/* ---------------------------------------------------------------------- * Copyright (C) 2010-2014 ARM Limited. All rights reserved. * * $Date: 12. March 2014 * $Revision: V1.4.4 * * Project: CMSIS DSP Library * Title: arm_sin_f32.c * * Description: Fast sine calculation for floating-point values. * Fast cosine calculation for floating-point values. * * * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of ARM LIMITED nor the names of its contributors * may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * -------------------------------------------------------------------- */ #include #include #define FAST_MATH_TABLE_SIZE 512 typedef float float32_t; /** * \par * Example code for the generation of the floating-point sine table: *
 * tableSize = 512;
 * for(n = 0; n < (tableSize + 1); n++)
 * {
 *	sinTable[n]=sin(2*pi*n/tableSize);
 * }
* \par * where pi value is 3.14159265358979 */ static const float32_t sinTable_f32[FAST_MATH_TABLE_SIZE + 1] = { 0.00000000f, 0.01227154f, 0.02454123f, 0.03680722f, 0.04906767f, 0.06132074f, 0.07356456f, 0.08579731f, 0.09801714f, 0.11022221f, 0.12241068f, 0.13458071f, 0.14673047f, 0.15885814f, 0.17096189f, 0.18303989f, 0.19509032f, 0.20711138f, 0.21910124f, 0.23105811f, 0.24298018f, 0.25486566f, 0.26671276f, 0.27851969f, 0.29028468f, 0.30200595f, 0.31368174f, 0.32531029f, 0.33688985f, 0.34841868f, 0.35989504f, 0.37131719f, 0.38268343f, 0.39399204f, 0.40524131f, 0.41642956f, 0.42755509f, 0.43861624f, 0.44961133f, 0.46053871f, 0.47139674f, 0.48218377f, 0.49289819f, 0.50353838f, 0.51410274f, 0.52458968f, 0.53499762f, 0.54532499f, 0.55557023f, 0.56573181f, 0.57580819f, 0.58579786f, 0.59569930f, 0.60551104f, 0.61523159f, 0.62485949f, 0.63439328f, 0.64383154f, 0.65317284f, 0.66241578f, 0.67155895f, 0.68060100f, 0.68954054f, 0.69837625f, 0.70710678f, 0.71573083f, 0.72424708f, 0.73265427f, 0.74095113f, 0.74913639f, 0.75720885f, 0.76516727f, 0.77301045f, 0.78073723f, 0.78834643f, 0.79583690f, 0.80320753f, 0.81045720f, 0.81758481f, 0.82458930f, 0.83146961f, 0.83822471f, 0.84485357f, 0.85135519f, 0.85772861f, 0.86397286f, 0.87008699f, 0.87607009f, 0.88192126f, 0.88763962f, 0.89322430f, 0.89867447f, 0.90398929f, 0.90916798f, 0.91420976f, 0.91911385f, 0.92387953f, 0.92850608f, 0.93299280f, 0.93733901f, 0.94154407f, 0.94560733f, 0.94952818f, 0.95330604f, 0.95694034f, 0.96043052f, 0.96377607f, 0.96697647f, 0.97003125f, 0.97293995f, 0.97570213f, 0.97831737f, 0.98078528f, 0.98310549f, 0.98527764f, 0.98730142f, 0.98917651f, 0.99090264f, 0.99247953f, 0.99390697f, 0.99518473f, 0.99631261f, 0.99729046f, 0.99811811f, 0.99879546f, 0.99932238f, 0.99969882f, 0.99992470f, 1.00000000f, 0.99992470f, 0.99969882f, 0.99932238f, 0.99879546f, 0.99811811f, 0.99729046f, 0.99631261f, 0.99518473f, 0.99390697f, 0.99247953f, 0.99090264f, 0.98917651f, 0.98730142f, 0.98527764f, 0.98310549f, 0.98078528f, 0.97831737f, 0.97570213f, 0.97293995f, 0.97003125f, 0.96697647f, 0.96377607f, 0.96043052f, 0.95694034f, 0.95330604f, 0.94952818f, 0.94560733f, 0.94154407f, 0.93733901f, 0.93299280f, 0.92850608f, 0.92387953f, 0.91911385f, 0.91420976f, 0.90916798f, 0.90398929f, 0.89867447f, 0.89322430f, 0.88763962f, 