# Copyright 2013 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os.path import its.caps import its.device import its.image import its.objects import its.target import matplotlib from matplotlib import pylab NAME = os.path.basename(__file__).split('.')[0] NUM_STEPS = 5 def main(): """Test that the android.sensor.sensitivity parameter is applied.""" sensitivities = None r_means = [] g_means = [] b_means = [] with its.device.ItsSession() as cam: props = cam.get_camera_properties() its.caps.skip_unless(its.caps.compute_target_exposure(props)) sync_latency = its.caps.sync_latency(props) debug = its.caps.debug_mode() largest_yuv = its.objects.get_largest_yuv_format(props) if debug: fmt = largest_yuv else: match_ar = (largest_yuv['width'], largest_yuv['height']) fmt = its.objects.get_smallest_yuv_format(props, match_ar=match_ar) expt, _ = its.target.get_target_exposure_combos(cam)['midSensitivity'] sens_range = props['android.sensor.info.sensitivityRange'] sens_step = (sens_range[1] - sens_range[0]) / float(NUM_STEPS-1) sensitivities = [ sens_range[0] + i * sens_step for i in range(NUM_STEPS)] for s in sensitivities: req = its.objects.manual_capture_request(s, expt) cap = its.device.do_capture_with_latency( cam, req, sync_latency, fmt) img = its.image.convert_capture_to_rgb_image(cap) its.image.write_image(img, '%s_iso=%04d.jpg' % (NAME, s)) tile = its.image.get_image_patch(img, 0.45, 0.45, 0.1, 0.1) rgb_means = its.image.compute_image_means(tile) r_means.append(rgb_means[0]) g_means.append(rgb_means[1]) b_means.append(rgb_means[2]) # Draw a plot. pylab.plot(sensitivities, r_means, '-ro') pylab.plot(sensitivities, g_means, '-go') pylab.plot(sensitivities, b_means, '-bo') pylab.ylim([0, 1]) pylab.title(NAME) pylab.xlabel('Gain (ISO)') pylab.ylabel('RGB means') matplotlib.pyplot.savefig('%s_plot_means.png' % (NAME)) # Test for pass/fail: check that each shot is brighter than the previous. for means in [r_means, g_means, b_means]: for i in range(len(means)-1): assert means[i+1] > means[i] if __name__ == '__main__': main()