cadence’

HIiFi Audio Codec

Application Programming Interface (API) Definition

For Xtensa HiFi Audio Engines

Cadence Design Systems, Inc.
2655 Seely Ave.

San Jose, CA 95134
www.cadence.com

cad d ence HiFi Audio Codec API Definition

© 2016 Cadence Design Systems, Inc.
All Rights Reserved

This publication is provided “AS IS.” Cadence Design Systems, Inc. (hereafter “Cadence") does not make any warranty of any kind, either
expressed or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Information in
this document is provided solely to enable system and software developers to use our processors. Unless specifically set forth herein, there
are no express or implied patent, copyright or any other intellectual property rights or licenses granted hereunder to design or fabricate
Cadence integrated circuits or integrated circuits based on the information in this document. Cadence does not warrant that the contents of this
publication, whether individually or as one or more groups, meets your requirements or that the publication is error-free. This publication could
include technical inaccuracies or typographical errors. Changes may be made to the information herein, and these changes may be
incorporated in new editions of this publication.

© 2016 Cadence, the Cadence logo, Allegro, Assura, Broadband Spice, CDNLIVE!, Celtic, Chipestimate.com, Conformal, Connections, Denali,
Diva, Dracula, Encounter, Flashpoint, FLIX, First Encounter, Incisive, Incyte, InstallScape, NanoRoute, NC-Verilog, OrCAD, OSKit, Palladium,
PowerForward, PowerSl, PSpice, Purespec, Puresuite, Quickcycles, SignalStorm, Sigrity, SKILL, SoC Encounter, SourceLink, Spectre,
Specman, Specman-Elite, SpeedBridge, Stars & Strikes, Tensilica, TripleCheck, TurboXim, Vectra, Virtuoso, VoltageStorm, Xplorer, Xtensa,
and Xtreme are either trademarks or registered trademarks of Cadence Design Systems, Inc. in the United States and/or other jurisdictions.

OSCI, SystemC, Open SystemC, Open SystemC Initiative, and SystemC Initiative are registered trademarks of Open SystemC Initiative, Inc. in
the United States and other countries and are used with permission. All other trademarks are the property of their respective holders.

Version 1.0 Cadence IPG Tensilica Technical
Publications

= ® " ey
May 2016 c a d e n c Certified original document
May 2016

PD-16-8559-10-00 2016.05.02 11:05:29 -07'00'

HiFi Audio Codec API Definition Ca d ence

Contents
1. Introduction to the HiFi Audio Codec APIoeiiiiiii e 1
1.1 DOCUMENT OVEIVIEWciiiieiiiiiiiiie ettt e ettt e e e e e e s et e e e e e e e e sanbereeeaeeesananneees 1
2. Generic HiFi AUAIO COUEC AP.....coiuiiiii ittt e s sebeee e 2
2.1 LT g aTo] VLY, =Yg =T =T 0 0= o | 3
2 05 R AN = I @ o] = o2 S PSPPSR 3
2.1.2 APIMeMOrY TabIe ..ot 3
A I B == €1 1S) (=T | 1Y =T 0 o] o PR 3
2 I A S Yo7 - Y (o] 1 =T T Y2 EEER 3
215 INPUE BUFFEI oo e e e e e e e e e e e e e e e 3
2.1.6 OULPUL BUFFEI ..t e e e e 4
2.2 C LanNQUAgE AP ... 4
2.3 GENEIIC AP EITOIS. ..ttt ettt e e ettt e e e e e s s sanb e e e e e e e e e s e sabnbeeeaaaeeeaans 5
2.4 (©70] 191 03T T [0 £ T PR PPPPTPPRRRPPRN 6
241 StArt-uUp APl STAGE....ciiiiiiiiiiiiieiee ettt 7
2.4.2 Set Codec-Specific Parameters Stagecooviuiiiiiiiaiieiiiiiieee e 7
2.4.3 Memory AlIOCAtION STAGEuueiiiiieiiiiiiii ettt e e e e e 8
2.4.4 Initialize COUEC StAQEccvvrieeieee e iiteie e e e s e e e e s e e e e e e s e s ee e e e e e e s e nanneees 9
2.4.5 Get Codec-Specific Parameters Stage..........oocvvvreereeeiiiiiiieireee e sesieee e e e e sneees 10
2.4.6 EXECULE COUEC StAQEcuvvrieiieeeiiiiiiieiee e e e e s sstt e e e e e e e ssntn e e e e e e e s snnrnaeeeaeeeeennnneees 10
25 Files DeSCribing the AP ... et 11
2.6 HiFi APl Command REFEIENCEc.ueeiiiiiiii i 11
2.6.1 CommMON API EITOIS...ccoiiiiiiiiiiiiiiit ittt 12
2.6.2 XA_API_CMD_GET_LIB_ID_STRINGSccctttiiiiiiiie ittt 13
2.6.3 XA_API_CMD_GET_API_SIZE........ctiiiiiiieiiiii ettt 16
2.6.4 XA _API_CMD_INIT 1ottt ittt ettt st e e st e et e e e ssba e e e ssaaeeesnneeeas 17
2.6.5 XA _API_CMD_GET_MEMTABS_SIZE.......cccccoviiiiiiie it 21
2.6.6 XA_API_CMD_SET_MEMTABS_PTR....cttiiiiiiiiiiiiie it 22
2.6.7 XA_API_CMD_GET_N_MEMTABSoettiiiiiiieiiiite ittt 23
2.6.8 XA_API_CMD_GET_MEM_INFO_SIZEccccvviiiiiiieiiiiiie it 24
2.6.9 XA_API_CMD_GET_MEM_INFO_ALIGNMENTccciiiiiieiiiiieeiiiieeesninee e 25
2.6.10 XA_API_CMD_GET_MEM_INFO_TYPEccciiiiiiiiiiiie e 26
2.6.11 XA_API_CMD_GET_MEM_INFO_PRIORITYcctiiiiiiiiiiiiie e 27
2.6.12 XA_API_CMD_SET_MEM_PTR ...iiiiiiieiiiiit ettt 29
2.6.13 XA_API_CMD_INPUT_OVER......ciiiiiiiie ittt ettt 31
2.6.14 XA_API_CMD_SET_INPUT_BYTEScoitiiie ittt 32
2.6.15 XA_API_CMD_GET_CURIDX_INPUT_BUFccciiiiiiiiiiiie e 33
2.6.16 XA_API_CMD_EXECUTEciiiiiiiie ittt ittt ettt sttt e e siae e sitae e ssaae e 34

Cad d ence HiFi Audio Codec API Definition

2.6.17 XA_API_CMD_GET_OUTPUT_BYTES.......cciiiiite ettt 36

3. HiFi Audio Codec APl SPECIfICScciiiiiiieiiiie et e e 37
3.1 (O 0 [T o] o 1= Tod ol 1 L= S 38
3.2 Codec SPECIfiC Error COUEScocuiiiiiiieee ettt a e 38
3.3 Configuration ParamEterS.oiicciiieiiee e e e e e e e e s s e e e e e e s e snnrraeneees 38
3.3.1 XA _API_CMD_SET_CONFIG_PARAMcitttiteiiiitte ettt ssiieeessiiaee e snsavee e 39
3.3.2 XA API_CMD_GET_CONFIG_PARAM.......cccttt ittt siee e ete e ee e 40
3.3.3 Configuration Parameter DetailScccceeeeiiiiiiiiiiiee e 41

4., (R] (ST (=T (o1 42

HiFi Audio

Codec API Definition C 5 d enc e®

Figures

Figure 1 HiFi Audio COdec INtEITACESceiiiiiiiiiiiii e 2
Figure 2 APl Command SEqUENCE OVEIVIEW..........uuuvieeeeiiiiniieereeeessisinieeeeeeesssnnssnneneeeessssnnnnens 6
Figure 3 Flow Chart for typical command SEQUENCEcoiiiuiiiiieiae et 37
Tables

