/* * Copyright (C) 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * GUID Partition Table and Composite Disk generation code. */ #include "host/commands/assemble_cvd/image_aggregator.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include "common/libs/fs/shared_buf.h" #include "common/libs/fs/shared_fd.h" #include "common/libs/utils/files.h" #include "common/libs/utils/subprocess.h" #include "host/libs/config/cuttlefish_config.h" #include "host/libs/config/mbr.h" #include "device/google/cuttlefish/host/commands/assemble_cvd/cdisk_spec.pb.h" namespace { constexpr int GPT_NUM_PARTITIONS = 128; /** * Creates a "Protective" MBR Partition Table header. The GUID * Partition Table Specification recommends putting this on the first sector * of the disk, to protect against old disk formatting tools from misidentifying * the GUID Partition Table later and doing the wrong thing. */ MasterBootRecord ProtectiveMbr(std::uint64_t size) { MasterBootRecord mbr = { .partitions = {{ .partition_type = 0xEE, .first_lba = 1, .num_sectors = (std::uint32_t) size / SECTOR_SIZE, }}, .boot_signature = { 0x55, 0xAA }, }; return mbr; } struct __attribute__((packed)) GptHeader { std::uint8_t signature[8]; std::uint8_t revision[4]; std::uint32_t header_size; std::uint32_t header_crc32; std::uint32_t reserved; std::uint64_t current_lba; std::uint64_t backup_lba; std::uint64_t first_usable_lba; std::uint64_t last_usable_lba; std::uint8_t disk_guid[16]; std::uint64_t partition_entries_lba; std::uint32_t num_partition_entries; std::uint32_t partition_entry_size; std::uint32_t partition_entries_crc32; }; static_assert(sizeof(GptHeader) == 92); struct __attribute__((packed)) GptPartitionEntry { std::uint8_t partition_type_guid[16]; std::uint8_t unique_partition_guid[16]; std::uint64_t first_lba; std::uint64_t last_lba; std::uint64_t attributes; std::uint16_t partition_name[36]; // UTF-16LE }; static_assert(sizeof(GptPartitionEntry) == 128); struct __attribute__((packed)) GptBeginning { MasterBootRecord protective_mbr; GptHeader header; std::uint8_t header_padding[420]; GptPartitionEntry entries[GPT_NUM_PARTITIONS]; std::uint8_t partition_alignment[3072]; }; static_assert(sizeof(GptBeginning) == SECTOR_SIZE * 40); struct __attribute__((packed)) GptEnd { GptPartitionEntry entries[GPT_NUM_PARTITIONS]; GptHeader footer; std::uint8_t footer_padding[420]; }; static_assert(sizeof(GptEnd) == SECTOR_SIZE * 33); struct PartitionInfo { ImagePartition source; std::uint64_t size; std::uint64_t offset; }; /* * Returns the file size of `file_path`. If `file_path` is an Android-Sparse * file, returns the file size it would have after being converted to a raw * file. * * Android-Sparse is a file format invented by Android that optimizes for * chunks of zeroes or repeated data. The Android build system can produce * sparse files to save on size of disk files after they are extracted from a * disk file, as the imag eflashing process also can handle Android-Sparse * images. */ std::uint64_t UnsparsedSize(const std::string& file_path) { auto fd = open(file_path.c_str(), O_RDONLY); CHECK(fd >= 0) << "Could not open \"" << file_path << "\"" << strerror(errno); auto sparse = sparse_file_import(fd, /* verbose */ false, /* crc */ false); auto size = sparse ? sparse_file_len(sparse, false, true) : cuttlefish::FileSize(file_path); close(fd); return size; } /* * strncpy equivalent for u16 data. GPT disks use UTF16-LE for disk labels. */ void u16cpy(std::uint16_t* dest, std::uint16_t* src, std::size_t size) { while (size > 0 && *src) { *dest = *src; dest++; src++; size--; } if (size > 0) { *dest = 0; } } /** * Incremental builder class for producing partition tables. Add partitions * one-by-one, then produce specification files */ class CompositeDiskBuilder { private: std::vector partitions_; std::uint64_t next_disk_offset_; public: CompositeDiskBuilder() : next_disk_offset_(sizeof(GptBeginning)) {} void AppendDisk(ImagePartition source) { auto size = UnsparsedSize(source.image_file_path); partitions_.push_back(PartitionInfo { .source = source, .size = size, .offset = next_disk_offset_, }); next_disk_offset_ += size; } std::uint64_t DiskSize() const { std::uint64_t align = 1 << 16; // 64k alignment std::uint64_t val = next_disk_offset_ + sizeof(GptEnd); return ((val + (align - 1)) / align) * align; } /** * Generates a composite disk specification file, assuming that `header_file` * and `footer_file` will be populated with the contents of `Beginning()` and * `End()`. */ CompositeDisk MakeCompositeDiskSpec(const std::string& header_file, const std::string& footer_file) const { CompositeDisk disk; disk.set_version(1); disk.set_length(DiskSize()); ComponentDisk* header = disk.add_component_disks(); header->set_file_path(header_file); header->set_offset(0); for (auto& partition : partitions_) { ComponentDisk* component = disk.add_component_disks(); component->set_file_path(partition.source.image_file_path); component->set_offset(partition.offset); component->set_read_write_capability(ReadWriteCapability::READ_WRITE); } ComponentDisk* footer = disk.add_component_disks(); footer->set_file_path(footer_file); footer->set_offset(next_disk_offset_); return disk; } /* * Returns a GUID Partition Table header structure for all the disks that have * been added with `AppendDisk`. Includes a protective MBR. * * This method is not deterministic: some data is generated such as the disk * uuids. */ GptBeginning Beginning() const { if (partitions_.size() > GPT_NUM_PARTITIONS) { LOG(FATAL) << "Too many partitions: " << partitions_.size(); return {}; } GptBeginning gpt = { .protective_mbr = ProtectiveMbr(DiskSize()), .header = { .signature = {'E', 'F', 'I', ' ', 'P', 'A', 'R', 'T'}, .revision = {0, 0, 1, 0}, .header_size = sizeof(GptHeader), .current_lba = 1, .backup_lba = (next_disk_offset_ + sizeof(GptEnd)) / SECTOR_SIZE - 1, .first_usable_lba = sizeof(GptBeginning) / SECTOR_SIZE, .last_usable_lba = (next_disk_offset_ - SECTOR_SIZE) / SECTOR_SIZE, .partition_entries_lba = 2, .num_partition_entries = GPT_NUM_PARTITIONS, .partition_entry_size = sizeof(GptPartitionEntry), }, }; uuid_generate(gpt.header.disk_guid); for (std::size_t i = 0; i < partitions_.size(); i++) { const auto& partition = partitions_[i]; gpt.entries[i] = GptPartitionEntry { .first_lba = partition.offset / SECTOR_SIZE, .last_lba = (partition.offset + partition.size - SECTOR_SIZE) / SECTOR_SIZE, }; uuid_generate(gpt.entries[i].unique_partition_guid); // The right uuid is technically 0FC63DAF-8483-4772-8E79-3D69D8477DE4. // Due to some endianness mismatch in e2fsprogs uuid vs GPT, this rearranged // one makes the right uuid type appear in gdisk. if (uuid_parse("AF3DC60F-8384-7247-8E79-3D69D8477DE4", // linux_fs gpt.entries[i].partition_type_guid)) { LOG(FATAL) << "Could not parse linux_fs uuid"; } std::u16string wide_name(partitions_[i].source.label.begin(), partitions_[i].source.label.end()); u16cpy((std::uint16_t*) gpt.entries[i].partition_name, (std::uint16_t*) wide_name.c_str(), 36); } // Not sure these are right, but it works for bpttool gpt.header.partition_entries_crc32 = crc32(0, (std::uint8_t*) gpt.entries, GPT_NUM_PARTITIONS * sizeof(GptPartitionEntry)); gpt.header.header_crc32 = crc32(0, (std::uint8_t*) &gpt.header, sizeof(GptHeader)); return gpt; } /** * Generates a GUID Partition Table footer that matches the header in `head`. */ GptEnd End(const GptBeginning& head) const { GptEnd gpt; std::memcpy((void*) gpt.entries, (void*) head.entries, 128 * 128); gpt.footer = head.header; gpt.footer.partition_entries_lba = next_disk_offset_ / SECTOR_SIZE; std::swap(gpt.footer.current_lba, gpt.footer.backup_lba); gpt.footer.header_crc32 = 0; gpt.footer.header_crc32 = crc32(0, (std::uint8_t*) &gpt.footer, sizeof(GptHeader)); return gpt; } }; bool WriteBeginning(cuttlefish::SharedFD out, const GptBeginning& beginning) { std::string begin_str((const char*) &beginning, sizeof(GptBeginning)); if (cuttlefish::WriteAll(out, begin_str) != begin_str.size()) { LOG(ERROR) << "Could not write GPT beginning: " << out->StrError(); return false; } return true; } bool WriteEnd(cuttlefish::SharedFD out, const GptEnd& end, std::int64_t padding) { std::string end_str((const char*) &end, sizeof(GptEnd)); end_str.resize(end_str.size() + padding, '\0'); if (cuttlefish::WriteAll(out, end_str) != end_str.size()) { LOG(ERROR) << "Could not write GPT end: " << out->StrError(); return false; } return true; } /** * Converts any Android-Sparse image files in `partitions` to