avoidance algorithm, we will attempt to use
pacing to further reduce packet loss. For example, a TCP like algorithm maintains a
congestion window size (count of packets that may be in flight), and a smoothed
estimate of RTT. Dividing those quantities provides the equivalent pacing rate. We will
attempt to not exceed that pacing rate, especially as we transition from quiescent to
active transmissions.

RETRANSMISSION RECOVERY FROM PACKET LOSS

In cases where packet losses have exceeded the error-recovery limits of the protocol, a
request for retransmission may be implicitly or explicitly produced. The techniques for
instigating retransmission will be modeled after the TCP protocol. In keeping with that
system, acknowledgements of data that is received will be periodically sent, and
timeouts may be used to spontaneously instigate a retransmission when no
acknowledgement is received. Acknowledgments will also serve a key role in delivering
congestion related bandwidth information, analogously to TCP’s ACK’s impact on its
congestion windows.

PROACTIVE SPECULATIVE RETRANSMISSION

Certain packets, such as initial cryptographic negotiation packet(s), are critical to the
latency of connection establishment, and all streams would block if any such packet
were lost. In order to defend against such inopportune packet loss, these packets’
contents may be retransmitted before there is any definitive evidence of such a loss.
Any resulting duplicate arrival will be treated similarly to a duplicate transmission
induced by a time out.

The advantage of proactive speculative retransmission rather than FEC groups (for
example: having an FEC group with one data packet and one FEC/redundancy packet)
is that FEC groups in QUIC will be transmitted sequentially, while speculative
retransmission may easily be out of order, further reducing the chance that any
correlated packet loss will impact more than one of a set of redundant packets.

As an example, a first (connection establishment) UDP packet in QUIC might contain
proposed cryptographic credentials, while a second packet might contain (encrypted)
requests for content. If either of those UDP packets were lost, then the connection
would not be established, or at least the content would not be requested in a timely
fashion. In this example, QUIC may wait a short period of time (e.g., 20ms? 0.25 x
expected RTT?) and the retransmit those two connection starting packets. With such a
gap between the initial transmission and retransmission of the crypto packet, it is
especially unlikely that both will be lost.

BUFFER BLOAT

Buffer bloat has proved to be a consistently difficult problem, not just for TCP, but also
for higher level protocols such as SPDY. We need to attempt to incorporate controls
that will reduce the potential for being a large contributor to this problem.

Buffer bloat may be especially problematic to streams requiring timely delivery.
Applications with timely delivery requirements, such as real-time audio or video, can
often reduce bandwidth *if* they are made aware that “excessive” packet transmission
will cause untimely delivery. We need to provide as much visibility to the application as
possible, and work to have maximally just-in-time placement of packets into our local
send queue, as well as just-in-time acceptance of packets from our application(s). This
need will drive several of the API elements surrounding connection status, and
notifications.

[HARD PROBLEM: We need to nail down a plan.] There is a fundamental problem that
concurrent TCP connections, and flows traversing routers or links shared by our
connection, may drive buffers towards their maximum size. If we act kindly towards
bloated buffers, and reduce traffic when or if we do detect bloat, then we would
progressively be driven to having a smaller percentage of any bloated buffer containing
our traffic. That reduction would in turn result in smaller percentage of the egress
bandwidth at said buffer being dedicated to our flow, until we were starved. If we
transmit as aggressively as TCP, then we would share “fairly” in the egress bandwidth,
by proportionally populating the bloated queue, but we would also be a contributor (if
not the solo creator) of buffer bloat. We need to decide on a philosophy for walking this
line. [Perchance we can take a forward looking view, anticipating better handling by
routers, being more conservative than TCP, but not so conservative that in today’s
landscape we would neuter the value of this protocol. This is IMO a very hard problem.]

LOCAL BUFFER CONTROL

One place where buffering is potentially controllable, and observable, is on a machine
associated with a sender endpoint. A sender machine typically has the potential for
extremely high local bandwidth, as measured with the ability to fill an output buffer, and
this can be markedly higher than the bandwidth on a link-level egress, such as wired
Ethernet, or Wi-Fi. We need to try to make this protocol aware of the local current
queue size (to the extent the hardware and OS will allow), and work to minimize the
actual size, subject to avoiding starvation of the local egress link for lack of efficiently
buffered data.

STREAM-BASED FLOW CONTROL

Flow control provides a basic ability for receive-end status, such as excessive use of
(buffer) memory, to induce a request that the send-end diminish (or in the extreme,
cease) transmission. With a multiplexed protocol, we have the potential that a
consumer for one stream at the receive-end to be slow, or not consuming data, while
other source-sink pairs may be proceeding “normally.” The fact that we have
out-of-order delivery ensures that we won’t block the other streams, but we may face
receive-side (buffer/memory) resource exhaustion due to unconsumed stream packets.

[We may model a resolution after work being done in SPDY to handle such
stream-based controls, but we may have additional controls that can be accessible. For
instance, in addition to requesting a reduction in a specific stream’s send-rate, we may
also discard (and not ACK). Such an approach may not only provide back-pressure to
the send-side, it may also partially alleviate overgrown resource usage pressure at the
receive end. This can be contrasted with TCP, where send buffers are saved until
received at the OS level, rather than until (acceptably) received at much higher levels in
the protocol.]

IDLE ENTRY

At some points, the overall connection will be idle, as there will be no data in any
streams pending transmission. In TCP, trailing packets that are lost as we enter an idle
state (a.k.a., tail drop) may induce a timer-based retransmission. Such retransmissions
have the potential for adding significant latency, and error correcting redundancy should
be used to reduce the probability of such retransmissions.

If we are already using an error-correcting pattern as we approach an idle state, then
nothing needs to be done, as a trailing error-correcting packet can be added to the
connection as soon as we actually go idle (run out of data), or shortly thereafter. If we

are transmitting a stream in a mode that does not have error correction, then we may
need to start using error correction as we approach the idle state.

