/* * Copyright (C) 2016 The Android Open Source Project * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "linker_soinfo.h" #include #include #include #include #include #include #include "linker.h" #include "linker_config.h" #include "linker_debug.h" #include "linker_globals.h" #include "linker_gnu_hash.h" #include "linker_logger.h" #include "linker_relocate.h" #include "linker_utils.h" // Enable the slow lookup path if symbol lookups should be logged. static bool is_lookup_tracing_enabled() { return g_ld_debug_verbosity > LINKER_VERBOSITY_TRACE && DO_TRACE_LOOKUP; } SymbolLookupList::SymbolLookupList(soinfo* si) : sole_lib_(si->get_lookup_lib()), begin_(&sole_lib_), end_(&sole_lib_ + 1) { CHECK(si != nullptr); slow_path_count_ += is_lookup_tracing_enabled(); slow_path_count_ += sole_lib_.needs_sysv_lookup(); } SymbolLookupList::SymbolLookupList(const soinfo_list_t& global_group, const soinfo_list_t& local_group) { slow_path_count_ += is_lookup_tracing_enabled(); libs_.reserve(1 + global_group.size() + local_group.size()); // Reserve a space in front for DT_SYMBOLIC lookup. libs_.push_back(SymbolLookupLib {}); global_group.for_each([this](soinfo* si) { libs_.push_back(si->get_lookup_lib()); slow_path_count_ += libs_.back().needs_sysv_lookup(); }); local_group.for_each([this](soinfo* si) { libs_.push_back(si->get_lookup_lib()); slow_path_count_ += libs_.back().needs_sysv_lookup(); }); begin_ = &libs_[1]; end_ = &libs_[0] + libs_.size(); } /* "This element's presence in a shared object library alters the dynamic linker's * symbol resolution algorithm for references within the library. Instead of starting * a symbol search with the executable file, the dynamic linker starts from the shared * object itself. If the shared object fails to supply the referenced symbol, the * dynamic linker then searches the executable file and other shared objects as usual." * * http://www.sco.com/developers/gabi/2012-12-31/ch5.dynamic.html * * Note that this is unlikely since static linker avoids generating * relocations for -Bsymbolic linked dynamic executables. */ void SymbolLookupList::set_dt_symbolic_lib(soinfo* lib) { CHECK(!libs_.empty()); slow_path_count_ -= libs_[0].needs_sysv_lookup(); libs_[0] = lib ? lib->get_lookup_lib() : SymbolLookupLib(); slow_path_count_ += libs_[0].needs_sysv_lookup(); begin_ = lib ? &libs_[0] : &libs_[1]; } // Check whether a requested version matches the version on a symbol definition. There are a few // special cases: // - If the defining DSO has no version info at all, then any version matches. // - If no version is requested (vi==nullptr, verneed==kVersymNotNeeded), then any non-hidden // version matches. // - If the requested version is not defined by the DSO, then verneed is kVersymGlobal, and only // global symbol definitions match. (This special case is handled as part of the ordinary case // where the version must match exactly.) static inline bool check_symbol_version(const ElfW(Versym)* ver_table, uint32_t sym_idx, const ElfW(Versym) verneed) { if (ver_table == nullptr) return true; const uint32_t verdef = ver_table[sym_idx]; return (verneed == kVersymNotNeeded) ? !