/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ ///////////////////////////////////////////////////////////////////////// /* * This module contains matrix math utilities for the following datatypes: * -) Mat33 structures for 3x3 dimensional matrices * -) Mat44 structures for 4x4 dimensional matrices * -) floating point arrays for NxM dimensional matrices. * * Note that the Mat33 and Mat44 utilities were ported from the Android * repository and maintain dependencies in that separate codebase. As a * result, the function signatures were left untouched for compatibility with * this legacy code, despite certain style violations. In particular, for this * module the function argument ordering is outputs before inputs. This style * violation will be addressed once the full set of dependencies in Android * have been brought into this repository. */ #ifndef LOCATION_LBS_CONTEXTHUB_NANOAPPS_COMMON_MATH_MAT_H_ #define LOCATION_LBS_CONTEXTHUB_NANOAPPS_COMMON_MATH_MAT_H_ #include #include #include #include "common/math/vec.h" #ifdef __cplusplus extern "C" { #endif struct Mat33 { float elem[3][3]; }; struct Size3 { uint32_t elem[3]; }; struct Mat44 { float elem[4][4]; }; struct Size4 { uint32_t elem[4]; }; // 3x3 MATRIX MATH ///////////////////////////////////////////////////////////// void initZeroMatrix(struct Mat33 *A); // Updates A with the value x on the main diagonal and 0 on the off diagonals, // i.e.: // A = [x 0 0 // 0 x 0 // 0 0 x] void initDiagonalMatrix(struct Mat33 *A, float x); // Updates A such that the columns are given by the provided vectors, i.e.: // A = [v1 v2 v3]. void initMatrixColumns(struct Mat33 *A, const struct Vec3 *v1, const struct Vec3 *v2, const struct Vec3 *v3); // Updates out with the multiplication of A with v, i.e.: // out = A v. void mat33Apply(struct Vec3 *out, const struct Mat33 *A, const struct Vec3 *v); // Updates out with the multiplication of A with B, i.e.: // out = A B. void mat33Multiply(struct Mat33 *out, const struct Mat33 *A, const struct Mat33 *B); // Updates A by scaling all entries by the provided scalar c, i.e.: // A = A c. void mat33ScalarMul(struct Mat33 *A, float c); // Updates out by adding A to out, i.e.: // out = out + A. void mat33Add(struct Mat33 *out, const struct Mat33 *A); // Updates out by subtracting A from out, i.e.: // out = out - A. void mat33Sub(struct Mat33 *out, const struct Mat33 *A); // Returns 1 if the minimum eigenvalue of the matrix A is greater than the // given tolerance. Note that the tolerance is assumed to be greater than 0. // I.e., returns: 1[min(eig(A)) > tolerance]. // NOTE: this function currently only checks matrix symmetry and positivity // of the diagonals which is insufficient for testing positive semidefinite. int mat33IsPositiveSemidefinite(const struct Mat33 *A, float tolerance); // Updates out with the inverse of the matrix A, i.e.: // out = A^(-1) void mat33Invert(struct Mat33 *out, const struct Mat33 *A); // Updates out with the multiplication of A's transpose with B, i.e.: // out = A^T B void mat33MultiplyTransposed(struct Mat33 *out, const struct Mat33 *A, const struct Mat33 *B); // Updates out with the multiplication of A with B's transpose, i.e.: // out = A B^T void mat33MultiplyTransposed2(struct Mat33 *out, const struct Mat33 *A, const struct Mat33 *B); // Updates out with the transpose of A, i.e.: // out = A^T void mat33Transpose(struct Mat33 *out, const struct Mat33 *A); // Returns the eigenvalues and corresponding eigenvectors of the symmetric // matrix S. // The i-th eigenvalue corresponds to the eigenvector in the i-th row of // the matrix eigenvecs. void mat33GetEigenbasis(struct Mat33 *S, struct Vec3 *eigenvals, struct Mat33 *eigenvecs); // Computes the determinant of a 3 by 3 matrix. float mat33Determinant(const struct Mat33 *A); // 4x4 MATRIX MATH ///////////////////////////////////////////////////////////// // Updates out with the multiplication