Conceptually, we should add error-correcting redundancy as we approach an idle state
with any stream, even if the associated stream does not generally use error-recovery.
We should optimally begin this phase as soon as we anticipate that we may enter an
idle state within less than one RTT.

IDLE DEPARTURE

Periods of idle (inactivity) on a stream may induce either end of the connection to
discard some or all state, or induce some middlebox (e.g., NAT router) to discard state.
We need to account for each such loss of state, and provide efficient (low latency)
methods for continuation.

NAT TABLE RESET

NAT boxes may have their entries time out, or otherwise expire, causing a breakdown
of the underlying UDP transport. Such expirations are common today after 30-120
seconds of inactivity. After such a NAT expiration, a server may be completely unable
to initiate any data transmission to a client (until the client re-establishes a NAT
forwarding port).

The section on NAT Table Keep-Alives describes a process for adaptively handling this
issue.

CONTINUATION WITH FULL CONNECTION STATE

A second example of idle departure may appear when a client seeks to continue
transmission of data on a previously established connection. With TCP, this class of
continuation is allowable until a RST has been sent, and many servers currently reset
TCP connections after about 5 minutes of inactivity. With QUIC, given the fact that a
0-RTT re-connection can generally be made using credentials acquired during a
previous connection, we are initially planning on only keeping a connection alive (with
no streams open) for about 30 seconds. This should also allow us to more commonly
avoid NAT rebinding complexities.

Given concerns about battery life, and uselessly waking up a receiver to say “we are

done,” we negotiate over the connection how long the connection state is *expected* to
be maintained at both ends, after the connection has gone idle. This negotiation will
take place during regular communications on the connection, but will take effect
automatically when the channel goes idle. Resumption of traffic within this time window
will ensure that the cryptographic elements of the connection, and any other session
state (such as a compression context), are still valid/available.

CRYPTOGRAPHIC ELEMENTS

Initial negotiation of a cryptographically secure and authenticated channel, at a site that
has never been visited previously by a client, will be significantly modeled after TLS,
and a traditional TLS HELLO message exchange. As such, the absolutely first
interactions will require one full RTT prior to any data transmission by the client. After a
first introduction, including negotiation of cryptographic parameters, and exchanges of
certificate chains etc., a client may record the results of such activities, and use them for
performing a more rapid future connection.

RESERVED CRYPTOGRAPHIC COMMUNICATIONS STREAM

All cryptographic exchanges tend to use in-order delivery of a set of messages, where
that fact is critical to the analysis and correction proof of the protocol. As a result, we
will reserve a stream, with Stream ID = 1, the CryptoStream, as the cryptographic
meta-information communications channel. It is given the stream ID 1 because it is
client instigated, and hence must be odd, and is started in the initial connection
message. Using a reserved stream ID will facilitate re-use code for QUIC streams to
support our cryptographic exchanges, which are strongly modeled after TLS.

CRYPTOGRAPHIC HEAD-OF-LINE BLOCKING

Two methods will commonly be employed to prevent this cryptographic stream from
encountering a packet loss, which in turn causes head-of-line blocking on one or more
concurrent streams. For example, if a part of a key negotiation is lost, we wish to
reduce the probability of having a retransmission delaying decryption of later packets.

The first method of reducing the probability of head-of-line blocking is
speculative/redundant transmission of critical packets. For example, the initial
cryptographic connection establishment may be routinely transmitted more than once.
In addition, the redundant retransmission(s) may be delayed slightly from the initial

transmissions to significantly reduce the potential for correlated packet loss of all
(both?) copies.

The second method focuses specifically on points in time where the cipher specification
changes (e.g., an encryption key changes), similarly to where a TLS Change Cipher
message is employed. Rather than using an explicit message (serially delivered
relative to key use), a new encryption/decryption key is brought into use
asynchronously. The authentication by the new key signals the transition to a new
decryption key. A sender will usually wait until it has received acknowledgement that
data in the CryptoStream updating the receiver on encryption key has been received
before proceeding to use a new key. When this method is employed, head-of-line
blocking (for lack of an encryption key) is impossible, and a receiver may discard an old
key after all packets with sequence numbers prior to a use of the new key have been
processed.

ENCRYPTION AND AUTHENTICATION

We will use AEAD (Authenticated Encryption and Associated Data) to protect the bulk of
each UDP packet. The negotiation of keys is more completely described in a separate
QUIC Crypto document.

We will avoid serialized decoding dependency in QUIC (which would damage our ability
to provide out-of-order delivery in the face of packet loss) by deriving an IV for each
packet from the UDP packet sequence number. In QUIC, we deliberately partition data
so that each independently decryptable section (using an IV) falls entirely within a single
UDP packet, and there is only one such section in each UDP packets.

SESSION KEY UPGRADE

There are several reasons for changing a session encryption key, during the lifetime of
a connection. The first change is a transmission from a NULL encryption
(authentication only, with a known key). Initial packets sent by a client containing the
cryptographic Client HELLO must be transmitted without encryption, but data in
subsequent packets will potentially be encrypted per negotiations. The second example
centers on speculative connection, which may depend on a session key for which
perfect forward secrecy is not ensured. After speculative connection establishment, we
will change to a session key for which perfect forward secrecy is guaranteed.

Rather than sending the moral equivalent to a TLS Change Cipher Suite message, and
risking confusion and head-of-line-blocking if that message is lost, we rely on trial

decryptions during transitions. When a receiver becomes aware of the potential to use
a new key, it can try both the new and old key until the new key succeeds. At that point,
it can begin using only the new key for larger (future) packet sequence numbers. If an
endpoint receives an acknowledgement that proves that the distant endpoint is also
aware of a new key, it may also proceed to only accept packets (with larger sequence
numbers) decrypted with the new key.

