# Copyright 2014 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os.path import its.caps import its.device import its.image import its.objects import numpy MAX_SAME_DELTA = 0.03 # match number in test_burst_sameness_manual MIN_DIFF_DELTA = 0.10 NAME = os.path.basename(__file__).split(".")[0] def main(): """Test a sequence of shots with different tonemap curves. There should be 3 identical frames followed by a different set of 3 identical frames. """ with its.device.ItsSession() as cam: props = cam.get_camera_properties() its.caps.skip_unless(its.caps.manual_sensor(props) and its.caps.manual_post_proc(props) and its.caps.per_frame_control(props) and not its.caps.mono_camera(props)) debug = its.caps.debug_mode() largest_yuv = its.objects.get_largest_yuv_format(props) if debug: fmt = largest_yuv else: match_ar = (largest_yuv["width"], largest_yuv["height"]) fmt = its.objects.get_smallest_yuv_format(props, match_ar=match_ar) sens, exp_time, _, _, f_dist = cam.do_3a(do_af=True, get_results=True) means = [] # Capture 3 manual shots with a linear tonemap. req = its.objects.manual_capture_request( sens, exp_time, f_dist, True, props) for i in [0, 1, 2]: cap = cam.do_capture(req, fmt) img = its.image.convert_capture_to_rgb_image(cap) its.image.write_image(img, "%s_i=%d.jpg" % (NAME, i)) tile = its.image.get_image_patch(img, 0.45, 0.45, 0.1, 0.1) means.append(tile.mean(0).mean(0)) # Capture 3 manual shots with the default tonemap. req = its.objects.manual_capture_request(sens, exp_time, f_dist, False) for i in [3, 4, 5]: cap = cam.do_capture(req, fmt) img = its.image.convert_capture_to_rgb_image(cap) its.image.write_image(img, "%s_i=%d.jpg" % (NAME, i)) tile = its.image.get_image_patch(img, 0.45, 0.45, 0.1, 0.1) means.append(tile.mean(0).mean(0)) # Compute the delta between each consecutive frame pair. deltas = [numpy.max(numpy.fabs(means[i+1]-means[i])) \ for i in range(len(means)-1)] print "Deltas between consecutive frames:", deltas msg = "deltas: %s, MAX_SAME_DELTA: %.2f" % ( str(deltas), MAX_SAME_DELTA) assert all([abs(deltas[i]) < MAX_SAME_DELTA for i in [0, 1, 3, 4]]), msg assert abs(deltas[2]) > MIN_DIFF_DELTA, "delta: %.5f, THRESH: %.2f" % ( abs(deltas[2]), MIN_DIFF_DELTA) if __name__ == "__main__": main()