0.88192126f, 0.87607009f, 0.87008699f, 0.86397286f, 0.85772861f, 0.85135519f, 0.84485357f, 0.83822471f, 0.83146961f, 0.82458930f, 0.81758481f, 0.81045720f, 0.80320753f, 0.79583690f, 0.78834643f, 0.78073723f, 0.77301045f, 0.76516727f, 0.75720885f, 0.74913639f, 0.74095113f, 0.73265427f, 0.72424708f, 0.71573083f, 0.70710678f, 0.69837625f, 0.68954054f, 0.68060100f, 0.67155895f, 0.66241578f, 0.65317284f, 0.64383154f, 0.63439328f, 0.62485949f, 0.61523159f, 0.60551104f, 0.59569930f, 0.58579786f, 0.57580819f, 0.56573181f, 0.55557023f, 0.54532499f, 0.53499762f, 0.52458968f, 0.51410274f, 0.50353838f, 0.49289819f, 0.48218377f, 0.47139674f, 0.46053871f, 0.44961133f, 0.43861624f, 0.42755509f, 0.41642956f, 0.40524131f, 0.39399204f, 0.38268343f, 0.37131719f, 0.35989504f, 0.34841868f, 0.33688985f, 0.32531029f, 0.31368174f, 0.30200595f, 0.29028468f, 0.27851969f, 0.26671276f, 0.25486566f, 0.24298018f, 0.23105811f, 0.21910124f, 0.20711138f, 0.19509032f, 0.18303989f, 0.17096189f, 0.15885814f, 0.14673047f, 0.13458071f, 0.12241068f, 0.11022221f, 0.09801714f, 0.08579731f, 0.07356456f, 0.06132074f, 0.04906767f, 0.03680722f, 0.02454123f, 0.01227154f, 0.00000000f, -0.01227154f, -0.02454123f, -0.03680722f, -0.04906767f, -0.06132074f, -0.07356456f, -0.08579731f, -0.09801714f, -0.11022221f, -0.12241068f, -0.13458071f, -0.14673047f, -0.15885814f, -0.17096189f, -0.18303989f, -0.19509032f, -0.20711138f, -0.21910124f, -0.23105811f, -0.24298018f, -0.25486566f, -0.26671276f, -0.27851969f, -0.29028468f, -0.30200595f, -0.31368174f, -0.32531029f, -0.33688985f, -0.34841868f, -0.35989504f, -0.37131719f, -0.38268343f, -0.39399204f, -0.40524131f, -0.41642956f, -0.42755509f, -0.43861624f, -0.44961133f, -0.46053871f, -0.47139674f, -0.48218377f, -0.49289819f, -0.50353838f, -0.51410274f, -0.52458968f, -0.53499762f, -0.54532499f, -0.55557023f, -0.56573181f, -0.57580819f, -0.58579786f, -0.59569930f, -0.60551104f, -0.61523159f, -0.62485949f, -0.63439328f, -0.64383154f, -0.65317284f, -0.66241578f, -0.67155895f, -0.68060100f, -0.68954054f, -0.69837625f, -0.70710678f, -0.71573083f, -0.72424708f, -0.73265427f, -0.74095113f, -0.74913639f, -0.75720885f, -0.76516727f, -0.77301045f, -0.78073723f, -0.78834643f, -0.79583690f, -0.80320753f, -0.81045720f, -0.81758481f, -0.82458930f, -0.83146961f, -0.83822471f, -0.84485357f, -0.85135519f, -0.85772861f, -0.86397286f, -0.87008699f, -0.87607009f, -0.88192126f, -0.88763962f, -0.89322430f, -0.89867447f, -0.90398929f, -0.90916798f, -0.91420976f, -0.91911385f, -0.92387953f, -0.92850608f, -0.93299280f, -0.93733901f, -0.94154407f, -0.94560733f, -0.94952818f, -0.95330604f, -0.95694034f, -0.96043052f, -0.96377607f, -0.96697647f, -0.97003125f, -0.97293995f, -0.97570213f, -0.97831737f, -0.98078528f, -0.98310549f, -0.98527764f, -0.98730142f, -0.98917651f, -0.99090264f, -0.99247953f, -0.99390697f, -0.99518473f, -0.99631261f, -0.99729046f, -0.99811811f, -0.99879546f, -0.99932238f, -0.99969882f, -0.99992470f, -1.00000000f, -0.99992470f, -0.99969882f, -0.99932238f, -0.99879546f, -0.99811811f, -0.99729046f, -0.99631261f, -0.99518473f, -0.99390697f, -0.99247953f, -0.99090264f, -0.98917651f, -0.98730142f, -0.98527764f, -