As a result, the cost of a transition will be minimal (the time when only one endpoint
knows about a new key is roughly bounded by an RTT), and a third party should not be
able to detect a transition when examining a packet.

PROTOCOL DETAILS: SPECIFICATION RATIONALE

DEPLOYMENT ISSUES

Initial experiments with UDP connectivity from browsers around the world suggest that
roughly 90-95% of users will have adequate UDP connectivity for successful QUIC
connections. We conjecture that the 5%+ user connectivity block is predominantly
caused by LAN firewalls, probably in enterprise settings. In order to compensate for
this, all QUIC connection establishments will routinely be raced against more common
TCP (and often TLS) connection. Once the QUIC connection is active, requests will
continue to traverse the connection without races.

ALTERNATE PROTOCOL HEADER

There is currently no supported scheme, such as HTTP or HTTPS to indicate that a
resource should be acquired over QUIC, and so we will depend on Alternate Protocol
Headers in resources to convey support of QUIC. To facilitate this, clients and servers
are encouraged to employ Server Advertisement of QUIC through the HTTP
Alternate-Protocol header

When a server receives a non-QUIC request which could have been served via QUIC, it
should append an Alternate-Protocol header into the response stream, analogously as
was proposed for SPDY. We currently plan to routinely support QUIC on either UDP
port 80 or UDP port 443 to convey traffic that would otherwise have been supplied via
HTTP or HTTPS respectively. In both cases, we will be encrypting the traffic (to avoid
accidental damage by middle boxes), but we may (TBD) have reduced certificate
validation on UDP port 80.

To specify QUIC as an alternate protocol available on port 80, use:
Alternate-Protocol: 80:quic

If the resource was requested over HTTPS, then we will employ equally strong
certificate chain validation on the QUIC connection as is required by TLS.

INITIAL (CONNECTION ESTABLISHMENT) PACKET DEFAULTS

All packets, including the first packets which negotiate a connection, will utilize AEAD
encryption. The first packet(s) will used a default null-encryption key, and the AEAD will
then serve only to preclude accidental tampering (act as a high quality checksum).

Cryptographic negotiation will take place on Stream 1, created by the client.

PROTOCOL OVERVIEW OF ELEMENTS

At the highest level, each connection (related set of UDP packets) is associated with a
CID (a Connection ID, selected at random from a large enough space that there is
negligible chance of a collision). Packets are numbered sequentially, including all data,
control, FEC (Forward Error Correction), and acknowledgment packets. FEC covers
various ranges of data, and is appended lazily, so the protected data does not indicate
the quality or immediacy of the FEC data that follows.

Connections can be resumed very quickly, and we assume that when there is a risk of a
connection time-out (other side of connection dropped state; or middle box dropped
NAT state), a transmitter can prefix a transmission with startup packets (that establish a
connection, typically with no additional round trips).

All packets are authenticated and encrypted, when cryptographic contexts are available
(i.e., except some initial hello related packets on connection). A connection reset is
also authenticated, and hence cannot be directly instigated by a third-party intermediary
(although if enough packets are blocked by an intermediary, the connection may
eventually be abandoned).

Although we need to acknowledge receipt and loss of UDP packets (to in part, handle
congestion), a transmitter does not always need, or choose, to retransmit packets. This
is most apparent when an FEC packet is lost, as it is always preferable (as an ultimate

fallback) to retransmit protected data (if it was lost!). The fact that a transmitter has the
option of not retransmitting a packet (and a recipient has generally no idea what the lost
packet contained), automatically provides low level support for a higher level protocol
that provides stream data that does not need to be re-transmitted (example: can’t be
re-transmitted in a timely fashion, and be usable). Since a transmitter may choose to not
retransmit, it must provide acknowledgment-like packets indicating the intent to not
retransmit (which is much less data than a retransmission).

FRAMING

This section is intended to describe information about bytes-on-the-wire, and some
sequence of transmissions. Bit specific details will be documented in a Wire
Specification, but this document will serve to explain the justification for the fields, and
their potential use.

The discussion will start the more detailed description of the protocol by looking first at
the steady-state transmission of data. This will establish a lot of structures which can
then be re-used when discussing distinct control related packets, such as
acknowledgement related packets, FEC packets, and connection establishment
packets.

QUIC PACKET FRAMING OVERVIEW

The basic unit of transmission will be a standard UDP packet (a.k.a., a packet). Care
will be taken to ensure that all data transmissions will be broken into blocks that fit
cleanly into a single packet.

All QUIC packets consist of a header section, and a payload section. A data packet’s
payload contains a sequence of frames. An FEC packet’s payload contains redundant
information. The payload in each packet is an AEAD encrypted block. The associated
data (that is also authenticated) includes the entire header.

The header for each packet consists of:
e Public Flags - 1 byte, detailing the layout of the rest of the header
e CID

e QUIC Version

e Packet Sequence Number

Header: Public Flags

The header is potentially large, and several of the fields are at times unnecessarily
large, or even completely unnecessary. The Public Flags encode the sizes of each of
the other header fields, and allow for more compact representations. Simply put, the
Public Flags provide per-packet specs for the sizes of the other fields in a given
connection, in a given packet.

Header: CID

The CID is specified to be 64 bits in length so that clients can randomly select a CID,
and contact a server at a fixed port, and yet have a low probability of colliding with other
connections. By the time a server hosts about 2432 concurrent connections, there will
be about a 50% chance that *one* attempted connection will collide with an existing
connection. At that point, there will be 1 connection in 2432 that arrived at a conflict,
and will get “unusually poor” connection performance (it will be probably get a time-out,
as its packet will not authenticate, and will be discarded). The user that temporarily gets
such a problem will, in a good implementation, automatically fallback to making a
connection via TCP.

