最近在研究热力图,发现了一篇可能有用的Python
模拟疫情扩散的文章,可以部分模拟热力图,整篇文章原文内容如下:
瘟疫蔓延,连芬兰都难以幸免
受杰森的《Almost Looks Like Work》启发,我来展示一些病毒传播模型。需要注意的是这个模型并不反映现实情况,因此不要误以为是西非可怕的传染病。相反,它更应该被看做是某种虚构的僵尸爆发现象。那么,让我们进入主题。
这就是SIR模型,其中字母S、I和R反映的是在僵尸疫情中,个体可能处于的不同状态。
- S 代表易感群体,即健康个体中潜在的可能转变的数量。
- I 代表染病群体,即僵尸数量。
- R 代表移除量,即因死亡而退出游戏的僵尸数量,或者感染后又转回人类的数量。但对与僵尸不存在治愈者,所以我们就不要自我愚弄了(如果要把SIR模型应用到流感传染中,还是有治愈者的)。
至于β(beta)和γ(gamma):
- β(beta)表示疾病的传染性程度,只要被咬就会感染。
- γ(gamma)表示从僵尸走向死亡的速率,取决于僵尸猎人的平均工作速率,当然,这不是一个完美的模型,请对我保持耐心。
S′=−βIS告诉我们健康者变成僵尸的速率,S′是对时间的导数。
I′=βIS−γI告诉我们感染者是如何增加的,以及行尸进入移除态速率(双关语)。
R′=γI只是加上(gamma I),这一项在前面的等式中是负的。
上面的模型没有考虑S/I/R的空间分布,下面来修正一下!
一种方法是把瑞典和北欧国家分割成网格,每个单元可以感染邻近单元,描述如下:
其中对于单元,和是它周围的四个单元。(不要因为对角单元而脑疲劳,我们需要我们的大脑不被吃掉)。
初始化一些需要的库以及数据
1 2 3 4 5 6 7 8 9 10 |
import numpy as np import math import matplotlib.pyplot as plt from matplotlib import rcParams import matplotlib.image as mpimg rcParams['font.family'] = 'serif' rcParams['font.size'] = 16 rcParams['figure.figsize'] = 12, 8 from PIL import Image |
适当的beta和gamma值就能够摧毁大半江山
1 2 |
beta = 0.010 gamma = 1 |
还记得导数的定义么?当导数已知,假设Δt很小的情况下,经过重新整理,它可以用来近似预测函数的下一个取值,我们已经声明过u′(t)。
回想前面:
我们把函数(u(t +△t))在下一个时间步记为,表示当前时间步。
这种方法叫做欧拉法,代码如下:
1 2 |
def euler_step(u, f, dt): return u + dt * f(u) |
我们需要函数f(u)。友好的numpy提供了简洁的数组操作。我可能会在另一篇文章中回顾它,因为它们太强大了,需要更多的解释,但现在这样就能达到效果:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
def f(u): S = u[0] I = u[1] R = u[2] new = np.array([-beta*(S[1:-1, 1:-1]*I[1:-1, 1:-1] + S[0:-2, 1:-1]*I[0:-2, 1:-1] + S[2:, 1:-1]*I[2:, 1:-1] + S[1:-1, 0:-2]*I[1:-1, 0:-2] + S[1:-1, 2:]*I[1:-1, 2:]), beta*(S[1:-1, 1:-1]*I[1:-1, 1:-1] + S[0:-2, 1:-1]*I[0:-2, 1:-1] + S[2:, 1:-1]*I[2:, 1:-1] + S[1:-1, 0:-2]*I[1:-1, 0:-2] + S[1:-1, 2:]*I[1:-1, 2:]) - gamma*I[1:-1, 1:-1], gamma*I[1:-1, 1:-1] ]) padding = np.zeros_like(u) padding[:,1:-1,1:-1] = new padding[0][padding[0] < 0] = 0 padding[0][padding[0] > 255] = 255 padding[1][padding[1] < 0] = 0 padding[1][padding[1] > 255] = 255 padding[2][padding[2] < 0] = 0 padding[2][padding[2] > 255] = 255 return padding |
导入北欧国家的人口密度图并进行下采样,以便较快地得到结果
1 2 3 4 5 6 |
from PIL import Image img = Image.open('popdens2.png') img = img.resize((img.size[0]/2,img.size[1]/2)) img = 255 - np.asarray(img) imgplot = plt.imshow(img) imgplot.set_interpolation('nearest') |
北欧国家的人口密度图(未包含丹麦)
S矩阵,也就是易感个体,应该近似于人口密度。感染者初始值是0,我们把斯德哥尔摩作为第一感染源。
1 2 3 |
S_0 = img[:,:,1] I_0 = np.zeros_like(S_0) I_0[309,170] = 1 # patient zero |
因为还没人死亡,所以把矩阵也置为0.
1 |
R_0 = np.zeros_like(S_0) |
接着初始化模拟时长等。
1 2 3 4 5 6 7 8 9 10 |
T = 900 # final time dt = 1 # time increment N = int(T/dt) + 1 # number of time-steps t = np.linspace(0.0, T, N) # time discretization # initialize the array containing the solution for each time-step u = np.empty((N, 3, S_0.shape[0], S_0.shape[1])) u[0][0] = S_0 u[0][1] = I_0 u[0][2] = R_0 |
我们需要自定义一个颜色表,这样才能将感染矩阵显示在地图上。
1 2 3 4 5 |
import matplotlib.cm as cm theCM = cm.get_cmap("Reds") theCM._init() alphas = np.abs(np.linspace(0, 1, theCM.N)) theCM._lut[:-3,-1] = alphas |
下面坐下来欣赏吧…
1 2 |
for n in range(N-1): u[n+1] = euler_step(u[n], f, dt) |
让我们再做一下图像渲染,把它做成gif,每个人都喜欢gifs!