LI oS3 R o To [= o A . RSP RTTTPR 4
IV o] (SR A ol (o] g @e o [Tl o] 1 = | 5
Table 2-3 Commands for INItIAlIZALIONcooiiiiiii e 7
Table 2-4 Commands for Setting ParametersS..........ccoviiiiiiieie e e e 7
Table 2-5 Commands for Initial Table AIOCALION............cevviiiiiiiiiiiieieee e 8
Table 2-6 Commands for Memory AIOCALIONcooiiiiiiiiiee e 8
Table 2-7 Commands for INItIAlIZAtIONeeiiiiiiiiieieeeeeeeeeeeeeeeeeee e 9
Table 2-8 Commands for Getting Parametersc.oovccvviiiiee i a e 10
Table 2-9 Commands for COdeC EXECULIONcevviiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeee e eeeeeeeeeeeees 10
Table 2-10 XA_CMD_TYPE_LIB_NAME subcommandccccevriiieeiiiiieeeniiee e 13
Table 2-11 XA_CMD_TYPE_LIB_VERSION subcommandccccceevriiiireiiiiieennieee e 14
Table 2-12 XA_CMD_TYPE_API_VERSION subcommand...........cccccevevvvererereeeiereeeeereeeeennnns 15
Table 2-13 XA_API_CMD_GET_API_SIZE commandccceccuereiiiiiienniiiee i 16
Table 2-14 XA_CMD_TYPE_INIT_API_PRE_CONFIG_PARAMS subcommand................. 17
Table 2-15 XA_CMD_TYPE_INIT_API_POST_CONFIG_PARAMS subcommand 18
Table 2-16 XA_CMD_TYPE_INIT_PROCESS subcommand...........ccccceevivvveeeniineeesiiineeesnnnnns 19
Table 2-17 XA_CMD_TYPE_INIT_DONE_QUERY subcommand...........ccccceevvvvreeriiveeesnnnnn. 20
Table 2-18 XA_API_CMD_GET_MEMTABS_SIZE cOMMAaNdcccceeriiiieeniiiieeeniiee e 21
Table 2-19 XA_API_CMD_SET_MEMTABS_PTR commandccccceevivvveeeiineeesnineee s 22
Table 2-20 XA_API_CMD_GET_N_MEMTABS COMMANG........ccceerriiiieiiiiiieeaiieeeeeiieee e 23
Table 2-21 XA_API_CMD_GET_MEM_INFO_SIZE command.........c.ccccccuveeeiiinreesnineeesnnnnes 24
Table 2-22 XA_API_CMD_GET_MEM_INFO_ALIGNMENT command...........cccceeervveeennnnn. 25
Table 2-23 XA_API_CMD_GET_MEM_INFO_TYPE command...........cccceccuureerrrereesirenennnnns 26
Table 2-24 MemOory TYPE INAICESuvuviee et e e e e e e e s anrereeeee s 26
Table 2-25 XA_API_CMD_GET_MEM_INFO_PRIORITY command............ccccocveerrirveeennnnn. 27
Table 2-26 MEMOTY PrIOMLIESciicceiieieiee ettt et e e s e e e e e e st e e e e e e e annrereeeees 28

Cad d ence HiFi Audio Codec API Definition

Table 2-27 XA_API_CMD_SET_MEM_PTR Commandccccciurrriieeeeeiiiiiiieeee e 29
Table 2-28 XA_API_CMD_INPUT_OVER comMmMandcccccceeiiimiriireieeeiesiieeee e srvneeee s 31
Table 2-29 XA_API_CMD_SET_INPUT_BYTES command............cccccccceeiiiiiiireeeeeeeecireneee. 32
Table 2-30 XA_API_CMD_GET_CURIDX_INPUT_BUF command............cccccvvvveeerniinrnnnnnn. 33
Table 2-31 XA_CMD_TYPE_DO_EXECUTE subcommand.........cccccccvveeeviiiiinneeeeeeesssivnnenn 34
Table 2-32 XA_CMD_TYPE_DONE_QUERY subcommand.............ccccevvvvvvrirereierererereennennnns 35
Table 2-33 XA_API_CMD_GET_OUTPUT_BYTES commandccccceeevruvrvireeeeesssinrennnn 36
Table 3-1 XA API_CMD_SET_CONFIG_PARAM......cccctiittee ettt e e e e ssiaaee e e e e e s 39
Table 3-2 XA API_CMD_GET_CONFIG_PARAM ..ottt 40

Document Change History

Version | Changes

1.0 e Initial version

HiFi Audio Codec API Definition Cad d ence

1. Introduction to the
HiFi Audio Codec API

The HiFi Audio Codec Application Programming Interface (API) is a C-callable API that is exposed by
all the HiFi based Audio Codecs developed by Cadence. An “audio codec” is a generic term for any
audio processing component and is not restricted to encoders and decoders. The audio codec is
created using the Xtensa® Software Development Toolkit 2 and is targeted to a specific HiFi core 2.

A light-weight version of the API called the “HiFi Speech Codec API” Bl is used for smaller components
(for example, speech codecs) that do not require all the features of this API.

The API has gone through several revisions. This document covers the latest revision, that is, Revision
1.16.

1.1 Document Overview

The HiFi codec libraries implement a simple APl to encapsulate the complexities of the coding
operations and simplify the application and system implementation. Parts of the APl are common to all
the HiFi codecs, these are described in Section 2 after the introduction. Section 3 covers optional
additional features that may be implemented by a particular HiFi codec.

Cad d ence HiFi Audio Codec API Definition

2. Generic HiFi Audio Codec API

This section describes the API that is common to all the HiFi audio codec libraries. The API facilitates
any codec that works in the overall method shown in the following diagram.

Run Time Run Time
Memory Stack

HiFi Audio Engine Output
Buffer

Library
Code

Library
Data

Figure 1 HiFi Audio Codec Interfaces

Section 2.1 discusses all the types of run time memory required by the codecs. There is no state
information held in static memory, therefore a single thread can perform time division processing of
multiple codecs. Additionally, multiple threads can perform concurrent codec processing. The APl is
implemented so that the application does not need to consider the codec implementation.

Through the API, the codec requests the minimum sizes required for the input and output buffers. Prior
to executing the codec execution command, the codec requires that the input buffer be filled with data
up to the minimum size for the input buffer. However, the codec may not consume all of the data in the
input buffer. Therefore, the application must check the amount of input data consumed, copy
downwards any unused portion of the input buffer, and then continue to fill the rest of the buffer with
new data until the input buffer is again filled to the minimum size. The codec will produce data in the
output buffer. The output data must be removed from the output buffer after the codec operation.

Applications that use these libraries should not make any assumptions about the size of the PCM
“chunks” of data that each call to a codec produces or consumes. Although normally the chunks are
the exact size of the underlying frame of the specified codec algorithm, they will vary between codecs
and also between different operating modes of the same codec. The application should provide enough
data to fill the input buffer. However, some codecs do provide information, after the initialization stage,
to adjust the number of bytes of the input data they need.

HiFi Audio Codec API Definition Cad d ence

2.1 Memory Management

The HiFi audio codec API supports a flexible memory scheme and a simple interface that eases the
integration into the final application. The API allows the codecs to request the required memory for their
operations during run time.

The run time memory requirement consists primarily of the scratch and persistent memory. The codecs
also require an input buffer and output buffer for the passing of data into and out of the codec.