(verdef & kVersymHiddenBit) : verneed == (verdef & ~kVersymHiddenBit); } template __attribute__((noinline)) static const ElfW(Sym)* soinfo_do_lookup_impl(const char* name, const version_info* vi, soinfo** si_found_in, const SymbolLookupList& lookup_list) { const auto [ hash, name_len ] = calculate_gnu_hash(name); constexpr uint32_t kBloomMaskBits = sizeof(ElfW(Addr)) * 8; SymbolName elf_symbol_name(name); const SymbolLookupLib* end = lookup_list.end(); const SymbolLookupLib* it = lookup_list.begin(); while (true) { const SymbolLookupLib* lib; uint32_t sym_idx; // Iterate over libraries until we find one whose Bloom filter matches the symbol we're // searching for. while (true) { if (it == end) return nullptr; lib = it++; if (IsGeneral && lib->needs_sysv_lookup()) { if (const ElfW(Sym)* sym = lib->si_->find_symbol_by_name(elf_symbol_name, vi)) { *si_found_in = lib->si_; return sym; } continue; } if (IsGeneral) { TRACE_TYPE(LOOKUP, "SEARCH %s in %s@%p (gnu)", name, lib->si_->get_realpath(), reinterpret_cast(lib->si_->base)); } const uint32_t word_num = (hash / kBloomMaskBits) & lib->gnu_maskwords_; const ElfW(Addr) bloom_word = lib->gnu_bloom_filter_[word_num]; const uint32_t h1 = hash % kBloomMaskBits; const uint32_t h2 = (hash >> lib->gnu_shift2_) % kBloomMaskBits; if ((1 & (bloom_word >> h1) & (bloom_word >> h2)) == 1) { sym_idx = lib->gnu_bucket_[hash % lib->gnu_nbucket_]; if (sym_idx != 0) { break; } } if (IsGeneral) { TRACE_TYPE(LOOKUP, "NOT FOUND %s in %s@%p", name, lib->si_->get_realpath(), reinterpret_cast(lib->si_->base)); } } // Search the library's hash table chain. ElfW(Versym) verneed = kVersymNotNeeded; bool calculated_verneed = false; uint32_t chain_value = 0; const ElfW(Sym)* sym = nullptr; do { sym = lib->symtab_ + sym_idx; chain_value = lib->gnu_chain_[sym_idx]; if ((chain_value >> 1) == (hash >> 1)) { if (vi != nullptr && !calculated_verneed) { calculated_verneed = true; verneed = find_verdef_version_index(lib->si_, vi); } if (check_symbol_version(lib->versym_, sym_idx, verneed) && static_cast(sym->st_name) + name_len + 1 <= lib->strtab_size_ && memcmp(lib->strtab_ + sym->st_name, name, name_len + 1) == 0 && is_symbol_global_and_defined(lib->si_, sym)) { *si_found_in = lib->si_; if (IsGeneral) { TRACE_TYPE(LOOKUP, "FOUND %s in %s (%p) %zd", name, lib->si_->get_realpath(), reinterpret_cast(sym->st_value), static_cast(sym->st_size)); } return sym; } } ++sym_idx; } while ((chain_value & 1) == 0); if (IsGeneral) { TRACE_TYPE(LOOKUP, "NOT FOUND %s in %s@%p", name, lib->si_->get_realpath(), reinterpret_cast(lib->si_->base)); } } } const ElfW(Sym)* soinfo_do_lookup(const char* name, const version_info* vi, soinfo** si_found_in, const SymbolLookupList& lookup_list) { return lookup_list.needs_slow_path() ? soinfo_do_lookup_impl(name, vi, si_found_in, lookup_list) : soinfo_do_lookup_impl(name, vi, si_found_in, lookup_list); } soinfo::soinfo(android_namespace_t* ns, const char* realpath, const struct stat* file_stat, off64_t file_offset, int rtld_flags) { memset(this, 0, sizeof(*this)); if (realpath != nullptr) { realpath_ = realpath; } flags_ = FLAG_NEW_SOINFO; version_ = SOINFO_VERSION; if (file_stat != nullptr) { this->st_dev_ = file_stat->st_dev; this->st_ino_ = file_stat->st_ino; this->file_offset_ = file_offset; } this->rtld_flags_ = rtld_flags; this->primary_namespace_ = ns; } soinfo::~soinfo() { g_soinfo_handles_map.erase(handle_); } void soinfo::set_dt_runpath(const char* path) { if (!has_min_version(3)) { return; } std::vector runpaths; split_path(path, ":", &runpaths); std::string origin = dirname(get_realpath()); // FIXME: add $PLATFORM. std::vector> params = { {"ORIGIN", origin}, {"LIB", kLibPath}, }; for (auto&& s : runpaths) { format_string(&s, params); } resolve_paths(runpaths, &dt_runpath_); } const ElfW(Versym)* soinfo::get_versym(size_t n) const { auto table = get_versym_table(); return table ? table + n : nullptr; } ElfW(Addr) soinfo::get_verneed_ptr() const { if (has_min_version(2)) { return verneed_ptr_; } return 0; } size_t soinfo::get_verneed_cnt() const { if (has_min_version(2)) { return verneed_cnt_; } return 0; } ElfW(Addr) soinfo::get_verdef_ptr() const { if (has_min_version(2)) { return verdef_ptr_; } return 0; } size_t soinfo::get_verdef_cnt() const { if (has_min_version(2)) { return verdef_cnt_; } return 0; } SymbolLookupLib soinfo::get_lookup_lib() { SymbolLookupLib result {}; result.si_ = this; // For libs that only have SysV hashes, leave the gnu_bloom_filter_ field NULL to signal that // the fallback code path is needed. if (!is_gnu_hash()) { return result; } result.gnu_maskwords_ = gnu_maskwords_; result.gnu_shift2_ = gnu_shift2_; result.gnu_bloom_filter_ = gnu_bloom_filter_; result.strtab_ = strtab_; result.strtab_size_ = strtab_size_; result.symtab_ = symtab_; result.versym_ = get_versym_table(); result.gnu_chain_ = gnu_chain_; result.gnu_nbucket_ = gnu_nbucket_; result.gnu_bucket_ = gnu_bucket_; return result; } const ElfW(Sym)* soinfo::find_symbol_by_name(SymbolName& symbol_name, const version_info* vi) const { return is_gnu_hash() ? gnu_lookup(symbol_name, vi) : elf_lookup(symbol_name, vi); } const ElfW(Sym)* soinfo::gnu_lookup(SymbolName& symbol_name, const version_info* vi) const { const uint32_t hash = symbol_name.gnu_hash(); constexpr uint32_t kBloomMaskBits = sizeof(ElfW(Addr)) * 8; const uint32_t word_num = (hash / kBloomMaskBits) & gnu_maskwords_; const ElfW(Addr) bloom_word = gnu_bloom_filter_[word_num]; const uint32_t h1 = hash % kBloomMaskBits; const uint32_t h2 = (hash >> gnu_shift2_) % kBloomMaskBits; TRACE_TYPE(LOOKUP, "SEARCH %s in %s@%p (gnu)", symbol_name.get_name(), get_realpath(), reinterpret_cast(base)); // test against bloom filter if ((1 & (bloom_word >> h1) & (bloom_word >> h2)) == 0) { TRACE_TYPE(LOOKUP, "NOT FOUND %s in %s@%p", symbol_name.get_name(), get_realpath(), reinterpret_cast(base)); return nullptr; } // bloom test says "probably yes"... uint32_t n = gnu_bucket_[hash % gnu_nbucket_]; if (n == 0) { TRACE_TYPE(LOOKUP, "NOT FOUND %s in %s@%p", symbol_name.get_name(), get_realpath(), reinterpret_cast(base)); return nullptr; } const ElfW(Versym) verneed = find_verdef_version_index(this, vi); const ElfW(Versym)* versym = get_versym_table(); do { ElfW(Sym)* s = symtab_ + n; if (((gnu_chain_[n] ^ hash) >> 1) == 0 && check_symbol_version(versym, n, verneed) && strcmp(get_string(s->st_name), symbol_name.get_name()) == 0 && is_symbol_global_and_defined(this, s)) { TRACE_TYPE(LOOKUP, "FOUND %s in %s (%p) %zd", symbol_name.get_name(), get_realpath(), reinterpret_cast(s->st_value), static_cast(s->st_size)); return symtab_ + n; } } while ((gnu_chain_[n++] & 1) == 0); TRACE_TYPE(LOOKUP, "NOT FOUND %s in %s@%p", symbol_name.get_name(), get_realpath(), reinterpret_cast(base)); return nullptr; } const