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |
from images2gif import writeGif keyFrames = [] frames = 60.0 for i in range(0, N-1, int(N/frames)): imgplot = plt.imshow(img, vmin=0, vmax=255) imgplot.set_interpolation("nearest") imgplot = plt.imshow(u[i][1], vmin=0, cmap=theCM) imgplot.set_interpolation("nearest") filename = "outbreak" + str(i) + ".png" plt.savefig(filename) keyFrames.append(filename) images = [Image.open(fn) for fn in keyFrames] gifFilename = "outbreak.gif" writeGif(gifFilename, images, duration=0.3) plt.clf() |
瘟疫蔓延的gif图,连芬兰都难以幸免
看,唯一安全的地方是人口密度不太高的北部地区,动画中连芬兰最后都被感染了,现在你明白了吧。
如果你想了解更多微分方程的求解,温馨向您推荐LorenaABarba 的实用数值方法的Python实现课程,你可以从中学习所有实数的数值求解方法,而不是本文中简单的这种。
更新:你可以在这里找到Ipython版本的笔记。
实际运行上面的例子的代码是存在问题的,往往会编译不通过,下面是经过调整后的代码例子,可以正常运行:
上图是代码需要的图片popdens2.png
安装依赖包
1 2 3 |
$ sudo pip2 install imageio $ sudo pip2 install numpy --upgrade |
具体的代码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
import numpy as np import math import matplotlib.pyplot as plt from matplotlib import rcParams import matplotlib.image as mpimg rcParams['font.family'] = 'serif' rcParams['font.size'] = 16 rcParams['figure.figsize'] = 12, 8 from PIL import Image beta = 0.010 gamma = 1 def euler_step(u, f, dt): return u + dt * f(u) def f(u): S = u[0] I = u[1] R = u[2] new = np.array([-beta*(S[1:-1, 1:-1]*I[1:-1, 1:-1] + S[0:-2, 1:-1]*I[0:-2, 1:-1] + S[2:, 1:-1]*I[2:, 1:-1] + S[1:-1, 0:-2]*I[1:-1, 0:-2] + S[1:-1, 2:]*I[1:-1, 2:]), beta*(S[1:-1, 1:-1]*I[1:-1, 1:-1] + S[0:-2, 1:-1]*I[0:-2, 1:-1] + S[2:, 1:-1]*I[2:, 1:-1] + S[1:-1, 0:-2]*I[1:-1, 0:-2] + S[1:-1, 2:]*I[1:-1, 2:]) - gamma*I[1:-1, 1:-1], gamma*I[1:-1, 1:-1] ]) padding = np.zeros_like(u) padding[:,1:-1,1:-1] = new padding[0][padding[0] < 0] = 0 padding[0][padding[0] > 255] = 255 padding[1][padding[1] < 0] = 0 padding[1][padding[1] > 255] = 255 padding[2][padding[2] < 0] = 0 padding[2][padding[2] > 255] = 255 return padding from PIL import Image img = Image.open('popdens2.png') img = img.resize((img.size[0]/2,img.size[1]/2)) img = 255 - np.asarray(img) imgplot = plt.imshow(img) imgplot.set_interpolation('nearest') S_0 = img[:,:,1] I_0 = np.zeros_like(S_0) I_0[309,170] = 1 # patient zero R_0 = np.zeros_like(S_0) T = 900 # final time dt = 1 # time increment N = int(T/dt) + 1 # number of time-steps t = np.linspace(0.0, T, N) # time discretization # initialize the array containing the solution for each time-step u = np.empty((N, 3, S_0.shape[0], S_0.shape[1])) u[0][0] = S_0 u[0][1] = I_0 u[0][2] = R_0 import matplotlib.cm as cm theCM = cm.get_cmap("Reds") theCM._init() alphas = np.abs(np.linspace(0, 1, theCM.N)) theCM._lut[:-3,-1] = alphas for n in range(N-1): u[n+1] = euler_step(u[n], f, dt) keyFrames = [] frames = 60.0 for i in range(0, N-1, int(N/frames)): imgplot = plt.imshow(img, vmin=0, vmax=255) imgplot.set_interpolation("nearest") imgplot = plt.imshow(u[i][1], vmin=0, cmap=theCM) imgplot.set_interpolation("nearest") filename = "outbreak" + str(i) + ".png" plt.savefig(filename) keyFrames.append(filename) import imageio def create_gif(image_list, gif_name,gif_duration=0.1): frames = [] for image_name in image_list: frames.append(imageio.imread(image_name)) # Save them as frames into a gif imageio.mimsave(gif_name, frames, 'GIF', duration = gif_duration) image_list=keyFrames gif_name = 'zombie.gif' create_gif(image_list, gif_name,gif_duration=0.3) plt.clf() |
莫名点到这个站点并留下了一个评论。
请问怎么拿到中国人口密度数据图
这个真不知道
你好 这个论文的原文可以告我一下网址吗 十分感谢
都在底部的参考链接部分,这部分都是链接有原文的也有相关参考的,原文的链接要翻墙出去,否则图片显示不了,现在貌似已经不能访问了
你好 那这些人口密度图你还有吗 可以加微信交流一下吗
都在文章里面的