raw image files. * * Android-Sparse is a file format invented by Android that optimizes for * chunks of zeroes or repeated data. The Android build system can produce * sparse files to save on size of disk files after they are extracted from a * disk file, as the imag eflashing process also can handle Android-Sparse * images. * * crosvm has read-only support for Android-Sparse files, but QEMU does not * support them. */ void DeAndroidSparse(const std::vector& partitions) { for (const auto& partition : partitions) { auto fd = open(partition.image_file_path.c_str(), O_RDONLY); if (fd < 0) { PLOG(FATAL) << "Could not open \"" << partition.image_file_path; break; } auto sparse = sparse_file_import(fd, /* verbose */ false, /* crc */ false); if (!sparse) { close(fd); continue; } LOG(INFO) << "Desparsing " << partition.image_file_path; std::string out_file_name = partition.image_file_path + ".desparse"; auto write_fd = open(out_file_name.c_str(), O_RDWR | O_CREAT | O_TRUNC, S_IRUSR | S_IWUSR | S_IRGRP); if (write_fd < 0) { PLOG(FATAL) << "Could not open " << out_file_name; } int write_status = sparse_file_write(sparse, write_fd, /* gz */ false, /* sparse */ false, /* crc */ false); if (write_status < 0) { LOG(FATAL) << "Failed to desparse \"" << partition.image_file_path << "\": " << write_status; } close(write_fd); if (rename(out_file_name.c_str(), partition.image_file_path.c_str()) < 0) { int error_num = errno; LOG(FATAL) << "Could not move \"" << out_file_name << "\" to \"" << partition.image_file_path << "\": " << strerror(error_num); } sparse_file_destroy(sparse); close(fd); } } } // namespace void AggregateImage(const std::vector& partitions, const std::string& output_path) { DeAndroidSparse(partitions); CompositeDiskBuilder builder; for (auto& disk : partitions) { builder.AppendDisk(disk); } auto output = cuttlefish::SharedFD::Creat(output_path, 0600); auto beginning = builder.Beginning(); if (!WriteBeginning(output, beginning)) { LOG(FATAL) << "Could not write GPT beginning to \"" << output_path << "\": " << output->StrError(); } for (auto& disk : partitions) { auto disk_fd = cuttlefish::SharedFD::Open(disk.image_file_path, O_RDONLY); auto file_size = cuttlefish::FileSize(disk.image_file_path); if (!output->CopyFrom(*disk_fd, file_size)) { LOG(FATAL) << "Could not copy from \"" << disk.image_file_path << "\" to \"" << output_path << "\": " << output->StrError(); } } std::uint64_t padding = builder.DiskSize() - ((beginning.header.backup_lba + 1) * SECTOR_SIZE); if (!WriteEnd(output, builder.End(beginning), padding)) { LOG(FATAL) << "Could not write GPT end to \"" << output_path << "\": " << output->StrError(); } }; void CreateCompositeDisk(std::vector partitions, const std::string& header_file, const std::string& footer_file, const std::string& output_composite_path) { CompositeDiskBuilder builder; for (auto& disk : partitions) { builder.AppendDisk(disk); } auto header = cuttlefish::SharedFD::Creat(header_file, 0600); auto beginning = builder.Beginning(); if (!WriteBeginning(header, beginning)) { LOG(FATAL) << "Could not write GPT beginning to \"" << header_file << "\": " << header->StrError(); } auto footer = cuttlefish::SharedFD::Creat(footer_file, 0600); std::uint64_t padding = builder.DiskSize() - ((beginning.header.backup_lba + 1) * SECTOR_SIZE); if (!WriteEnd(footer, builder.End(beginning), padding)) { LOG(FATAL) << "Could not write GPT end to \"" << footer_file << "\": " << footer->StrError(); } auto composite_proto = builder.MakeCompositeDiskSpec(header_file, footer_file); std::ofstream composite(output_composite_path.c_str(), std::ios::binary | std::ios::trunc); composite << "composite_disk\x1d"; composite_proto.SerializeToOstream(&composite); composite.flush(); } void CreateQcowOverlay(const std::string& crosvm_path, const std::string& backing_file, const std::string& output_overlay_path) { cuttlefish::Command crosvm_qcow2_cmd(crosvm_path); crosvm_qcow2_cmd.AddParameter("create_qcow2"); crosvm_qcow2_cmd.AddParameter("--backing_file=", backing_file); crosvm_qcow2_cmd.AddParameter(output_overlay_path); int success = crosvm_qcow2_cmd.Start().Wait(); if (success != 0) { LOG(FATAL) << "Unable to run crosvm create_qcow2. Exited with status " << success; } }