# Copyright 2013 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import os.path import its.caps import its.device import its.image import its.objects import its.target import matplotlib from matplotlib import pylab import numpy NAME = os.path.basename(__file__).split('.')[0] RESIDUAL_THRESHOLD = 0.0003 # approximately each sample is off by 2/255 # The HAL3.2 spec requires that curves up to 64 control points in length # must be supported. L = 64 LM1 = float(L-1) def main(): """Test that device processing can be inverted to linear pixels. Captures a sequence of shots with the device pointed at a uniform target. Attempts to invert all the ISP processing to get back to linear R,G,B pixel data. """ gamma_lut = numpy.array( sum([[i/LM1, math.pow(i/LM1, 1/2.2)] for i in xrange(L)], [])) inv_gamma_lut = numpy.array( sum([[i/LM1, math.pow(i/LM1, 2.2)] for i in xrange(L)], [])) with its.device.ItsSession() as cam: props = cam.get_camera_properties() props = cam.override_with_hidden_physical_camera_props(props) its.caps.skip_unless(its.caps.compute_target_exposure(props)) sync_latency = its.caps.sync_latency(props) debug = its.caps.debug_mode() largest_yuv = its.objects.get_largest_yuv_format(props) if debug: fmt = largest_yuv else: match_ar = (largest_yuv['width'], largest_yuv['height']) fmt = its.objects.get_smallest_yuv_format(props, match_ar=match_ar) e, s = its.target.get_target_exposure_combos(cam)['midSensitivity'] s /= 2 sens_range = props['android.sensor.info.sensitivityRange'] sensitivities = [s*1.0/3.0, s*2.0/3.0, s, s*4.0/3.0, s*5.0/3.0] sensitivities = [s for s in sensitivities if s > sens_range[0] and s < sens_range[1]] req = its.objects.manual_capture_request(0, e) req['android.blackLevel.lock'] = True req['android.tonemap.mode'] = 0 req['android.tonemap.curve'] = { 'red': gamma_lut.tolist(), 'green': gamma_lut.tolist(), 'blue': gamma_lut.tolist()} r_means = [] g_means = [] b_means = [] for sens in sensitivities: req['android.sensor.sensitivity'] = sens cap = its.device.do_capture_with_latency( cam, req, sync_latency, fmt) img = its.image.convert_capture_to_rgb_image(cap) its.image.write_image( img, '%s_sens=%04d.jpg' % (NAME, sens)) img = its.image.apply_lut_to_image(img, inv_gamma_lut[1::2] * LM1) tile = its.image.get_image_patch(img, 0.45, 0.45, 0.1, 0.1) rgb_means = its.image.compute_image_means(tile) r_means.append(rgb_means[0]) g_means.append(rgb_means[1]) b_means.append(rgb_means[2]) pylab.title(NAME) pylab.plot(sensitivities, r_means, '-ro') pylab.plot(sensitivities, g_means, '-go') pylab.plot(sensitivities, b_means, '-bo') pylab.xlim([sens_range[0], sens_range[1]/2]) pylab.ylim([0, 1]) pylab.xlabel('sensitivity(ISO)') pylab.ylabel('RGB avg [0, 1]') matplotlib.pyplot.savefig('%s_plot_means.png' % (NAME)) # Check that each plot is actually linear. for means in [r_means, g_means, b_means]: line, residuals, _, _, _ = numpy.polyfit(range(len(sensitivities)), means, 1, full=True) print 'Line: m=%f, b=%f, resid=%f'%(line[0], line[1], residuals[0]) msg = 'residual: %.5f, THRESH: %.4f' % ( residuals[0], RESIDUAL_THRESHOLD) assert residuals[0] < RESIDUAL_THRESHOLD, msg if __name__ == '__main__': main()