The CID is however completely redundant for a client that has created a dedicated
ephemeral port to contact a server. The *only* packets that the client will receive on
that port will be part of the singular QUIC outgoing connection. As a result, a client may
request that a server not bother to include a CID in each and every packet. Once a
server receives such a request (such as during connection negotiation?), the server can
use the Public Flags to indicate that the CID is omitted (has length 0 in the header).

For some servers and services, the number of parallel connection connections is
heavily restricted. For example, a server might negotiate with a client to continue the
connection at a specific alternate IP and port. In that case, the server could also
indicate to the client that a smaller CID may be acceptable.

Header: QUIC Version

We know the protocol is evolving quickly, and needs to evolve. This field is present in
the first packet to ensure that the server can understand the same version as the client
will provide. Once the connection is established, this is really redundant, and the Public
Flags will then indicate that this field is omitted (has length 0). If a server needs to
distinguish the version, it will remember that the connection, defined by the CID, has a

distinctive version.

Header: Packet Sequence Number

In addition to sequencing packets, watching for duplicates, and communicating what
packets are missing, this number is a critical part of the encryption. This number forms
the basis of the IV used to decrypt each packet. As a result, it must conceptually be
large, as it must never repeat during the lifetime of the connection. That need forced
this sequence number to be conceptually large, around 2264 (more packets than any
connection would dream of sending), but we usually don’t need to provide all 8 bytes in
each packet!

At any given time, where will only be a finite (small) number of packet sequence
numbers that have not been acknowledged. This restriction is a natural consequence of
the fact that a sender must buffer internal data for those pending packets, and the
sender’s memory is very finite. In addition, we have chosen to not “retransmit” packets
that are declared lost, but rather “rebundle” their contents in later packets. As a result, a
receiver will often communicate that it has not received a packet, and then the sender
will notify the receiver to “stop waiting” for the packet, and hence the window of
unacknowledged packets will always be nicely bounded, and the ranges of uncertainty
(max and min possible being discussed) can be known by the sender. Based on that
restriction, a sender can significantly reduce the number of bytes needed to express the
packet sequence number (using the Public Flags).

As an example, suppose that packets are being transmitted with a TCP like congestion
control, and the current congestion window is 20 packets. Even if a packet is lost,
within 1 RTT, or about 20 additional packets, a receiver will be informed that a lost
packet is no longer pending. As a result, a sender can get away with sending only the
low-order byte (8 bits) of the 64 bit packet sequence number on the wire. A receiver
can easily decide based on those bits what the upper 56 bits must be, and can then use
that to decrypt the packet. Note that *IF* a very old packet ever arrived at a receiver,
and the old packet sequence number was then misinterpreted, then the AEAD
authentication would fail, and the old (and agreeable discarded) packet would indeed be
ignored.

Payload Framing Overview

After a header in a packet, there is always a payload block of ciphertext authenticated
by an AEAD algorithm. That block consists conceptually of some number of redundant

authentication bits, concatenated to a string of bytes the size of the plaintext of the
payload. We currently estimate the need for about 64 bits of authentication, but that will
vary over time with the state of the art, and be negotiated by the cryptographic
exchanges.

After decrypting, we will have a plaintext payload block that will consist of:
e Private Flags - 1 byte
e FEC Group number
e Series of self-identifying Frames

Payload: Private Flags

The Private Flags, currently 1 byte, are denoted “private” because they are shrouded by
encryption, and not visible to an eavesdropper. As with the Public Flags, one value
encoded in the flag is the size of the FEC group number, and implicitly the offset in the
payload to the start of the frames.

The Private flags also have 2 other individual bits. The first bit is a random entropy bit,
and the second bit is used to identify the last packet in an FEC group. The last packet
in an FEC group is the redundant FEC packet (containing the XOR of the plaintext
payloads in the group).

Private Flags: Entropy Bit

The Entropy bit is randomly selected by a sender, and placed into each packet. The
information is used to combat any potential Optimistic Ack Attacks. When a receiver
sends acknowledgements for a set of packets, it is required to prove it received the set
it asserts by providing the hash of the Entropy Bits it claims to have seen.

One issue with Entropy Bits is that when a packet is lost, its entropy bit is not seen. To
handle that, and not require a receiver to create and endless list of loss packets
(exceptions from the hash), the sender regularly provides an update that indicates what
the hash *should* have been, up to a specific packet. It only provides this update after
it has gotten truthful assertions about missing packets prior to that point.

As an example, suppose packets 1, 2, 3, and 4 are sent. Assume packet 3 is lost. A
receiver will indicate (in an ACK frame) that it received all packets up to 4, except for
packet 3. That ACK frame would also provides a hash of the entropy bits it packets 1,
2, and 4. The sender can confirm that hash is correct, and declare packet 3 missing.

The sender can then transmit (within an ACK frame) that it is no longer concerned with
packets 4 or older, and it can provide the hash of all entropy bits up through packet 4.
As a result, eventually the receiver will know the hash for packets up through packet 4,
and can provide additional incremental hash results as it receives further packets.

Private Flags: FEC Final Bit

This bit is used to mark the last packet is an FEC group. Our current FEC approach
has exactly one FEC packet at the tail end of a series of packets protected by FEC.
This bit indicates that the entire payload should be handled separately, and viewed as
the XOR sum of the other payloads in this group.

Note that when this bit is set, the packet must be part of some FEC group, and hence
the FEC group number must always be present as well.

Payload: FEC Group Number

Given that we routinely see 1%+ packet loss on the internet, it is extremely unlikely that
over 100 packets can be received without a loss, and certainly not 200. For this reason
we decided to limit FEC groups to be no larger than 255 packets. Our experiments
suggest that when FEC is used, it may be most beneficial in the range of a 10-20 packet
data sequence, protected by a redundant FEC packet. With 20 packets, there is a
bandwidth cost of about 5%, and there is a very visible tradeoff against latency. We
also noted that with TCP, it is most common to see congestion windows well under 50
packets, and so the use of an FEC for larger groups would not be beneficial in reducing
latency, when compared with retransmission.

