/*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2005 Bruce D. Evans and Steven G. Kargl * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Hyperbolic sine of a complex argument z = x + i y. * * sinh(z) = sinh(x+iy) * = sinh(x) cos(y) + i cosh(x) sin(y). * * Exceptional values are noted in the comments within the source code. * These values and the return value were taken from n1124.pdf. * The sign of the result for some exceptional values is unspecified but * must satisfy both sinh(conj(z)) == conj(sinh(z)) and sinh(-z) == -sinh(z). */ #include __FBSDID("$FreeBSD: head/lib/msun/src/s_csinh.c 336362 2018-07-17 07:42:14Z bde $"); #include #include #include "math_private.h" static const double huge = 0x1p1023; double complex csinh(double complex z) { double x, y, h; int32_t hx, hy, ix, iy, lx, ly; x = creal(z); y = cimag(z); EXTRACT_WORDS(hx, lx, x); EXTRACT_WORDS(hy, ly, y); ix = 0x7fffffff & hx; iy = 0x7fffffff & hy; /* Handle the nearly-non-exceptional cases where x and y are finite. */ if (ix < 0x7ff00000 && iy < 0x7ff00000) { if ((iy | ly) == 0) return (CMPLX(sinh(x), y)); if (ix < 0x40360000) /* |x| < 22: normal case */ return (CMPLX(sinh(x) * cos(y), cosh(x) * sin(y))); /* |x| >= 22, so cosh(x) ~= exp(|x|) */ if (ix < 0x40862e42) { /* x < 710: exp(|x|) won't overflow */ h = exp(fabs(x)) * 0.5; return (CMPLX(copysign(h, x) * cos(y), h * sin(y))); } else if (ix < 0x4096bbaa) { /* x < 1455: scale to avoid overflow */ z = __ldexp_cexp(CMPLX(fabs(x), y), -1); return (CMPLX(creal(z) * copysign(1, x), cimag(z))); } else { /* x >= 1455: the result always overflows */ h = huge * x; return (CMPLX(h * cos(y), h * h * sin(y))); } } /* * sinh(+-0 +- I Inf) = +-0 + I dNaN. * The sign of 0 in the result is unspecified. Choice = same sign * as the argument. Raise the invalid floating-point exception. * * sinh(+-0 +- I NaN) = +-0 + I d(NaN). * The sign of 0 in the result is unspecified. Choice = same sign * as the argument. */ if ((ix | lx) == 0) /* && iy >= 0x7ff00000 */ return (CMPLX(x, y - y)); /* * sinh(+-Inf +- I 0) = +-Inf + I +-0. * * sinh(NaN +- I 0) = d(NaN) + I +-0. */ if ((iy | ly) == 0) /* && ix >= 0x7ff00000 */ return (CMPLX(x + x, y)); /* * sinh(x +- I Inf) = dNaN + I dNaN. * Raise the invalid floating-point exception for finite nonzero x. * * sinh(x + I NaN) = d(NaN) + I d(NaN). * Optionally raises the invalid floating-point exception for finite * nonzero x. Choice = don't raise (except for signaling NaNs). */ if (ix < 0x7ff00000) /* && iy >= 0x7ff00000 */ return (CMPLX(y - y, y - y)); /* * sinh(+-Inf + I NaN) = +-Inf + I d(NaN). * The sign of Inf in the result is unspecified. Choice = same sign * as the argument. * * sinh(+-Inf +- I Inf) = +-Inf + I dNaN. * The sign of Inf in the result is unspecified. Choice = same sign * as the argument. Raise the invalid floating-point exception. * * sinh(+-Inf + I y) = +-Inf cos(y) + I Inf sin(y) */ if (ix == 0x7ff00000 && lx == 0) { if (iy >= 0x7ff00000) return (CMPLX(x, y - y)); return (CMPLX(x * cos(y), INFINITY * sin(y))); } /* * sinh(NaN1 + I NaN2) = d(NaN1, NaN2) + I d(NaN1, NaN2). * * sinh(NaN +- I Inf) = d(NaN, dNaN) + I d(NaN, dNaN). * Optionally raises the invalid floating-point exception. * Choice = raise. * * sinh(NaN + I y) = d(NaN) + I d(NaN). * Optionally raises the invalid floating-point exception for finite * nonzero y. Choice = don't raise (except for signaling NaNs). */ return (CMPLX(((long double)x + x) * (y - y), ((long double)x * x) * (y - y))); } double complex csin(double complex z) { /* csin(z) = -I * csinh(I * z) = I * conj(csinh(I * conj(z))). */ z = csinh(CMPLX(cimag(z), creal(z))); return (CMPLX(cimag(z), creal(z))); }