2.1.1 API Object

The codec API stores its data in a small structure that is passed via a handle that is a pointer to an
opaque object from the application for each API call. All state information and the memory tables that
the codec requires are referenced from this structure.

2.1.2 APl Memory Table

During the memory allocation, the application is prompted to allocate memory for each of the following
memory areas. The reference pointer to each memory area is stored in this memory table. The
reference to the table is stored in the API object.

2.1.3 Persistent Memory

This is also known as static or context memory. This is the state or history information that is maintained
from one codec invocation to the next within the same thread or instance. The codecs expect that the
contents of the persistent memory be unchanged by the system apart from the codec library itself for
the complete lifetime of the codec operation.

2.1.4 Scratch Memory

This is the temporary buffer used by the codec for processing. The contents of this memory region
should be unchanged if the actual codec execution process is active, that is, if the thread running the
codec is inside any API call. This region can be used freely by the system between successive calls to
the codec.

2.1.5 Input Buffer

This is the buffer used by the algorithm for accepting input data. Before the call to the codec, the input
buffer needs to be completely filled with input data.

Cad d ence HiFi Audio Codec API Definition

2.1.6 Output Buffer

This is the buffer in which the algorithm writes the output. This buffer needs to be made available for
the codec before its execution call. The output buffer pointer can be changed by the application between
calls to the codec. This allows the codec to write directly to the required output area. The codec will
never write more data than the requested size of the output buffer.

2.2 CLanguage AP/

A single interface function is used to access the codec, with the operation specified by command codes.
The actual API C call is defined per codec library and is specified in the codec-specific section. Each
library has a single C API call.

The C parameter definitions for every codec library are the same and are specified in the following
table:

Table 2-1 Codec API

Xa_<codec>

Description This C APl is the only access function to the audio codec.
Syntax XA_ERRORCODE xa_<codec>(

xa_codec_handle_t p_xa_module_obj,
WORD32 i_cmd,

WORD32 i_idx,

pVvVOID pv_value);

Parameters p_xa_module_obj
Pointer to the opaque API structure

i_cmd
Command.

i_idx
Command subtype or index

pv_value

Pointer to the variable used to pass in, or get out properties from
the state structure

Returns Error Code based on the success or failure of the API command

HiFi Audio Codec API Definition Cad d ence

The types used for the C API call are defined in the supplied header files as:

typedef signed int WORD32;
typedef void *pVOID;

Each time the C API for the codec is called, a pointer to a private allocated data structure is passed as
the first argument. This argument is treated as an opaque handle as there is no requirement by the
application to look at the data within the structure. The size of the structure is supplied by a specific API
command so that the application can allocate the required memory. Do not use sizeof() on the type
of the opaque handle.

Some command codes are further divided into subcommands. The command and its subcommand are
passed to the codec via the second and third arguments respectively.

When a value must be passed to a particular APl command or an API command returns a value, the
value expected or returned is passed through a pointer, which is given as the fourth argument to the C
API function. In the case of passing a pointer value to the codec, the pointer is just cast to pVOID. Itis
incorrect to pass a pointer to a pointer in these cases. An example would be when the application is
passing the codec a pointer to an allocated memory region.

Due to the similarities of the operations required to decode or encode audio streams, the
HiFi Audio Engine API allows the application to use a common set of procedures for each stage. By
maintaining a pointer to the single API function and passing the correct API object, the same code base
can be used to implement the operations required for any of the supported codecs.

2.3 Generic APl Errors

The error code returned is of type XA_ERRORCODE, which is of type signed int. The format of the
error codes are defined in the following table.

Table 2-2 Error Codes Format
31 30-15 14 — 11 10 - 6 5-0

Fatal Reserved Class Codec Sub code

The errors that can be returned from the API are subdivided into those that are fatal, which require the
restarting of the whole codec and those that are nonfatal and are provided for information to the
application.

The class of an error can be API, Config, or Execution. The API errors are concerned with the incorrect
use of the API. The Config errors are produced when the codec parameters are incorrect or outside
the supported usage. The Execution errors are returned after a call to the main encoding or decoding
process and indicate situations that have arisen due to the input data.

Cad d ence HiFi Audio Codec API Definition

2.4 Commands

This section covers the commands associated with the following command sequence overview flow
chart. For each stage of the flow chart there is a section that lists the required commands in the order
they should occur. For individual commands, definitions, and examples refer to Section 2.6. The codecs
have a common set of generic API commands that are represented by the white stages. The yellow

stages are specific to each codec.

Startup API

Set Parameters

Memory Allocation

> Initialize Codec

Get Parameters

> Execute Codec

|:| Codec-specific Operations

Figure 2 APl Command Sequence Overview

HiFi Audio Codec API Definition Cad d ence

2.4.1 Start-up API Stage

The following commands should be executed once each during start-up. The commands to get the
various identification strings from the codec library are for information only and are optional. The
command to get the API object size is mandatory as the real object type is hidden in the library and
therefore there is no type available to use with sizeof().

Table 2-3 Commands for Initialization

Command / Subcommand Description
XA_API_CMD_GET_LIB_ID_STRINGS Get the name of the library.
XA_CMD_TYPE_LIB_NAME
XA_API_CMD_GET_LIB_ID_STRINGS Get the version of the library.
XA_CMD_TYPE_LIB_VERSION
XA_API_CMD_GET_LIB_ID_STRINGS Get the version of the API.
XA_CMD_TYPE_API_VERSION
XA_API_CMD_GET_API_SIZE Get the size of the API structure.
XA _AP1_CMD_INIT Set the default values of all the
XA_CMD_TYPE_INIT_API_PRE_CONFIG_PARAMS | configuration parameters.

2.4.2 Set Codec-Specific Parameters Stage

Refer to the specific codec section for the parameters that can be set. These parameters either control
the decoding/encoding process or determine the output format of the decoder/encoder output data.

Table 2-4 Commands for Setting Parameters

Command / Subcommand Description
XA _AP1_CMD_SET_CONFIG_PARAM Set the codec-specific parameter. See the
XA_<codec>_ CONFIG_PARAM_<param_name> | codec-specific section for parameter
definitions.

Cad d ence HiFi Audio Codec API Definition

2.4.3 Memory Allocation Stage

The following commands should be executed once only after all the codec-specific parameters have
been set. The APl is passed the pointer to the memory table structure (MEMTABS) after it is allocated
by the application to the size specified. After the codec specific parameters are set, the initial codec
setup is completed by performing the post-configuration portion of the initialization to determine the
initial operating mode of the codec and assign sizes to the blocks of memory required for its operation.
The application then requests a count of the number of memory blocks.

Table 2-5 Commands for Initial Table Allocation

Command / Subcommand Description
XA _AP1_CMD_ GET_MEMTABS_ SIZE Get the size of the memory structures
to be allocated for the codec tables.
XA _AP1_CMD_SET_MEMTABS_PTR Pass the memory structure pointer
allocated for the tables.
XA _AP1_CMD_INIT Calculate the required sizes for all the

XA_CMD_TYPE_INIT_API_POST_CONFIG_PARAMS | memory blocks based on the codec-
specific parameters.

XA _API_CMD_GET_N_MEMTABS Obtain the number of memory blocks
required by the codec.

The following commands should then be executed in a loop to allocate the memory. The application
first requests all the attributes of the memory block and then allocates it. It is important to abide by the
alignment requirements. Finally, the pointer to the allocated block of memory is passed back through
the API. For the input and output buffers it is not necessary to assign the correct memory at this point.
The input and output buffer locations must be assigned before their first use in the EXECUTE stage.
The type field refers to the memory blocks, for example input or persistent, as described in Section 2.1.

Table 2-6 Commands for Memory Allocation

Command / Subcommand Description

XA_API_CMD_GET_MEM_INFO_SIZE Get the size of the memory type being
referred to by the index.