As a result of the above analysis, we currently only support simple XOR FEC of a
consecutive set of packets, and one byte is sufficient to identify a group of FEC
protected packets. If and when a sender decides to protect a set of packets, it uses the
Private Flag to indicate that there is indeed an embedded FEC Group Number byte.
Each participant in an FEC group has an offset FEC Group Number that can identify the
first packet in the group (i.e., it is an amount to subtract from the current packet
sequence number). This approach allows for a lazy decision as to when to end the FEC
group (i.e., the exact number of packets need not be known, and the final FEC packet
can be added at any time, such as when there is no more data to send!).

Payload: Self Identifying Frames

The bulk of each QUIC packet is expected to be a concatenated list of data called
Frames. Each frame has leading bytes that identify the frame, as well as information
about the format of that frame and its contents. For example, there are frames that
carry acknowledgement information, and also frames that carry individual stream data.
There are also a variety of miscellaneous frames.

Packets are generally packed until they are full with data contained in one or more
frames, and then sent. Frames are in a sense the workhorse of the protocol, and are
discussed in more details in the next section.

Frames Within the Payload

There are a variety of Frames currently defined to be sent within the payload. This
section will provide some motivations for their use and structure.

All frames start with a Frame Type byte, but we expect to pack additional flags specific
to each type into that byte. As a result, it will actually be the first few bits of a
frame-type byte that identify the kind of Frame, and the other bits will be used as flags
to encode formatting within that Frame. Initial implementation versions of QUIC may
use very fixed size fields for many of the Frame Types, but that should change as we
further optimize and compact the encodings.

STREAM_FRAME

Each QUIC connection can multiplex a collection of streams, and each Stream Frame
conveys application data for a single stream. The frame’s header conceptually must
present the stream number that the Frame is a part of, plus the starting offset within the
stream for the contained data (just as TCP provides byte offsets for segments). A
Stream Frame is also used to implicitly open or create a stream, and the frame currently
contains a flag bit that indicates that it is the last portion of said stream.

In order to increase efficiency, which may be critical when a large file transfer takes
place on a single stream, we expect to employ variable length fields in the header for
this frame. For example, even though we expect to support very large file transfers, it
will be rare that a stream will convey data that uses many of the current 64 bits of
maximum offset! Similarly, when large streams are being transported, it will be very
common for a single data frame to fill the entire remaining space in a payload, and
hence its size (within the payload) can be implicit rather than explicit.

As with SPDY, we expect to use compression of stream headers for HTTP requests.
This should be negotiated during the connection establishment and the cryptographic
handshakes. One cost of this approach is that the stream headers must be sequentially
decoded, and hence a new stream cannot be processed until the header of the previous
stream is decoded. We expect that in many cases this compression of HTTP headers
will be so significant, that a multitude of HTTP requests will fit nicely into a single QUIC
packet, and this head of line blocking will be insignificant. We also have expectations
that HTTP/2.0 will settle on an even further improved compression algorithm, with better
control of serialized decoding, and that will then be employed in QUIC.

ACK_FRAME

An ACK Frame is used to coordinate packet loss recovery, and is kindred, but not
identical to an ACK packet in TCP. An ACK in QUIC is always cumulative, in that new
ACKs contain enough information that any prior ACK should be discarded. As a result,
if a packet containing an ACK Frame is lost, it is not necessary to retransmit the
enclosed ACK Frame.

The first and most clear conceptual contents that an ACK Frame contains is a NACK list
of packets that a receiver has decided are missing. As a result, an ACK Frame has a
count of the number of missing packets, plus the list of packets. Just as with the Packet
Sequence Number wire presentation in the QUIC Header, the missing packets can be
very compactly represented. Even with a compact representation, there is a limit as to
how many NACKSs can be enumerated within a single packet (several hundred). As a
result, in the super improbable case where there are too many NACKs to fit in a packet,
only the eldest (numerically lowest) missing packets are cited. This improbable case,
caused by 1% packet loss, could limit the effective in-flight window to a few 10,000
packets (not a big limitation... but even the edge cases must work). We refer to such a
case as a “truncated ACK Frame.”

A second conceptual element present in the ACK Frame is usually the largest packet
sequence number that has been received, and we refer to that as the “largest observed”
packet. That structure makes an ACK Frame similar to a TCP Selective ACK, which lists
the largest received offset, plus a small itemized list (as many as a pair) of NACKs, if
any.

One complication with QUIC is that an ACK Frame can be truncated as noted. In the
case where the ACK Frame is truncated, it is possible that the receiver was missing
several packets at this truncation boundary. To properly handle that odd case, the

“‘largest observed” packet, present in the ACK packet, may *also* be among the
NACKed packet list!

To make the above issue clearer, consider a receiver that was sent packets 1 through
1000, but only received packets 1 and 1000 (i.e., it was missing packets 2 through 999).
In that example, we’ll assume that there was only room for 200 NACKs in an ACK
Frame. As a result, an ACK Frame listed (explicitly) NACKs for the 200 packets 2
through 201. Oddly, the “largest received” packet was packet 1000, but that cannot be
stated in the ACK Frame, as it would look like packets 202-999 were received! In this
truncated ACK Frame case, the “largest observed” packet would have been listed as
packet 201. The above situation would rapidly resolve itself as the sender would
respond to such NACK list with a request to not consider NACKing packets 201 or
older. Bottom line: even in this edge case, forward progress will be made ;-).