of A and v, i.e.: // out = Av. void mat44Apply(struct Vec4 *out, const struct Mat44 *A, const struct Vec4 *v); // Decomposes the given matrix LU inplace, such that: // LU = P' * L * U. // where L is a lower-diagonal matrix, U is an upper-diagonal matrix, and P is a // permutation matrix. // // L and U are stored compactly in the returned LU matrix such that: // -) the superdiagonal elements make up "U" (with a diagonal of 1.0s), // -) the subdiagonal and diagonal elements make up "L". // e.g. if the returned LU matrix is: // LU = [A11 A12 A13 A14 // A21 A22 A23 A24 // A31 A32 A33 A34 // A41 A42 A43 A44], then: // L = [A11 0 0 0 and U = [ 1 A12 A13 A14 // A21 A22 0 0 0 1 A23 A24 // A31 A32 A33 0 0 0 1 A34 // A41 A42 A43 A44] 0 0 0 1 ] // // The permutation matrix P can be reproduced from returned pivot vector as: // matrix P(N); // P.identity(); // for (size_t i = 0; i < N; ++i) { // P.swapRows(i, pivot[i]); // } void mat44DecomposeLup(struct Mat44 *LU, struct Size4 *pivot); // Solves the linear system A x = b for x, where A is a compact LU decomposition // (i.e. the LU matrix from mat44DecomposeLup) and pivot is the corresponding // row pivots for the permutation matrix (also from mat44DecomposeLup). void mat44Solve(const struct Mat44 *A, struct Vec4 *x, const struct Vec4 *b, const struct Size4 *pivot); // MXN MATRIX MATH ///////////////////////////////////////////////////////////// /* * The following functions define basic math functionality for matrices of * arbitrary dimension. * * All matrices used in these functions are assumed to be row major, i.e. if: * A = [1 2 3 * 4 5 6 * 7 8 9] * then when A is passed into one of the functions below, the order of * elements is assumed to be [1 2 3 4 5 6 7 8 9]. */ // Returns the maximum diagonal element of the given matrix. // The matrix is assumed to be square, of size n x n. float matMaxDiagonalElement(const float *square_mat, size_t n); // Adds a constant value to the diagonal of the given square n x n matrix and // returns the updated matrix in place: // A = A + uI void matAddConstantDiagonal(float *square_mat, float u, size_t n); // Updates out with the result of A's transpose multiplied with A (i.e. A^T A). // A is a matrix with dimensions nrows x ncols. // out is a matrix with dimensions ncols x ncols. void matTransposeMultiplyMat(float *out, const float *A, size_t nrows, size_t ncols); // Updates out with the result of A's transpose multiplied with v (i.e. A^T v). // A is a matrix with dimensions nrows x ncols. // v is a vector of dimension nrows. // out is a vector of dimension ncols. void matTransposeMultiplyVec(float* out, const float *A, const float *v, size_t nrows, size_t ncols); // Updates out with the result of A multiplied with v (i.e. out = Av). // A is a matrix with dimensions nrows x ncols. // v is a vector of dimension ncols. // out is a vector of dimension nrows. void matMultiplyVec(float *out, const float *A, const float *v, size_t nrows, size_t ncols); // Solves the linear system L L^T x = b for x, where L is a lower diagonal, // symmetric matrix, i.e. the Cholesky factor of a matrix A = L L^T. // L is a lower-diagonal matrix of dimension n x n. // b is a vector of dimension n. // x is a vector of dimension n. // Returns true if the solver succeeds. bool matLinearSolveCholesky(float *x, const float *L, const float *b, size_t n); // Performs the Cholesky decomposition on the given matrix A such that: // A = L L^T, where L, the Cholesky factor, is a lower diagonal matrix. // Updates the provided L matrix with the Cholesky factor. // This decomposition is only successful for symmetric, positive definite // matrices A. // Returns true if the solver succeeds (will fail if the matrix is not // symmetric, positive definite). bool matCholeskyDecomposition(float *L, const float *A, size_t n); #ifdef __cplusplus } #endif #endif // LOCATION_LBS_CONTEXTHUB_NANOAPPS_COMMON_MATH_MAT_H_