XA_AP1_CMD_GET_MEM_INFO_ALIGNMENT | Get the alignment information of the memory-
type being referred to by the index.

XA_API_CMD_GET_MEM_INFO_TYPE Get the type of memory being referred to by
the index.

XA_AP1_CMD_GET_MEM_INFO_PRIORITY | Get the allocation priority of memory being
referred to by the index.

XA _API_CMD SET _MEM_PTR Set the pointer to the memory allocated for the
referred index to the input value.

HiFi Audio Codec API Definition Cad d ence

2.4.4 Initialize Codec Stage

The following commands should be executed in a loop during initialization. These commands should
be called until the initialization is completed as indicated by the XA_CMD_TYPE_INIT_DONE_QUERY
command. In general, decoders can loop multiple times until the header information is found. However,
encoders will perform exactly one call before they signal they are done.

There is a major difference between encoding Pulse Code Modulated (PCM) data and decoding stream
data. During the initialization of a decoder, the initialization task reads the input stream to discover the
parameters of the encoding. However, for an encoder there is no header information in PCM data.
Even so, the encoder application is still required to perform the initialization described in this stage.
However, encoders will not consume data during initialization. Further, this has an implication in that
some encoders provide parameters that can be used to modify the input buffer data requirements after
the initialization stage. These modifications will always be a reduction in the size. The application only
needs to provide the reduced amount per execution of the main codec process.

In general, the application will signal to the codec the number of bytes available in the input buffer and
signal if it is the last iteration. It is not normal to hit the end of the data during initialization, but in the
case of a decoder being presented with a corrupt stream it will allow a graceful termination. After the
codec initialization is called, the application will ask for the number of bytes consumed. The application
can also ask if the initialization is complete, it is advisable to always ask, even in the case of encoders
that require only a single pass. A decoder application must keep iterating until it is complete.

Table 2-7 Commands for Initialization

Command / Subcommand Description

XA _API_CMD_SET_ INPUT_BYTES Set the number of bytes available in the input
buffer for initialization.

XA_AP1_CMD_INPUT_OVER Signal to the codec the end of the bit stream.

XA _AP1_CMD_INIT Search for the valid header, does header

XA _CMD_TYPE_INIT_PROCESS decoding to get the parameters and initializes
state and configuration structures.

XA_API1_CMD_INIT Check if the initialization process has completed.

XA_CMD_TYPE_INIT_DONE_QUERY

XA_AP1_CMD_GET_CURIDX_INPUT_BUF | Get the number of input buffer bytes consumed
by the last initialization.

Cad d ence HiFi Audio Codec API Definition

2.4.5 Get Codec-Specific Parameters Stage

Finally, after the initialization, the codec can supply the application with information. In the case of
decoders this would be the parameters it has extracted from the encoded header in the stream.

Table 2-8 Commands for Getting Parameters

Command / Subcommand Description

XA _API_CMD_GET_CONFIG_PARAM Get the value of the parameter from the
XA_<codec>_CONFIG_PARAM_<param_name> | codec. See the codec-specific section for
parameter definitions.

2.4.6 Execute Codec Stage

The following commands should be executed continuously until the data is exhausted or the application
wants to terminate the process. This is similar to the initialization stage, but includes support for the
management of the output buffer. After each iteration, the application requests how much data is written
to the output buffer. This amount is always limited by the size of the buffer requested during the memory
block allocation. (To alter the output buffer position use XA_AP1_CMD_SET_MEM_PTR with the output
buffer index.)

Table 2-9 Commands for Codec Execution

Command / Subcommand Description
XA _API_CMD_INPUT_OVER Signal the end of bit stream to the library.
XA _API_CMD_SET_ INPUT_BYTES Set the number of bytes available in the input

buffer for the execution.

XA _API_CMD_EXECUTE Execute the codec thread.
XA_CMD_TYPE_DO_EXECUTE

XA_AP1_CMD_EXECUTE Check if the end of stream has been reached.
XA CMD_TYPE_DONE_QUERY

XA_API_CMD_GET_OUTPUT_BYTES Get the number of bytes output by the codec in
the last frame.

XA_AP1_CMD_GET_CURIDX_INPUT_BUF | Get the number of input buffer bytes consumed
by the last call to the codec.

HiFi Audio Codec API Definition Cad d ence

2.5 Files Describing the AP/

The common include files (include)

m Xxa_apicmd_standards.h

The command definitions for the generic API calls
m Xa_error_standards.h

The macros and definitions for all the generic errors
m xa_memory_standards.h

The definitions for memory block allocation
m Xxa_type_def.h

All the types required for the API calls

2.6 HIFIi APl Command Reference

In this section, the different commands are described along with their associated subcommands. The
only commands missing are those specific to a particular codec. These commands are generally the
SET and GET commands for the operational parameters.

The commands are listed below in sections based on their primary commands type (i_cmd). Each
section contains a table for every subcommand. In the case of no subcommands the one primary
command is presented.

The commands are followed by an example C call. Along with the call there is a definition of the variable
types used. This is to avoid any confusion over the type of the 4th argument. The examples are not
complete C code extracts as there is no initialization of the variables before they are used.

The errors returned by the API are detailed after each of the command definitions. However, there are
a few errors that are common to all the API commands; these are listed in Section 2.6.1. All the errors
possible from the codec-specific commands will be defined in the codec-specific sections. Further, the
codec-specific sections also cover the Execution errors that occur during the initialization or execution
calls to the API.

11

Cad d ence HiFi Audio Codec API Definition

2.6.1 Common API Errors

These errors are fatal and should not be encountered during normal application operation. They signal
that a serious error has occurred in the application that is calling the codec.

m XA_API_FATAL_MEM_ALLOC
p_xa_module_obj is NULL

= XA_API_FATAL_MEM_ALIGN
p_xa_module_obj is not aligned to 4 bytes

= XA_API_FATAL_INVALID_CMD
i_cmd is not a valid command

= XA_API_FATAL_INVALID_CMD_TYPE

i_idx isinvalid for the specified command (i_cmd)

HiFi Audio Codec API Definition Cad d ence

2.6.2 XA_API_CMD_GET_LIB_ID_STRINGS

Table 2-10 XA_CMD_TYPE_LIB_NAME subcommand

Subcommand XA _CMD_TYPE_LIB_NAME

Description This subcommand obtains the name of the library in the form of a
string. The maximum length of the string that the library will provide
is 30 bytes. Therefore the application shall pass a pointer to a buffer
of a minimum size of 30 bytes. This command is optional.

Actual Parameters p_xa_module_obj
NULL

i_cmd
XA_API1_CMD_GET_LIB_ID_STRINGS

i_idx
XA_CMD_TYPE_LIB_NAME

pv_value

process name — Pointer to a character buffer in which the name
of the library is returned

Restrictions None
Note No codec object is required due to the name being static data in the codec library.
Example

char process_name[30];

res = (*api_func) (NULL,
XA_API1_CMD_GET_LIB_ID_STRINGS,
XA_CMD_TYPE_LIB_NAME,
(pVOID) process_name);

Errors
m XA_API_FATAL_MEM_ALLOC
This error is suppressed as p_xa_module_obj is NULL

m XA_API_FATAL_MEM_ALLOC
pv_value is NULL

Cad d ence HiFi Audio Codec API Definition

Table 2-11 XA_CMD_TYPE_LIB_VERSION subcommand

Subcommand XA_CMD_TYPE_LIB_VERSION

Description This subcommand obtains the version of the library in the form of a
string. The maximum length of the string that the library will provide
is 30 bytes. Therefore the application shall pass a pointer to a buffer
of a minimum size of 30 bytes. This command is optional.