A second component of an ACK Frame conveys information in the reverse of the
common direction, as it carries acknowledgement information from a sender to a
receiver. QUIC does not retransmit packets, but only rebundles their contents in a later
packet if they are still useful (i.e., it will tend to retransmit Stream Frames in lost
packets, but not retransmit ACK Frames from lost packets). As a result, when a sender
learns via a NACK of a lost packet, it needs to notify the recipient to “stop NACKing”
that packet. To support this, an ACK Frame also has a field to identify a “least
unACKed” packet. This packet sequence number identifies a point for which the sender
does not want any older NACKs.

The last two elements provided in an ACK Frame are related to the entropy hashes
used to preclude an optimistic ACK attack. As mentioned earlier, an entropy bit is
provided in each packet in the payloads Private Flags. When a receiver sends an ACK
Frame potentially specifying packets it is aware of, and packets it is missing, it also
sends a Received Entropy hash for the packets it is aware of. Similarly, when a sender
updates the Least Unacked packet number, it also provides the hash that a receiver
should use as the accumulated entropy up to that Least Unacked point.

In general, a packet containing only an ACK Frame will not be ACKed (which would
otherwise lead to an endless volley of ACKs!). A missing packet that follows a packet
containing only an ACK Frame will of course be NACKed, as the receiver will have no
idea what the lost packet contained.

When a sender receives an ACK Frame containing NACKSs (especially new NACKs, that
it has not previously heard about), it may provide a responsive ACK Frame that asks the

recipient to “stop NACKing” said packet(s).

As with TCP, when a sufficient length of time (relative to RTT) has passed without
receipt of an acknowledgement, a sender may retransmit the contents of a packet (i.e.,
act as though an explicit NACK was provided). Such retransmissions will proceed to
use an exponential backoff, but just as with TCP, assume that when a packet (contents)
are being retransmitted, they are not restricted by a congestion window (i.e., the
presumed loss allows for the retransmission).

CONGESTION_CONTROL_FRAME

The Congestion Control Frame is used to convey information relating to a specific
congestion control algorithm. At the start of the connection, the negotiation of
cryptographic credentials also includes the agreeable negotiation on a congestion
control algorithm. As a baseline, all implementations will support a TCP-like algorithm,
but we expect other algorithms to be used, with the need for correspondingly different
data.

For example, in a TCP-like algorithm, a Congestion Control Frame might contain
information about when a packet (that is being ACKed) was received, or similarly, how
long after being received was the acknowledgement sent. Such feedback statistics may
then be helpful in calculating RTT, much as TCP uses the arrival of a TCP ACK to
estimate an RTT (where presumes that there was negligible latency between receipt of
a packet, and a corresponding ACK). The current TCP-like implementation of a
congestion feedback frame includes the accumulated count of lost packets.

In the case of an algorithm that is focused on measuring sojourn latency, a congestion
feedback frame might provide relative arrival time between packets (to allow the sender
to deduce the packet spread), or statistics about receive times. For example, it might
include periodic updates on what the shortest observed interarrival time for packets
was. It might also include periodic statements of what the arrival time was for a specific
recent packet, as measured by a receiver clock. In that case, the receiver clock is not
synchronized with the sender’s clock, but the sender can detect a drift that is indicative
of an increasing or decreasing intermediate packet queue. Such a statistic may be a
much more precise estimate of the one way transit time (though its accuracy is impeded
by the clock skew between endpoints).

The precise fields that will be present in a Congestion Control Frame will vary
significantly based on the employed algorithm.

RST _STREAM_FRAME
The Reset Stream Frame is used to abnormally terminate a stream. It can for instance
be used when a receiver wishes to prematurely stop the sender from sending additional
data, or when the data source is no longer supplying data. To assist in debugging, a
Reason Phrase is included in these Frames, as well as an Error Code.

CONNECTION_CLOSE_FRAME

The Connection Close Frame is used to aggressively and immediately abort a
connection, closing all streams implicitly. To attempt to support such rapid teardown
faster than is common in TCP, this Frame is also followed by an ACK Frame, to better
communicate the state at the time of the teardown (i.e., what was the last packet
sequence number received before the tear-down).

GOAWAY _STREAM_FRAME

The Go Away Stream Frame is a request for a graceful termination of a connection,
where no new streams will be created, and only existing streams will persist (and
hopefully finish shortly). This frame also includes a Reason Phrase, and an Error code.

CONNECTION RESET ALTERNATIVES

A QUIC connection can be reset by either side of the connection. Connection reset
implies that the connection is permanently discarded, or torn down, and that no
additional communication will be performed using packets associated with the
connection’s current CID. Unlike TCP (including SSL over TCP), a QUIC connection
cannot be torn down by injecting a single universal packet (e.g., a TCP RST packet). A
connection will be (eventually?) abandoned and effectively reset when enough traffic
has been lost, and no ACKs received, so a middlebox can eventually reset a
connection, but a middlebox cannot reset the connection in an expedited manner as can
be done with TCP.

There are two ways to communicate a QUIC connection reset. Both methods are
authenticated (precluding third-party injection). The first method is via a standard
packet that is authenticated identically to all other authenticated packets in a
connection, by including a Go Away Frame, or a Connection Reset Frame (both
described above).

The second form of reset uses a unidirectional pre-arranged reset nonce, which is a
shared secret. We refer to this form as a Public Reset Packet because a third party can

detect the presence of such a packet, although a third party cannot forge such a packet.
Each reset nonce, for a given CID, is optionally specified by each end of the connection
(to the remote end) early in the connection traffic. Once a reset nonce has been
specified, the nonce may be used by the side of the connection that generated nonce to
expeditiously reset the connection.

An expeditious reset may be needed if a packet is received with a CID that is no longer
associated with an active QUIC connection (and is not a startup packet). The

unrecognizable CID (and associated packet) could alternatively be ignored (discarded),
but that would only cause a slow abandonment of the related connection by the sender.