ElfW(Sym)* soinfo::elf_lookup(SymbolName& symbol_name, const version_info* vi) const { uint32_t hash = symbol_name.elf_hash(); TRACE_TYPE(LOOKUP, "SEARCH %s in %s@%p h=%x(elf) %zd", symbol_name.get_name(), get_realpath(), reinterpret_cast(base), hash, hash % nbucket_); const ElfW(Versym) verneed = find_verdef_version_index(this, vi); const ElfW(Versym)* versym = get_versym_table(); for (uint32_t n = bucket_[hash % nbucket_]; n != 0; n = chain_[n]) { ElfW(Sym)* s = symtab_ + n; if (check_symbol_version(versym, n, verneed) && strcmp(get_string(s->st_name), symbol_name.get_name()) == 0 && is_symbol_global_and_defined(this, s)) { TRACE_TYPE(LOOKUP, "FOUND %s in %s (%p) %zd", symbol_name.get_name(), get_realpath(), reinterpret_cast(s->st_value), static_cast(s->st_size)); return symtab_ + n; } } TRACE_TYPE(LOOKUP, "NOT FOUND %s in %s@%p %x %zd", symbol_name.get_name(), get_realpath(), reinterpret_cast(base), hash, hash % nbucket_); return nullptr; } ElfW(Sym)* soinfo::find_symbol_by_address(const void* addr) { return is_gnu_hash() ? gnu_addr_lookup(addr) : elf_addr_lookup(addr); } static bool symbol_matches_soaddr(const ElfW(Sym)* sym, ElfW(Addr) soaddr) { // Skip TLS symbols. A TLS symbol's value is relative to the start of the TLS segment rather than // to the start of the solib. The solib only reserves space for the initialized part of the TLS // segment. (i.e. .tdata is followed by .tbss, and .tbss overlaps other sections.) return sym->st_shndx != SHN_UNDEF && ELF_ST_TYPE(sym->st_info) != STT_TLS && soaddr >= sym->st_value && soaddr < sym->st_value + sym->st_size; } ElfW(Sym)* soinfo::gnu_addr_lookup(const void* addr) { ElfW(Addr) soaddr = reinterpret_cast(addr) - load_bias; for (size_t i = 0; i < gnu_nbucket_; ++i) { uint32_t n = gnu_bucket_[i]; if (n == 0) { continue; } do { ElfW(Sym)* sym = symtab_ + n; if (symbol_matches_soaddr(sym, soaddr)) { return sym; } } while ((gnu_chain_[n++] & 1) == 0); } return nullptr; } ElfW(Sym)* soinfo::elf_addr_lookup(const void* addr) { ElfW(Addr) soaddr = reinterpret_cast(addr) - load_bias; // Search the library's symbol table for any defined symbol which // contains this address. for (size_t i = 0; i < nchain_; ++i) { ElfW(Sym)* sym = symtab_ + i; if (symbol_matches_soaddr(sym, soaddr)) { return sym; } } return nullptr; } static void call_function(const char* function_name __unused, linker_ctor_function_t function, const char* realpath __unused) { if (function == nullptr || reinterpret_cast(function) == static_cast(-1)) { return; } TRACE("[ Calling c-tor %s @ %p for '%s' ]", function_name, function, realpath); function(g_argc, g_argv, g_envp); TRACE("[ Done calling c-tor %s @ %p for '%s' ]", function_name, function, realpath); } static void call_function(const char* function_name __unused, linker_dtor_function_t function, const char* realpath __unused) { if (function == nullptr || reinterpret_cast(function) == static_cast(-1)) { return; } TRACE("[ Calling d-tor %s @ %p for '%s' ]", function_name, function, realpath); function(); TRACE("[ Done calling d-tor %s @ %p for '%s' ]", function_name, function, realpath); } template static void call_array(const char* array_name __unused, F* functions, size_t count, bool reverse, const char* realpath) { if (functions == nullptr) { return; } TRACE("[ Calling %s (size %zd) @ %p for '%s' ]", array_name, count, functions, realpath); int begin = reverse ? (count - 1) : 0; int end = reverse ? -1 : count; int step = reverse ? -1 : 1; for (int i = begin; i != end; i += step) { TRACE("[ %s[%d] == %p ]", array_name, i, functions[i]); call_function("function", functions[i], realpath); } TRACE("[ Done calling %s for '%s' ]", array_name, realpath); } void soinfo::call_pre_init_constructors() { if (g_is_ldd) return; // DT_PREINIT_ARRAY functions are called before any other constructors for executables, // but ignored in a shared library. call_array("DT_PREINIT_ARRAY", preinit_array_, preinit_array_count_, false, get_realpath()); } void soinfo::call_constructors() { if (constructors_called || g_is_ldd) { return; } // We set constructors_called before actually calling the constructors, otherwise it doesn't // protect against recursive constructor calls. One simple example of constructor recursion // is the libc debug malloc, which is implemented in libc_malloc_debug_leak.so: // 1. The program depends on libc, so libc's constructor is called here. // 2. The libc constructor calls dlopen() to load libc_malloc_debug_leak.so. // 3. dlopen() calls the constructors on the newly created // soinfo for libc_malloc_debug_leak.so. // 4. The debug .so depends on libc, so CallConstructors is // called again with the libc soinfo. If it doesn't trigger the early- // out above, the libc constructor will be called again (recursively!). constructors_called = true; if (!is_main_executable() && preinit_array_ != nullptr) { // The GNU dynamic linker silently ignores these, but we warn the developer. PRINT("\"%s\": ignoring DT_PREINIT_ARRAY in shared library!", get_realpath()); } get_children().for_each([] (soinfo* si) { si->call_constructors(); }); if (!is_linker()) { bionic_trace_begin((std::string("calling constructors: ") + get_realpath()).c_str()); } // DT_INIT should be called before DT_INIT_ARRAY if both are present. call_function("DT_INIT", init_func_, get_realpath()); call_array("DT_INIT_ARRAY", init_array_, init_array_count_, false, get_realpath()); if (!is_linker()) { bionic_trace_end(); } } void soinfo::call_destructors() { if (!constructors_called) { return; } ScopedTrace trace((std::string("calling destructors: ") + get_realpath()).c_str()); // DT_FINI_ARRAY must be parsed in reverse order. call_array("DT_FINI_ARRAY", fini_array_, fini_array_count_, true, get_realpath()); // DT_FINI should be called after DT_FINI_ARRAY if both are present. call_function("DT_FINI", fini_func_, get_realpath()); } void soinfo::add_child(soinfo* child) { if (has_min_version(0)) { child->parents_.push_back(this); this->children_.push_back(child); } } void soinfo::remove_all_links() { if (!has_min_version(0)) { return; } // 1. Untie connected soinfos from 'this'. children_.for_each([&] (soinfo* child) { child->parents_.remove_if([&] (const soinfo* parent) { return parent == this; }); }); parents_.for_each([&] (soinfo* parent) { parent->children_.remove_if([&] (const soinfo* child) { return child == this; }); }); // 2. Remove from the primary namespace primary_namespace_->remove_soinfo(this); primary_namespace_ = nullptr; // 3. Remove from secondary namespaces secondary_namespaces_.for_each([&](android_namespace_t* ns) { ns->remove_soinfo(this); }); // 4. Once everything untied - clear local lists. parents_.clear(); children_.clear(); secondary_namespaces_.clear(); } dev_t soinfo::get_st_dev() const { if (has_min_version(0)) { return st_dev_; } return 0; }; ino_t soinfo::get_st_ino() const { if (has_min_version(0)) { return st_ino_; } return 0; } off64_t soinfo::get_file_offset() const { if (has_min_version(1)) { return file_offset_; } return 0; } uint32_t soinfo::get_rtld_flags() const { if (has_min_version(1)) { return rtld_flags_; } return 0; } uint32_t soinfo::get_dt_flags_1() const { if (has_min_version(1)) { return dt_flags_1_; } return 0; } void soinfo::set_dt_flags_1(uint32_t dt_flags_1) { if (has_min_version(1)) { if ((dt_flags_1 & DF_1_GLOBAL) != 0) { rtld_flags_ |= RTLD_GLOBAL; } if ((dt_flags_1 & DF_1_NODELETE) != 0) { rtld_flags_ |= RTLD_NODELETE; } dt_flags_1_ = dt_flags_1; } } void soinfo::set_nodelete() { rtld_flags_ |= RTLD_NODELETE; } void soinfo::set_realpath(const char* path) { #if defined(__work_around_b_24465209__) if (has_min_version(2)) { realpath_ = path; } #else realpath_ = path; #endif } const char* soinfo::get_realpath() const { #if defined(__work_around_b_24465209__) if (has_min_version(2)) { return realpath_.c_str(); } else { return old_name_; } #else return realpath_.c_str(); #endif } void soinfo::set_soname(const char* soname) { #if defined(__work_around_b_24465209__) if (has_min_version(2)) { soname_ = soname; } strlcpy(old_name_, soname_, sizeof(old_name_)); #else soname_ = soname; #endif } const char* soinfo::get_soname() const { #if defined(__work_around_b_24465209__) if (has_min_version(2)) { return soname_; } else { return old_name_; } #else return soname_; #endif } // This is a return on get_children()/get_parents() if // 'this->flags' does not have FLAG_NEW_SOINFO set. static soinfo_list_t g_empty_list; soinfo_list_t& soinfo::get_children() { if (has_min_version(0)) { return children_; } return g_empty_list; } const soinfo_list_t& soinfo::get_children() const { if (has_min_version(0)) { return children_; } return g_empty_list; } soinfo_list_t& soinfo::get_parents() { if (has_min_version(0)) { return parents_; } return g_empty_list; } static std::vector g_empty_runpath; const std::vector& soinfo::get_dt_runpath() const { if (has_min_version(3)) { return dt_runpath_; } return g_empty_runpath; } android_namespace_t* soinfo::get_primary_namespace() { if (has_min_version(3)) { return primary_namespace_; } return &g_default_namespace; } void soinfo::add_secondary_namespace(android_namespace_t* secondary_ns) { CHECK(has_min_version(3)); secondary_namespaces_.push_back(secondary_ns); } android_namespace_list_t& soinfo::get_secondary_namespaces() { CHECK(has_min_version(3)); return secondary_namespaces_; } const char* soinfo::get_string(ElfW(Word) index) const { if (has_min_version(1) && (index >= strtab_size_)) { async_safe_fatal("%s: strtab out of bounds error; STRSZ=%zd, name=%d", get_realpath(), strtab_size_, index); } return strtab_ + index; } bool soinfo::is_gnu_hash() const { return (flags_ & FLAG_GNU_HASH) != 0; } bool soinfo::can_unload() const { return !is_linked() || ( (get_rtld_flags() & (RTLD_NODELETE | RTLD_GLOBAL)) == 0 ); } bool soinfo::is_linked() const { return (flags_ & FLAG_LINKED) != 0; } bool soinfo::is_image_linked() const { return (flags_ & FLAG_IMAGE_LINKED) != 0; } bool