Actual Parameters _xa_module_obj
NULL

i_cmd
XA_API1_CMD_GET_LIB_ID_STRINGS

i_idx
XA_CMD_TYPE_LIB_VERSION

pv_value

lib_version - Pointer to a character buffer in which the version
of the library is returned

Restrictions None
Note No codec object is required due to the version being static data in the codec library.
Example

char lib_version[30];

res = (*api_func) (NULL,
XA_API_CMD_GET_LIB_ID_STRINGS,
XA_CMD_TYPE_LIB_VERSION,
(pvOID) lib_version);

Errors
m XA_API_FATAL_MEM_ALLOC

This error is suppressed as p_xa_module_obj is NULL

m XA_API_FATAL_MEM_ALLOC
pv_value is NULL

HiFi Audio Codec API Definition Cad d ence

Table 2-12 XA_CMD_TYPE_API_VERSION subcommand

Subcommand XA_CMD_TYPE_API_VERSION

Description This subcommand obtains the version of the API in the form of a
string. The maximum length of the string that the library will provide
is 30 bytes. Therefore the application shall pass a pointer to a buffer
of a minimum size of 30 bytes. This command is optional.

Actual Parameters _xa_module_obj
NULL

i_cmd
XA_API1_CMD_GET_LIB_ID_STRINGS

i_idx
XA_CMD_TYPE_API_VERSION

pv_value

api_version — Pointer to a character buffer in which the version
of the APl is returned

Restrictions None
Note No codec object is required due to the version being static data in the codec library.
Example

char api_version[30];

res = (*api_func) (NULL,
XA_API_CMD_GET_LIB_ID_STRINGS,
XA_CMD_TYPE_API_VERSION,
(pVvOID) api_version);

Errors

= XA_API_FATAL_MEM_ALLOC

This error is suppressed as p_xa_module_obj is NULL

= XA_API_FATAL_MEM_ALLOC

pv_value is NULL

Cad d ence HiFi Audio Codec API Definition

2.6.3 XA_API_CMD_GET_API_SIZE

Table 2-13 XA_API_CMD_GET_API_SIZE command

Subcommand None

Description This command obtains the size of the API structure, in order to
allocate memory for the API structure. The pointer to the API size
variable is passed and the API returns the size of the structure in
bytes. The API structure is used for the interface and is persistent.

Actual Parameters p_xa_module_obj
NULL

i_cmd
XA_API_CMD_GET_API_SIZE

i_idx
NULL
pv_value
&api_size - Pointer to the API size variable
Restrictions The application will allocate memory with an alignment of 4 bytes.
Note No codec object is required due to the size being fixed for the codec library.
Example

unsigned int api_size;

res = (*api_func) (NULL,
XA_API_CMD_GET_API_SIZE,
0,
(pVOID) &api_size);

Errors

= XA_API_FATAL_MEM_ALLOC

This error is suppressed as p_xa_module_obj is NULL

m XA_API_FATAL_MEM_ALLOC
pv_value is NULL

HiFi Audio Codec API Definition Cad d ence

2.6.4 XA_API_CMD_INIT

Table 2-14 XA_CMD_TYPE_INIT_API_PRE_CONFIG_PARAMS subcommand

Subcommand XA_CMD_TYPE_INIT_API_PRE_CONF IG_PARAMS

Description This subcommand sets the default value of the configuration
parameters. The configuration parameters can then be altered by
using one of the codec-specific parameter setting commands. Refer
to the codec-specific section.

Actual Parameters p_xa_module_obj
api_obj - Pointer to API Structure

i_cmd

XA_API_CMD_INIT

i_idx
XA_CMD_TYPE_INIT_API_PRE_CONFIG_PARAMS

pv_value
NULL

Restrictions None

Example

res = (*api_func)(api_obj,
XA_API_CMD_INIT,
XA_CMD_TYPE_INIT_API_PRE_CONFIG_PARANMS,
NULL);

Errors

= Common API Errors

Cad d ence HiFi Audio Codec API Definition

Table 2-15 XA_CMD_TYPE_INIT_API_POST_CONFIG_PARAMS subcommand

Subcommand XA_CMD_TYPE_INIT_API_POST_CONFIG_PARAMS

Description This subcommand is used to calculate the sizes of all the memory
blocks required by the application. It should occur after the codec-
specific parameters have been set.

Actual Parameters p_xa_module_obj
api_obj - Pointer to API Structure

i_cmd
XA_API_CMD_INIT

i_idx
XA_CMD_TYPE_INIT_API_POST_CONFI1G_PARAMS

pv_value
NULL

Restrictions None

Example

res = (*api_func)(api_obj,
XA_API_CMD_INIT,
XA_CMD_TYPE_INIT_API_POST_CONFIG_PARANMS,
NULL);

Errors

m Common API Errors

HiFi Audio Codec API Definition

cadence

Table 2-16 XA_CMD_TYPE_INIT_PROCESS subcommand

Subcommand

XA_CMD_TYPE_INIT_PROCESS

Description

This subcommand initializes the codec. In the case of a decoder, it
searches for the valid header and performs the header decoding to
get the encoded stream parameters. This command is part of the
initialization loop. It must be repeatedly called until the codec
signals it has finished. In the case of an encoder, the initialization of
codec is performed. No output data is created during initialization.

Actual Parameters

p_xa_module_obj
api_obj - Pointer to API Structure

i_cmd

XA_API1_CMD_INIT

i_idx
XA_CMD_TYPE_INIT_PROCESS

pv_value
NULL
Restrictions None
Example

res = (*api_func)(api_obj,
XA_API_CMD_INIT,
XA_CMD_TYPE_INIT_PROCESS,
NULL);

Errors

m Common API Errors

m See the codec-specific section for execution errors

19

Cad d ence HiFi Audio Codec API Definition

Table 2-17 XA_CMD_TYPE_INIT_DONE_QUERY subcommand
Subcommand XA_CMD_TYPE_INIT_DONE_QUERY

Description This subcommand checks to see if the initialization process has
completed. If it has, the flag value is set to 1; otherwise it is set to O.
A pointer to the flag variable is passed as an argument.

Actual Parameters p_xa_module_obj
api_obj - Pointer to API Structure

i_cmd
XA_API1_CMD_INIT

i_idx
XA_CMD_TYPE_INIT_DONE_QUERY

pv_value

&init_done - Pointer to a flag that indicates the completion of
initialization process

Restrictions None

Example

unsigned int init_done;

res = (*api_func)(api_obj,
XA_API_CMD_INIT,
XA_CMD_TYPE_INIT_DONE_QUERY,
(pVvOID) &init_done);

Errors

m Common API Errors

= XA_API_FATAL_MEM_ALLOC

pv_value is NULL

HiFi Audio Codec API Definition

cadence

2.6.5 XA_API_CMD_GET_MEMTABS_SIZE

Table 2-18 XA_API_CMD_GET_MEMTABS_SIZE command

Subcommand

None

Description

This command obtains the size of the table used to hold the
memory blocks required for the codec operation. The API returns
the total size of the required table. A pointer to the size variable is
sent with this APl command and the codec writes the value to the
variable.

Actual Parameters

p_xa_module_obj
api_obj - Pointer to API Structure

i_cmd
XA_API1_CMD_GET_MEMTABS_SIZE

i_idx
NULL

pv_value

&proc_mem_tabs_size - Pointer to the memory table size
variable

Restrictions

The application shall allocate memory with an alignment of 4 bytes.

