# Copyright 2014 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os.path import its.caps import its.device import its.image import its.objects import matplotlib from matplotlib import pylab import numpy LOCKED = 3 MAX_LUMA_DELTA_THRESH = 0.05 NAME = os.path.basename(__file__).split('.')[0] THRESH_CONVERGE_FOR_EV = 8 # AE must converge in this num auto reqs for EV def main(): """Tests that EV compensation is applied.""" with its.device.ItsSession() as cam: props = cam.get_camera_properties() its.caps.skip_unless(its.caps.manual_sensor(props) and its.caps.manual_post_proc(props) and its.caps.per_frame_control(props) and its.caps.ev_compensation(props)) mono_camera = its.caps.mono_camera(props) debug = its.caps.debug_mode() largest_yuv = its.objects.get_largest_yuv_format(props) if debug: fmt = largest_yuv else: match_ar = (largest_yuv['width'], largest_yuv['height']) fmt = its.objects.get_smallest_yuv_format(props, match_ar=match_ar) ev_compensation_range = props['android.control.aeCompensationRange'] range_min = ev_compensation_range[0] range_max = ev_compensation_range[1] ev_per_step = its.objects.rational_to_float( props['android.control.aeCompensationStep']) steps_per_ev = int(round(1.0 / ev_per_step)) ev_steps = range(range_min, range_max + 1, steps_per_ev) imid = len(ev_steps) / 2 ev_shifts = [pow(2, step * ev_per_step) for step in ev_steps] lumas = [] # Converge 3A, and lock AE once converged. skip AF trigger as # dark/bright scene could make AF convergence fail and this test # doesn't care the image sharpness. cam.do_3a(ev_comp=0, lock_ae=True, do_af=False, mono_camera=mono_camera) for ev in ev_steps: # Capture a single shot with the same EV comp and locked AE. req = its.objects.auto_capture_request() req['android.control.aeExposureCompensation'] = ev req['android.control.aeLock'] = True # Use linear tone curve to avoid brightness being impacted # by tone curves. req['android.tonemap.mode'] = 0 req['android.tonemap.curve'] = { 'red': [0.0, 0.0, 1.0, 1.0], 'green': [0.0, 0.0, 1.0, 1.0], 'blue': [0.0, 0.0, 1.0, 1.0]} caps = cam.do_capture([req]*THRESH_CONVERGE_FOR_EV, fmt) for cap in caps: if cap['metadata']['android.control.aeState'] == LOCKED: y = its.image.convert_capture_to_planes(cap)[0] tile = its.image.get_image_patch(y, 0.45, 0.45, 0.1, 0.1) lumas.append(its.image.compute_image_means(tile)[0]) break assert cap['metadata']['android.control.aeState'] == LOCKED print 'ev_step_size_in_stops', ev_per_step shift_mid = ev_shifts[imid] luma_normal = lumas[imid] / shift_mid expected_lumas = [min(1.0, luma_normal*ev_shift) for ev_shift in ev_shifts] pylab.plot(ev_steps, lumas, '-ro') pylab.plot(ev_steps, expected_lumas, '-bo') pylab.title(NAME) pylab.xlabel('EV Compensation') pylab.ylabel('Mean Luma (Normalized)') matplotlib.pyplot.savefig('%s_plot_means.png' % (NAME)) luma_diffs = [expected_lumas[i]-lumas[i] for i in range(len(ev_steps))] max_diff = max(abs(i) for i in luma_diffs) avg_diff = abs(numpy.array(luma_diffs)).mean() print 'Max delta between modeled and measured lumas:', max_diff print 'Avg delta between modeled and measured lumas:', avg_diff assert max_diff < MAX_LUMA_DELTA_THRESH, 'diff: %.3f, THRESH: %.2f' % ( max_diff, MAX_LUMA_DELTA_THRESH) if __name__ == '__main__': main()