For example, in a client-server connection, a server may select a reset nonce that it
may (optionally) use in the future if it needs to expeditiously reset the connection. This
nonce can be used after the session key for a given CID has been discarded or lost by
the server. Session keys may be discarded by a server shortly after a connection is
torn down, or lost by a server during an unplanned server restart (reboot). The nonce
may typically be constructed as a MAC of the CID, where the MAC key is never
revealed. Such a construction can allow (in this example) the server to re-construct the
nonce for a given CID, even after the connection, and associated cryptographic state,
has been forgotten.

When a Public Reset Packet arrives, we can assume that the recipient still has copies
of all state involved in the connection based on the CID, including the pre-arranged
reset-nonce. As a result, the recipient can validate a proof of possession relative to the
packet that it transmitted (and was discarded), agreeably reset the connection, and
proceed to construct a new connection. Note that the nonce is not transmitted in the
clear, and instead a time-bound proof of possession of the nonce is transmitted.

MALICIOUS RETURN ADDRESS REWRITING

A malicious middlebox adversary could re-write the source IP or port, and cause a
receiver to be “confused” about where to send response traffic. Note that neither the
source IP nor Port are protected as associated data in the AEAD encryption, because
NAT boxes must routinely rewrite these fields. Such rewrite malice by a middlebox
could potentially force a receiver to at least consider responding toward the new source
IP address. Potential malice will (at a minimum) complicate the details of the algorithm
to adapt to mobile changes in source address and ports.

One way to avoid such a fallacious reset is to continue to direct packet traffic to the

previous source IP, until a “sufficient” number of packets have been responded to from
the new source IP. For example, we could temporarily transition to sending FEC groups
of size one (meaning that the FEC packet provides 100% redundancy), and route all
data packets to the original source IP, and all FEC packets to the new source IP. This
would minimize any interruption in the QUIC connection, and would allow authenticated
ACKSs to clarify when (and if) it is correct to switch completely to the new source IP.

Another attack that may be constructed by a client (or a middlebox) is to deliberately
falsify the source IP address, creating a traffic amplification attack. In that scenario, a
client may establish a connection to a server, demonstrate high bandwidth, request a
large set of resources, and then the client/attacker could maliciously alter the underlying
return address. In that example, a server could plausibly send a large quantity of data to
the new source IP, unwittingly attacking (flooding) that source IP. The natural way to
foil such an attack is to avoid extensively using a replacement source IP until at least
one round trip of one packet has proceeded. We may be able to use the some of the
same techniques that allow zero-RTT connection establishment, so as to support more
rapid source IP utilization. For instance, we may be able to switch faster when we are
under a low load; we may be able to check for any apparent DOS targeting of a small IP
address range; we may restrict the amount of unACKed data sent to a new IP address.

TBD: Should a receiver be slow(er) to respond to a source IP or port change? Can we
tolerate reduced latency during a transition, or would we be creating a partial DOS
attack vector? Perhaps QUIC should wait for several packets with new return
addresses before altering current responses, and potentially resending previous
responses. This is a cat and mouse game, and the critical point is to force the malicious
middlebox to expend significant effort, and to try to minimize the wasted effort and
misrouted bandwidth of the victim. Is this effort futile?

The fact that middlebox malice is possible suggests that there may be limits on how
well/quickly this protocol can adapt to mobile changes by a source in its address. If a
source is aware that its address is changing, it may be possible to send an
authenticated hint that a change is imminent, without being able to authenticate the
details. Such a hint may be especially helpful, for example, as a mobile device switches
to/from Wi-Fi, and hence can send assurances to a server that a transition is taking
place.

CRYPTOGRAPHIC STARTUP OVERVIEW

There is a separate QUIC Crytpo document providing details, and justification of the
precise cryptographic HELLO protocol, key exchange, etc. This section is only meant to
conceptually outline the sequence of events that are involved in a connection
establishment. The QUIC Crypto document is authoritative.

A typical 0-RTT Refresh Connection Establishment will be built around speculation by a
client that a server still is using a previously known public key. Based on that
speculation, a client may transmit a proposed session key, etc., that is encrypted with
the predicted public key. The client can then immediately follow that Connection
Establishment transmission with encrypted data, encrypted under that initial session
key. This provides the fundamental, high probability, O-RTT startup.

The above approach will allow at least initial encryption of data. In that state, the
connection will be encrypted and authenticated, but will not exhibit perfect forward
secrecy.

Under the protection of the initial session key, elements of the cryptographic HELLO
exchange can then exchange cryptographic information sufficient to formulate an

improved session key, which can provide perfect forward secrecy. After exchanging
that information, each party can immediately begin to use the improved session key.

To reduce the likelihood of an unexpected loss of connection, each side of the
connection should indicate how long it expects to maintain its session state, once the
connection has become idle.

1-RTT Fallback

If the initial speculated public key in a connection establishment is not acceptable to a
server, or the server wants additional validation of the requesting client’s address, the
server may Reject the connection request and perform a round-trip verification before
proceeding. The round trip elements are expected to include the moral equivalent of a
nonce (kindred to a TCP SYN-cookie), and to be the moral equivalent of a full HELLO
exchange as performed in TLS. After the client responds to that server’s hello, the
client may retransmit any data requests (presumably discarded by a server decline),
under the protection of the fully negotiated session key. In this example, the server may
optionally discard all previous data packets, presumably sent under the protection of the
speculated public key.

When a client is not yet familiar with a server, at least one RTT will be required in a

https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit

connection establishment before traffic can be sent. In this case, the client cannot
predict the likely server public key, and will send the moral equivalent of a TLS HELLO
message. The server can then respond with either an addressing challenge, kindred to
a SYN-cookie (if source verification is required and insufficient), or respond with the
moral equivalent of the TLS HELLO protocol, including optionally an addressing
challenge nonce. [The goal is to minimize state and computing cost to the server, to the
extent desired by the server.] The data in this extended HELLO sequence may contain
a cert chain which will typically not fit in a single UDP packet, and will instead use a
more extensive stream.