Example

unsigned int proc_mem_tabs_size;
res = (*api_func)(api_obj,
XA_API_CMD_GET_MEMTABS_SIZE,

0,

(pVOID) &proc_mem_tabs_size);

Errors

m Common API Errors

= XA_API_FATAL_MEM_ALLOC

pv_value is NULL

21

Cad d ence HiFi Audio Codec API Definition

2.6.6 XA_API_CMD_SET_MEMTABS_PTR

Table 2-19 XA_API_CMD_SET_MEMTABS_PTR command

Subcommand None

Description This command sets the memory structure pointer in the library to
the allocated value.

Actual Parameters p_xa_module_obj
api_obj - Pointer to API Structure

i_cmd
XA_AP1_CMD_SET_MEMTABS_PTR

i_idx
NULL
pv_value
alloc — Pointer to memory table structure.
Restrictions The application will allocate memory with an alignment of 4 bytes.
Example

int * alloc; //alloc is a pointer to the allocated memory
res = (*api_func)(api_obj,

XA_API1_CMD_SET_MEMTABS_PTR,

0,

(pvOoID) alloc);

Errors
= Common API Errors
m XA_API_FATAL_MEM_ALLOC
pv_value is NULL

= XA_API_FATAL_MEM_ALIGN

pv_value is not aligned to 4 bytes

HiFi Audio Codec API Definition

cadence

2.6.7 XA_API_CMD_GET_N_MEMTABS

Table 2-20 XA_API_CMD_GET_N_MEMTABS command

Subcommand

None

Description

This command obtains the number of memory blocks needed by the
codec. This value is used as the iteration counter for the allocation
of the memory blocks. A pointer to each memory block will be
placed in the previously allocated memory tables. The pointer to the
variable is passed to the API and the codec writes the value to this
variable.

Actual Parameters

p_xa_module_obj
api_obj - Pointer to API Structure

i_cmd
XA_AP1_CMD_GET_N_MEMTABS

i_idx
NULL
pv_value
&n_mems — Pointer to the memory block count variable
Restrictions None
Example

int n_mems;
res = (*api

_func)(api_obj,

XA_AP1_CMD_GET_N_MEMTABS,

0 E]
(pVvol

Errors

D) &n_mems);

m Common API Errors

= XA_API_FATAL_MEM_ALLOC

pv_value is NULL

23

Cad d ence HiFi Audio Codec API Definition

2.6.8 XA_API_CMD_GET_MEM_INFO_SIZE

Table 2-21 XA_API_CMD_GET_MEM_INFO_SIZE command

Subcommand Memory index

Description This command obtains the size of the memory type being referred
to by the index. The size in bytes is returned in the variable pointed
to by the final argument. Note this is the actual size needed, not
including any alignment packing space.

Actual Parameters p_xa_module_obj
api_obj - Pointer to API Structure

i_cmd
XA_API1_CMD_GET_MEM_INFO_SI1ZE
i_idx

Index of the memory

pv_value
&size - Pointer to the memory size variable
Restrictions None
Example

int index;

unsigned int size;

res = (*api_func)(api_obj,
XA_API_CMD_GET_MEM_INFO_SIZE,
index,
(pVvOID) &size);

Errors
= Common API Errors
m XA_API_FATAL_MEM_ALLOC
pv_value is NULL

= XA_API_FATAL_INVALID_CMD_TYPE

i_idx is aninvalid memory block number; valid block numbers obey the relation 0 <= i_idx
< n_mems (See XA_API_CMD_GET_N_MEMTABS)

HiFi Audio Codec API Definition

cadence

2.6.9 XA_API_CMD_GET_MEM_INFO_ALIGNMENT

Table 2-22 XA_API_CMD_GET_MEM_INFO_ALIGNMENT command

Subcommand

Memory index

Description

This command gets the alignment information of the memory-type
being referred to by the index. The alignment required in bytes is
returned to the application.

Actual Parameters

p_xa_module_obj
api_obj - Pointer to API Structure

i_cmd

XA_API_CMD_GET_MEM_INFO_AL IGNMENT
i_idx

Index of the memory

pv_value
&alignment - Pointer to the alignment info variable
Restrictions None
Example

int index;

unsigned int alignment;

res = (*api_func)(api_obj,
XA_AP1_CMD_GET_MEM_INFO_AL IGNMENT,
index,
(pVvOID) &alignment);

Errors

= Common API Errors

= XA_API_FATAL_MEM_ALLOC

pv_value is NULL

= XA_API_FATAL_INVALID_CMD_TYPE

i_idx is aninvalid memory block number; valid block numbers obey the relation 0 <= i_idx
< n_mems (See XA_API_CMD_GET_N_MEMTABS)

25

Cad d ence HiFi Audio Codec API Definition

2.6.10 XA_API_CMD_GET_MEM_INFO_TYPE

Table 2-23 XA_API_CMD_GET_MEM_INFO_TYPE command

Subcommand Memory index

Description This command gets the type of memory being referred to by the index.

Actual Parameters | p_xa_module_obj
api_obj - Pointer to API Structure

i_cmd
XA_API1_CMD_GET_MEM_INFO_TYPE
i_idx

Index of the memory

pv_value
&type - Pointer to the memory type variable
Restrictions None
Example
int index;

unsigned int type;

res = (*api_func)(api_obj,
XA_API_CMD_GET_MEM_INFO_TYPE,
index,
(pVOID) &type);

Table 2-24 Memory Type Indices

Type Description
XA_MEMTYPE_PERSIST Persistent memory
XA_MEMTYPE_SCRATCH Scratch memory
XA_MEMTYPE_INPUT Input Buffer
XA_MEMTYPE_OUTPUT Output Buffer

Errors
= Common API Errors
m XA_API_FATAL_MEM_ALLOC
pv_value is NULL

= XA_API_FATAL_INVALID_CMD_TYPE

i_idx is aninvalid memory block number; valid block numbers obey the relation 0 <= i_idx
< n_mems (See XA_API_CMD_GET_N_MEMTABS)

HiFi Audio Codec API Definition Cad d ence

2.6.11 XA_API_CMD_GET_MEM_INFO_PRIORITY

Table 2-25 XA_API_CMD_GET_MEM_INFO_PRIORITY command

Subcommand Memory index

Description This command gets the allocation priority of memory being referred
to by the index. (The meaning of the levels is defined on a codec-
specific basis. This command returns a fixed dummy value unless
the codec defines it otherwise.)

Actual Parameters p_xa_module_obj
api_obj - Pointer to API Structure

i_cmd
XA_API1_CMD_GET_MEM_INFO_PRIORITY
i_idx

Index of the memory

pv_value
&priority - Pointer to the memory priority variable
Restrictions None
Example

int index;

unsigned int priority;

res = (*api_func)(api_obj,
XA_API_CMD_GET_MEM_INFO_PRIORITY,
index,
(pVvOID) &priority);

Cad d ence HiFi Audio Codec API Definition

Table 2-26 Memory Priorities

Priority Type

0 XA_MEMPRIORITY_ANYWHERE
XA_MEMPRIORITY_LOWEST
XA_MEMPRIORITY_LOW
XA_MEMPRIORITY_NORM
XA_MEMPRIORITY_ABOVE_NORM
XA_MEMPRIORITY_HIGH
XA_MEMPRIORITY_HIGHER
XA_MEMPRIORITY_CRITICAL

N o o~ W N P

Errors
= Common API Errors
m XA_API_FATAL_MEM_ALLOC
pv_value is NULL

= XA_API_FATAL_INVALID_CMD_TYPE

i_idx is aninvalid memory block number; valid block numbers obey the relation 0 <= i_idx
< n_mems (See XA_API_CMD_GET_N_MEMTABS)

HiFi Audio Codec API Definition Cad d ence

2.6.12 XA_API_CMD_SET_MEM_PTR

Table 2-27 XA_API_CMD_SET_MEM_PTR Command

Subcommand Memory index

Description This command passes to the codec the pointer to the allocated
memory. This is then stored in the memory tables structure
allocated earlier. For the input and output buffers, it is legitimate to
execute this command during the main codec loop.