0.98310549f, -0.98078528f, -0.97831737f, -0.97570213f, -0.97293995f, -0.97003125f, -0.96697647f, -0.96377607f, -0.96043052f, -0.95694034f, -0.95330604f, -0.94952818f, -0.94560733f, -0.94154407f, -0.93733901f, -0.93299280f, -0.92850608f, -0.92387953f, -0.91911385f, -0.91420976f, -0.90916798f, -0.90398929f, -0.89867447f, -0.89322430f, -0.88763962f, -0.88192126f, -0.87607009f, -0.87008699f, -0.86397286f, -0.85772861f, -0.85135519f, -0.84485357f, -0.83822471f, -0.83146961f, -0.82458930f, -0.81758481f, -0.81045720f, -0.80320753f, -0.79583690f, -0.78834643f, -0.78073723f, -0.77301045f, -0.76516727f, -0.75720885f, -0.74913639f, -0.74095113f, -0.73265427f, -0.72424708f, -0.71573083f, -0.70710678f, -0.69837625f, -0.68954054f, -0.68060100f, -0.67155895f, -0.66241578f, -0.65317284f, -0.64383154f, -0.63439328f, -0.62485949f, -0.61523159f, -0.60551104f, -0.59569930f, -0.58579786f, -0.57580819f, -0.56573181f, -0.55557023f, -0.54532499f, -0.53499762f, -0.52458968f, -0.51410274f, -0.50353838f, -0.49289819f, -0.48218377f, -0.47139674f, -0.46053871f, -0.44961133f, -0.43861624f, -0.42755509f, -0.41642956f, -0.40524131f, -0.39399204f, -0.38268343f, -0.37131719f, -0.35989504f, -0.34841868f, -0.33688985f, -0.32531029f, -0.31368174f, -0.30200595f, -0.29028468f, -0.27851969f, -0.26671276f, -0.25486566f, -0.24298018f, -0.23105811f, -0.21910124f, -0.20711138f, -0.19509032f, -0.18303989f, -0.17096189f, -0.15885814f, -0.14673047f, -0.13458071f, -0.12241068f, -0.11022221f, -0.09801714f, -0.08579731f, -0.07356456f, -0.06132074f, -0.04906767f, -0.03680722f, -0.02454123f, -0.01227154f, -0.00000000f }; /** * @ingroup groupFastMath */ /** * @defgroup sin Sine * * Computes the trigonometric sine function using a combination of table lookup * and cubic interpolation. There are separate functions for * Q15, Q31, and floating-point data types. * The input to the floating-point version is in radians while the * fixed-point Q15 and Q31 have a scaled input with the range * [0 +0.9999] mapping to [0 2*pi). The fixed-point range is chosen so that a * value of 2*pi wraps around to 0. * * The implementation is based on table lookup using 256 values together with cubic interpolation. * The steps used are: * -# Calculation of the nearest integer table index * -# Fetch the four table values a, b, c, and d * -# Compute the fractional portion (fract) of the table index. * -# Calculation of wa, wb, wc, wd * -# The final result equals a*wa + b*wb + c*wc + d*wd * * where *
 *    a=Table[index-1];
 *    b=Table[index+0];
 *    c=Table[index+1];
 *    d=Table[index+2];
 * 
* and *
 *    wa=-(1/6)*fract.^3 + (1/2)*fract.^2 - (1/3)*fract;
 *    wb=(1/2)*fract.^3 - fract.^2 - (1/2)*fract + 1;
 *    wc=-(1/2)*fract.^3+(1/2)*fract.^2+fract;
 *    wd=(1/6)*fract.^3 - (1/6)*fract;
 * 