Either side may start transmitting normally as soon as the above HELLOs have been
transmitted. In some cases, a significant amount of data may need to be transmitted in
order to establish the identity of one or both parties. This information is transmitted in
streams, with the usual congestion control and retransmission of streaming data.

2-RTT Worst Case Fallback

In the event that a server needs to respond with an extensive certificate chain, a server
may decline to send a multi-packet payload to a client until the client can prove it is
control of a specific source address. In that scenario, the HELLO exchange may take
as many as 2 RTTs.

In this worst case, the first client HELLO would be rejected, but the server would supply
a token to prove ownership of the apparent client address, as well a server certificate,
without including a certificate chain (if it is too large to fit in a single packet).

The client would then use the source address token in a second HELLO request, but
might be unwilling to trust the certificate until it receives the entire certificate chain! In
that example, a server would then reject the second HELLO (for lack of any real
proposal for a shared key), but would at least respond with a fully fleshed out certificate
chain, requiring several packets to send.

Finally, with a trustworthy server certificate in hand, and a trustable source address

token, a client may provide a client HELLO as suggested in the 0-RTT case, and the
connection would proceed.

PROTOCOL GLOSSARY

Amplification Attack

An attack where an attacker sends packets to a server, and the server responds with
more packets than are sent. This allows an attacker to leverage a server’s potentially
large bandwidth to greatly amplify the rate at which packets are directed towards a
target, which then suffers a DOS attack, due to a storm of packets. In some such
attacks, the attacker provides a false return (source) address, and the server sends the
amplified stream at the third party. In some cases the attacker provides a valid return
address, but the excessive response by the server can provide DOS the attacker’'s ISP,
or some link in the path to the attacker.

Buffer Bloat

The state of a connection where some buffer (a.k.a., queue) along the route from a
source to a destination has grown large. This can typically appear at a bandwidth
bottleneck having a higher ingress than egress rate. The result is seemingly
unnecessary latency, induced by delay traversing the queue. The observation may be
made that no matter how small or big (bloated) the buffer is, the bandwidth out the
egress link is still fixed and bounded. Traditional TCP congestion control window will
drive such a buffer at a bottleneck to its maximum size (inducing packet discards), and
then back off, and again move toward this full (bloated) buffer state.

Connection

A bidirectional UDP connection over which data is transmitted. The side of the
connection that first initiates the connection will create a Connection ID (CID) that will be
effectively present in all UDP packets that are part of said connection. A connection is
associated with a 4-tuple of (source IP/port, destinitation IP/port), just as it would be for
TCP. Due to NAT in firewalls, the two ends of the connection may see slightly different
4-tuples, and commonly the source port and source IP may vary over time, but the CID
is completely invariant over the lifetime of the connection.

FEC

Forward Error Correction. The use of an error correcting code, which provides
redundant information that is speculatively transmitted, to facilitate recovery of
potentially lost packet data without a retransmission of the data. The simplest example
of such a mechanism is a redundant transmission of the payload data in a packet,
speculatively sent in a second packet. In that example, if the first packet is lost in
transit, then the payload may be recovered from the redundant packet. A second

example is to calculate the exclusive-OR sum of the payloads in a specific set of
packets, and to speculatively transmit that sum in a redundancy (FEC) packet. In that
example, if any single packet is lost, its contents may be recovered from the remaining
packets, plus the FEC packet.

Frame

A portion of the encrypted payload inside a single UDP packet. Each UDP packet that
has an encrypted payload contains one or more Frames. For example, a stream frame
effectively contains a byte-range of a stream that fits inside an encrypted payload. As a
second example, an ACK frame contains acknowledgement related information, and fits
inside an encrypted payload.

CID

“Connection ID.” A pseudo randomly generated 64 bit nonce, generated client side, that
is expected to be unique from the perspective of the server, for the given (server)
destination port. This should allow for about 2#32 distinct connections to be activated at
the same time, at a given server port, based on client side (randomized) selection,
without significant chance of a collision.

Packet

A single UDP packet, as sent over the underlying connection associated with a CID.

Stream

One of potentially many data transmission channels for conveying data across a
connection. A Stream is bidirectional. If the Stream is first created by the client
(connection initiator), then it will have an odd-numbered stream ID. If the stream is
created by the server (connection respondent), then it will have an even-numbered
stream ID. The data in a Stream is automatically broken into Frames, and then
re-assembled at the receiving end.

ACKNOWLEDGEMENTS

The ideas and descriptions listed here were gathered from many people, across many
discussions and email threads. The contributors include, but are not limited to: Mike
Belshe, Roberto Peon, Wan Teh Chang, Adam Langley, Will Chan, Yuchung Cheng,
Nandita Dukkipati, Matt Mathis, Chris Bentzel, Eric Roman, Raman Tenneti, Ryan

Hamilton, Alyssa Wilk, Michael Nowlan, lan Fette, Patrik Westin, Barath Raghavan,
Ryan Sleevi, lan Swett, Vint Cerf, Matthew Dempsky, and Stuart Cheshire.

Those folks have responsibility for much of the cleverness expressed here, but are not
to blame for any of the blatant misstatements and confusion provided. Some
contributors may not even have reviewed this document in its entirety.

CHANGE NOTES

It is hard to track what has changed in this document. As a result, when | make a
change (of substance, not just typos and minimal clarification) I'll try to add a note here.

e 12/2/2031 Changed “GUID” to “CID” (Connection Identifier), as the original term
carried common meaning and baggage that was not intended.

e 6/24/2014: Revised and released as a publicly available document (via Google
Docs) sponsored by the mozilla.org domain.

e 7/16/2012: Changed “NAT-PMP (NAT Port Mapping Protocol)” references to
“Port Control Protocol (RFC 6887)”