Actual Parameters p_xa_module_obj
api_obj - Pointer to API Structure

i_cmd
XA_API1_CMD_SET_MEM_PTR
i_idx

Index of the memory

pv_value

alloc - Pointer to the memory buffer allocated
Restrictions The pointer must be correctly aligned to the requirements.
Example

int index;
void * alloc; //alloc is a pointer to the aligned memory
res = (*api_func)(api_obj,

XA_API_CMD_SET_MEM_PTR,

index,

(pVvOID) alloc);

Cad d ence HiFi Audio Codec API Definition

Errors
= Common API Errors
m XA_API_FATAL_MEM_ALLOC
pv_value is NULL

= XA_API_FATAL_INVALID_CMD_TYPE

i_idx is aninvalid memory block number; valid block numbers obey the relation 0 <= i_idx
< n_mems (See XA_API_CMD_GET_N_MEMTABS)

= XA_API_FATAL_MEM_ALIGN

pv_value is not of the required alignment for the requested memory block

HiFi Audio Codec API Definition Cad d ence

2.6.13 XA_API_CMD_INPUT_OVER

Table 2-28 XA_API_CMD_INPUT_OVER command

Subcommand None

Description This command tells the codec that the end of the input data has
been reached. This situation can arise both in the initialization loop
and the execute loop.

Actual Parameters p_xa_module_obj
api_obj - Pointer to API Structure

i_cmd
XA_AP1_CMD_INPUT_OVER

i_idx
NULL

pv_value
NULL

Restrictions None

Example

res = (*api_func)(api_obj,
XA_API1_CMD_INPUT_OVER,
0,
NULL);

Errors

= Common API Errors

Cad d ence HiFi Audio Codec API Definition

2.6.14 XA_API_CMD_SET_INPUT_BYTES

Table 2-29 XA_API_CMD_SET_INPUT_BYTES command

Subcommand None

Description This command sets the number of bytes available in the input buffer
for the codec. It is used both in the initialization loop and execute
loop. It is the number of valid bytes from the buffer pointer. It should
be at least the minimum buffer size requested unless this is the end
of the data.

Actual Parameters p_xa_module_obj
api_obj - Pointer to API Structure

i_cmd
XA_API1_CMD_SET_INPUT_BYTES

i_idx
NULL
pv_value
&buff_size - Pointer to the input buffer size variable
Restrictions None
Example

int buff _size;

res = (*api_func)(api_obj,
XA_API_CMD_SET_INPUT_BYTES,
0,
(pVOID) &buff _size);

Errors

m Common API Errors

m XA_API_FATAL_MEM_ALLOC
pv_value is NULL

HiFi Audio Codec API Definition Cad d ence

2.6.15 XA_API_CMD_GET_CURIDX_INPUT_BUF

Table 2-30 XA_API_CMD_GET_CURIDX_INPUT_BUF command

Subcommand None

Description This command gets the number of input buffer bytes consumed by
the codec. It is used both in the initialization loop and execute loop.

Actual Parameters p_xa_module_obj
api_obj - Pointer to API Structure

i_cmd
XA_AP1_CMD_GET_CURIDX_INPUT_BUF

i_idx
NULL
pv_value
&bytes_consumed - Pointer to the bytes consumed variable
Restrictions None
Example

int bytes consumed;

res = (*api_func)(api_obj,
XA_API_CMD_GET_CURIDX_INPUT_BUF,
05
(pVOID) &bytes consumed);

Errors
= Common API Errors

m XA_API_FATAL_MEM_ALLOC
pv_value is NULL

Cad d ence HiFi Audio Codec API Definition

2.6.16 XA_API_CMD_EXECUTE

Table 2-31 XA_CMD_TYPE_DO_EXECUTE subcommand

Subcommand XA_CMD_TYPE_DO_EXECUTE
Description This command executes the codec.
Actual Parameters p_xa_module_obj

api_obj - Pointer to API Structure

i_cmd
XA_API1_CMD_EXECUTE

i_idx
XA_CMD_TYPE_DO_EXECUTE

pv_value
NULL

Restrictions None

Example

res = (*api_func)(api_obj,
XA_API1_CMD_EXECUTE,
XA_CMD_TYPE_DO_EXECUTE,
NULL);

Errors
= Common API Errors

m See the codec-specific section for execution errors

HiFi Audio Codec API Definition Cad d ence

Table 2-32 XA_CMD_TYPE_DONE_QUERY subcommand

Subcommand XA_CMD_TYPE_DONE_QUERY

Description This command checks to see if the end of processing has been
reached. If it has, the flag value is set to 1; otherwise it is set to 0.
The pointer to the flag is passed as an argument. Processing by the
codec can continue for several invocations of the DO_EXECUTE
command after the last input data has been passed to the codec,
thus the application should not assume that the codec has finished
generating all its output until so indicated by this command.

Actual Parameters p_xa_module_obj
api_obj - Pointer to API Structure

i_cmd
XA_AP1_CMD_EXECUTE
i_idx
XA_CMD_TYPE_DONE_QUERY

pv_value
&Flag - Pointer to the done query flag variable
Restrictions None
Example
int flag;

res = (*api_func)(api_obj,
XA_API1_CMD_EXECUTE,
XA_CMD_TYPE_DONE_QUERY,
(pvoID) &flag);

Errors
m Common API Errors

= XA_API_FATAL_MEM_ALLOC

pv_value is NULL

Cad d ence HiFi Audio Codec API Definition

2.6.17 XA_API_CMD_GET_OUTPUT_BYTES

Table 2-33 XA_API_CMD_GET_OUTPUT_BYTES command

Subcommand None

Description This command obtains the number of bytes output by the codec
during the last execution.

Actual Parameters p_xa_module_obj
api_obj - Pointer to API Structure

i_cmd
XA_AP1_CMD_GET_OUTPUT_BYTES

i_idx
NULL
pv_value
&out_bytes - Pointer to the output bytes variable
Restrictions None
Example

int out bytes;

res = (*api_func)(api_obj,
XA_API_CMD_GET_OUTPUT_BYTES,
0,
(pVvOID) &out _bytes);

Errors

= Common API Errors

m XA_API_FATAL_MEM_ALLOC
pv_value is NULL

HiFi Audio Codec API Definition

cadence

3. HiFi Audio Codec API Specifics

LIB_NAME
LIB_VERSION
AP|_VERSION

GET_API_SIZE
Allocate with alignment of 4 bytes

v

INIT_API_PRE_CONFIG_PARAMS
Set required config parameters
GET_MEMTABS_SIZE
Allocate with alignment of 4 bytes
SET_MEMTABS_PTR
INIT_API_POST_CONFIG_PARAMS
n_mem<-GET_N_MEMTABS

v

GET_MEM_INFO_SIZE

N GET_MEM_INFO_ALIGNMENT
GET_MEM_INFO_TYPE

GET_MEM_INFO_PRIORITY

L

Allocate with required alignment
SET_MEM_PTR

Completed
n_mem times

Yes

The flow chart of a typical APl command sequence is provided below.

Set appropriate configuration

) INIT_PROCESS

ui_init_done <-INIT_DONE_QUERY

No

ui_init_done=17?

Yes

Get required configuration parameters

v

Read from input device
Indicate INPUT_OVER if end of input
SET_INPUT_BYTES

> DO_EXECUTE

ui_exec_done<- DONE_QUERY
GET_OUTPUT_BYTES
GET_CURIDX_INPUT BUF
Write to output device

Figure 3 Flow Chart for Typical Command Sequence

37

Cad d ence HiFi Audio Codec API Definition

A HiFi Audio Codec must conform to the generic codec API. However, it can have optional codec-
specific additions.