*/ /** * @addtogroup sin * @{ */ /** * @brief Fast approximation to the trigonometric sine function for floating-point data. * @param[in] x input value in radians. * @return sin(x). */ float32_t arm_sin_f32( float32_t x) { float32_t sinVal, fract, in; /* Temporary variables for input, output */ uint16_t index; /* Index variable */ float32_t a, b; /* Two nearest output values */ int32_t n; float32_t findex; /* input x is in radians */ /* Scale the input to [0 1] range from [0 2*PI] , divide input by 2*pi */ in = x * 0.159154943092f; /* Calculation of floor value of input */ n = (int32_t) in; /* Make negative values towards -infinity */ if(x < 0.0f) { n--; } /* Map input value to [0 1] */ in = in - (float32_t) n; /* Calculation of index of the table */ findex = (float32_t) FAST_MATH_TABLE_SIZE * in; index = ((uint16_t)findex) & 0x1ff; /* fractional value calculation */ fract = findex - (float32_t) index; /* Read two nearest values of input value from the sin table */ a = sinTable_f32[index]; b = sinTable_f32[index+1]; /* Linear interpolation process */ sinVal = (1.0f-fract)*a + fract*b; /* Return the output value */ return (sinVal); } /** * @defgroup cos Cosine * * Computes the trigonometric cosine function using a combination of table lookup * and cubic interpolation. There are separate functions for * Q15, Q31, and floating-point data types. * The input to the floating-point version is in radians while the * fixed-point Q15 and Q31 have a scaled input with the range * [0 +0.9999] mapping to [0 2*pi). The fixed-point range is chosen so that a * value of 2*pi wraps around to 0. * * The implementation is based on table lookup using 256 values together with cubic interpolation. * The steps used are: * -# Calculation of the nearest integer table index * -# Fetch the four table values a, b, c, and d * -# Compute the fractional portion (fract) of the table index. * -# Calculation of wa, wb, wc, wd * -# The final result equals a*wa + b*wb + c*wc + d*wd * * where *
 *    a=Table[index-1];
 *    b=Table[index+0];
 *    c=Table[index+1];
 *    d=Table[index+2];
 * 
* and *
 *    wa=-(1/6)*fract.^3 + (1/2)*fract.^2 - (1/3)*fract;
 *    wb=(1/2)*fract.^3 - fract.^2 - (1/2)*fract + 1;
 *    wc=-(1/2)*fract.^3+(1/2)*fract.^2+fract;
 *    wd=(1/6)*fract.^3 - (1/6)*fract;
 * 
*/ /** * @addtogroup cos * @{ */ /** * @brief Fast approximation to the trigonometric cosine function for floating-point data. * @param[in] x input value in radians. * @return cos(x). */ float32_t arm_cos_f32( float32_t x) { float32_t cosVal, fract, in; /* Temporary variables for input, output */ uint16_t index; /* Index variable */ float32_t a, b; /* Two nearest output values */ int32_t n; float32_t findex; /* input x is in radians */ /* Scale the input to [0 1] range from [0 2*PI] , divide input by 2*pi, add 0.25 (pi/2) to read sine table */ in = x * 0.159154943092f + 0.25f; /* Calculation of floor value of input */ n = (int32_t) in; /* Make negative values towards -infinity */ if(in < 0.0f) { n--; } /* Map input value to [0 1] */ in = in - (float32_t) n; /* Calculation of index of the table */ findex = (float32_t) FAST_MATH_TABLE_SIZE * in; index = ((uint16_t)findex) & 0x1ff; /* fractional value calculation */ fract = findex - (float32_t) index; /* Read two nearest values of input value from the cos table */ a = sinTable_f32[index]; b = sinTable_f32[index+1]; /* Linear interpolation process */ cosVal = (1.0f-fract)*a + fract*b; /* Return the output value */ return (cosVal); } /** * @} end of cos group */