soinfo::is_main_executable() const { return (flags_ & FLAG_EXE) != 0; } bool soinfo::is_linker() const { return (flags_ & FLAG_LINKER) != 0; } void soinfo::set_linked() { flags_ |= FLAG_LINKED; } void soinfo::set_image_linked() { flags_ |= FLAG_IMAGE_LINKED; } void soinfo::set_linker_flag() { flags_ |= FLAG_LINKER; } void soinfo::set_main_executable() { flags_ |= FLAG_EXE; } size_t soinfo::increment_ref_count() { return ++local_group_root_->ref_count_; } size_t soinfo::decrement_ref_count() { return --local_group_root_->ref_count_; } size_t soinfo::get_ref_count() const { return local_group_root_->ref_count_; } soinfo* soinfo::get_local_group_root() const { return local_group_root_; } void soinfo::set_mapped_by_caller(bool mapped_by_caller) { if (mapped_by_caller) { flags_ |= FLAG_MAPPED_BY_CALLER; } else { flags_ &= ~FLAG_MAPPED_BY_CALLER; } } bool soinfo::is_mapped_by_caller() const { return (flags_ & FLAG_MAPPED_BY_CALLER) != 0; } // This function returns api-level at the time of // dlopen/load. Note that libraries opened by system // will always have 'current' api level. int soinfo::get_target_sdk_version() const { if (!has_min_version(2)) { return __ANDROID_API__; } return local_group_root_->target_sdk_version_; } uintptr_t soinfo::get_handle() const { CHECK(has_min_version(3)); CHECK(handle_ != 0); return handle_; } void* soinfo::to_handle() { if (get_application_target_sdk_version() < 24 || !has_min_version(3)) { return this; } return reinterpret_cast(get_handle()); } void soinfo::generate_handle() { CHECK(has_min_version(3)); CHECK(handle_ == 0); // Make sure this is the first call // Make sure the handle is unique and does not collide // with special values which are RTLD_DEFAULT and RTLD_NEXT. do { if (!is_first_stage_init()) { arc4random_buf(&handle_, sizeof(handle_)); } else { // arc4random* is not available in init because /dev/urandom hasn't yet been // created. So, when running with init, use the monotonically increasing // numbers as handles handle_ += 2; } // the least significant bit for the handle is always 1 // making it easy to test the type of handle passed to // dl* functions. handle_ = handle_ | 1; } while (handle_ == reinterpret_cast(RTLD_DEFAULT) || handle_ == reinterpret_cast(RTLD_NEXT) || g_soinfo_handles_map.find(handle_) != g_soinfo_handles_map.end()); g_soinfo_handles_map[handle_] = this; } void soinfo::set_gap_start(ElfW(Addr) gap_start) { CHECK(has_min_version(6)); gap_start_ = gap_start; } ElfW(Addr) soinfo::get_gap_start() const { CHECK(has_min_version(6)); return gap_start_; } void soinfo::set_gap_size(size_t gap_size) { CHECK(has_min_version(6)); gap_size_ = gap_size; } size_t soinfo::get_gap_size() const { CHECK(has_min_version(6)); return gap_size_; } // TODO(dimitry): Move SymbolName methods to a separate file. uint32_t calculate_elf_hash(const char* name) { const uint8_t* name_bytes = reinterpret_cast(name); uint32_t h = 0, g; while (*name_bytes) { h = (h << 4) + *name_bytes++; g = h & 0xf0000000; h ^= g; h ^= g >> 24; } return h; } uint32_t SymbolName::elf_hash() { if (!has_elf_hash_) { elf_hash_ = calculate_elf_hash(name_); has_elf_hash_ = true; } return elf_hash_; } uint32_t SymbolName::gnu_hash() { if (!has_gnu_hash_) { gnu_hash_ = calculate_gnu_hash(name_).first; has_gnu_hash_ = true; } return gnu_hash_; }