Section 3.1 shows the files and details of API calls that may be specific to a particular codec. Section
3.2 describes codec specific error codes. Configuration parameters, usage notes, and codec specific
commands are described in Section 3.3.

3.1 Codec Specific Files

The codec API is required to be delivered in the form of a single header file (typically called
xa_<codec>_api -h) and a single library file (typically called xa_<codec>.a). The library would be
built using a specific version of the Xtensa tools on a specific core. As described in Table 2-1, the library
will expose a single entry point.

3.2 Codec Specific Error Codes

Other than common error codes explained in Section 2, the codec may also report error codes specific
to itself. These could be fatal or non-fatal errors.

3.3 Configuration Parameters

The codec may allow the application to write or read codec parameters using the SET CONFIG API
(see Section 3.3.1). Similarly, the application can read codec parameters using the GET CONFIG API
(see Section 3.3.2).

HiFi Audio Codec API Definition Cad d ence

3.3.1 XA_API_CMD_SET_CONFIG_PARAM

The table below provides the generic format to set a codec parameter, denoted by XXX.

Table 3-1 XA_API_CMD_SET_CONFIG_PARAM

Subcommand XA_<CODEC>_CONFI1G_PARAM_XXX

Description Sets the codec parameter XXX.

Some of the codec parameters may have a default value and need
not set explicitly.

Actual Parameters p_xa_module_obj
api_obj - Pointer to API Structure

i_cmd
XA_AP1_CMD_SET_CONFI1G_PARAM

i_idx
XA_<CODEC>_CONFIG_PARAM_XXX

pv_value
& value: Pointer to the parameter variable.

Restrictions The codec may impose restrictions on when a particular parameter
can be set.

For example, a particular parameter may have an impact on the
amount of memory that is required. Such a parameter would need to
be set before the call to
XA_CMD_TYPE_INIT_API_POST_CONFIG_PARAMS

Example

Example to set the sampling rate for the hypothetical encoder GENERI1C_ENC:
int sample_rate = 48000;
res =(*api_func)(api_obj,
XA_AP1_CMD_SET_CONFIG_PARAM,
XA_GENERIC_ENC_CONFIG_PARAM_SAMPLE_RATE,
(pVOID) &sample_rate);
Here XXX is ‘SAMPLE_RATE'.

Errors

= Common API Errors

m Possible codec-specific API Errors

39

Cad d ence HiFi Audio Codec API Definition

3.3.2 XA_AP|_CMD_GET _CONFIG_PARAM

The table below provides the generic format to get the value of codec parameter, denoted by XXX.

Table 3-2 XA_API_CMD_GET_CONFIG_PARAM

Subcommand XA_<CODEC>_CONFI1G_PARAM_XXX

Description Gets the value of codec parameter XXX.

Reading a codec parameter before it is explicitly set returns the
default value.

Actual Parameters p_xa_module_obj
api_obj - Pointer to API Structure

i_cmd
XA_API1_CMD_GET_CONFI1G_PARAM

i_idx
XA_<CODEC>_CONFIG_PARAM_XXX

pv_value
& value: Pointer to the parameter variable.

Restrictions The codec may impose restrictions on when a particular parameter
can be read.

For example, a particular parameter may be valid only after the first
frame is processed. Such a parameter would need to be read after
the first successful call to XA_CMD_TYPE_EXEC_PROCESS.

Example

Example to read the sampling rate for the hypothetical encoder GENERIC_ENC:

int sample_rate;

res =(*api_func)(api_obj,
XA_API_CMD_GET_CONFI1G_PARAM,
XA_GENERIC_ENC_CONFIG_PARAM_SAMPLE_RATE,
(pVOID) &sample_rate);

Here XXX is ‘SAMPLE_RATE'.

Errors

m Common API Errors

m Possible codec-specific API Errors

HiFi Audio Codec API Definition Cad d ence

3.3.3 Configuration Parameter Details

The Programmer’s Guide for a specific codec describes the parameters that are supported by the
XA_AP1_CMD_SET_CONFIG_PARAM and XA_API_CMD_GET_CONFIG_PARAM functions described

above.
The following information is typically included:

® Sub-command: Index that identifies the parameter (i_idx).

m Description: Describes the parameter.

® RW: Indicates if the parameter can be read (GET) and/or written (SET).

m Value type: A pointer (pv_value) to a variable of this type is to be passed.
® Range: Allowed values for the parameter.

m Default: Default value of the parameter. This is the value of the parameter, if you do not change
or set it.

41

Cad d ence HiFi Audio Codec API Definition

4. References

[1] Xtensa® Software Development Toolkit User’s Guide.
<TOOLS_ PATH>\XtDevTools\downloads\<sTOOLS VERSION>\docs\sw_dev_toolkit
_ug.pdf

[2] HiFi Audio Engine User’'s Guide

<TOOLS_PATH>\XtDevTools\downloads\<sTOOLS_VERSION>\docs\HiFi*_ug.pdf

[3] HiFi Speech Codec API Definition

HiFi-Speech-Codec-API-Definition.docx, available in the same directory.

	HiFi Audio Codec
	1. Introduction to the HiFi Audio Codec API
	1.1 Document Overview

	2. Generic HiFi Audio Codec API
	2.1 Memory Management
	2.1.1 API Object
	2.1.2 API Memory Table
	2.1.3 Persistent Memory
	2.1.4 Scratch Memory
	2.1.5 Input Buffer
	2.1.6 Output Buffer

	2.2 C Language API
	2.3 Generic API Errors
	2.4 Commands
	2.4.1 Start-up API Stage
	2.4.2 Set Codec-Specific Parameters Stage
	2.4.3 Memory Allocation Stage
	2.4.4 Initialize Codec Stage
	2.4.5 Get Codec-Specific Parameters Stage
	2.4.6 Execute Codec Stage

	2.5 Files Describing the API
	2.6 HiFi API Command Reference
	2.6.1 Common API Errors
	2.6.2 XA_API_CMD_GET_LIB_ID_STRINGS
	2.6.3 XA_API_CMD_GET_API_SIZE
	2.6.4 XA_API_CMD_INIT
	2.6.5 XA_API_CMD_GET_MEMTABS_SIZE
	2.6.6 XA_API_CMD_SET_MEMTABS_PTR
	2.6.7 XA_API_CMD_GET_N_MEMTABS
	2.6.8 XA_API_CMD_GET_MEM_INFO_SIZE
	2.6.9 XA_API_CMD_GET_MEM_INFO_ALIGNMENT
	2.6.10 XA_API_CMD_GET_MEM_INFO_TYPE
	2.6.11 XA_API_CMD_GET_MEM_INFO_PRIORITY
	2.6.12 XA_API_CMD_SET_MEM_PTR
	2.6.13 XA_API_CMD_INPUT_OVER
	2.6.14 XA_API_CMD_SET_INPUT_BYTES
	2.6.15 XA_API_CMD_GET_CURIDX_INPUT_BUF
	2.6.16 XA_API_CMD_EXECUTE
	2.6.17 XA_API_CMD_GET_OUTPUT_BYTES

	3. HiFi Audio Codec API Specifics
	3.1 Codec Specific Files
	3.2 Codec Specific Error Codes
	3.3 Configuration Parameters
	3.3.1 XA_API_CMD_SET_CONFIG_PARAM
	3.3.2 XA_API_CMD_GET_CONFIG_PARAM
	3.3.3 Configuration Parameter Details

	4. References

		2016-05-02T11:05:29-0700
	Cadence IPG Tensilica Technical Publications
	Certified original document May 2016

