/* * Copyright (C) 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "HalProxy.h" #include "SubHal.h" #include #include #include "hardware_legacy/power.h" #include #include #include #include #include #include namespace android { namespace hardware { namespace sensors { namespace V2_0 { namespace implementation { using ::android::hardware::sensors::V2_0::EventQueueFlagBits; using ::android::hardware::sensors::V2_0::WakeLockQueueFlagBits; using ::android::hardware::sensors::V2_0::implementation::getTimeNow; using ::android::hardware::sensors::V2_0::implementation::kWakelockTimeoutNs; typedef ISensorsSubHal*(SensorsHalGetSubHalFunc)(uint32_t*); static constexpr int32_t kBitsAfterSubHalIndex = 24; /** * Set the subhal index as first byte of sensor handle and return this modified version. * * @param sensorHandle The sensor handle to modify. * @param subHalIndex The index in the hal proxy of the sub hal this sensor belongs to. * * @return The modified sensor handle. */ int32_t setSubHalIndex(int32_t sensorHandle, size_t subHalIndex) { return sensorHandle | (static_cast(subHalIndex) << kBitsAfterSubHalIndex); } /** * Extract the subHalIndex from sensorHandle. * * @param sensorHandle The sensorHandle to extract from. * * @return The subhal index. */ size_t extractSubHalIndex(int32_t sensorHandle) { return static_cast(sensorHandle >> kBitsAfterSubHalIndex); } /** * Convert nanoseconds to milliseconds. * * @param nanos The nanoseconds input. * * @return The milliseconds count. */ int64_t msFromNs(int64_t nanos) { constexpr int64_t nanosecondsInAMillsecond = 1000000; return nanos / nanosecondsInAMillsecond; } HalProxy::HalProxy() { const char* kMultiHalConfigFile = "/vendor/etc/sensors/hals.conf"; initializeSubHalListFromConfigFile(kMultiHalConfigFile); init(); } HalProxy::HalProxy(std::vector& subHalList) : mSubHalList(subHalList) { init(); } HalProxy::~HalProxy() { stopThreads(); } Return HalProxy::getSensorsList(getSensorsList_cb _hidl_cb) { std::vector sensors; for (const auto& iter : mSensors) { sensors.push_back(iter.second); } _hidl_cb(sensors); return Void(); } Return HalProxy::setOperationMode(OperationMode mode) { Result result = Result::OK; size_t subHalIndex; for (subHalIndex = 0; subHalIndex < mSubHalList.size(); subHalIndex++) { ISensorsSubHal* subHal = mSubHalList[subHalIndex]; result = subHal->setOperationMode(mode); if (result != Result::OK) { ALOGE("setOperationMode failed for SubHal: %s", subHal->getName().c_str()); break; } } if (result != Result::OK) { // Reset the subhal operation modes that have been flipped for (size_t i = 0; i < subHalIndex; i++) { ISensorsSubHal* subHal = mSubHalList[i]; subHal->setOperationMode(mCurrentOperationMode); } } else { mCurrentOperationMode = mode; } return result; } Return HalProxy::activate(int32_t sensorHandle, bool enabled) { if (!isSubHalIndexValid(sensorHandle)) { return Result::BAD_VALUE; } return getSubHalForSensorHandle(sensorHandle) ->activate(clearSubHalIndex(sensorHandle), enabled); } Return HalProxy::initialize( const ::android::hardware::MQDescriptorSync& eventQueueDescriptor, const ::android::hardware::MQDescriptorSync& wakeLockDescriptor, const sp& sensorsCallback) { Result result = Result::OK; stopThreads(); resetSharedWakelock(); // So that the pending write events queue can be cleared safely and when we start threads // again we do not get new events until after initialize resets the subhals. disableAllSensors(); // Clears the queue if any events were pending write before. mPendingWriteEventsQueue = std::queue, size_t>>(); mSizePendingWriteEventsQueue = 0; // Clears previously connected dynamic sensors mDynamicSensors.clear(); mDynamicSensorsCallback = sensorsCallback; // Create the Event FMQ from the eventQueueDescriptor. Reset the read/write positions. mEventQueue = std::make_unique(eventQueueDescriptor, true /* resetPointers */); // Create the Wake Lock FMQ that is used by the framework to communicate whenever WAKE_UP // events have been successfully read and handled by the framework. mWakeLockQueue = std::make_unique(wakeLockDescriptor, true /* resetPointers */); if (mEventQueueFlag != nullptr) { EventFlag::deleteEventFlag(&mEventQueueFlag); } if (mWakelockQueueFlag != nullptr) { EventFlag::deleteEventFlag(&mWakelockQueueFlag); } if (EventFlag::createEventFlag(mEventQueue->getEventFlagWord(), &mEventQueueFlag) != OK) { result = Result::BAD_VALUE; } if (EventFlag::createEventFlag(mWakeLockQueue->getEventFlagWord(), &mWakelockQueueFlag) != OK) { result = Result::BAD_VALUE; } if (!mDynamicSensorsCallback || !mEventQueue || !mWakeLockQueue || mEventQueueFlag == nullptr) { result = Result::BAD_VALUE; } mThreadsRun.store(true); mPendingWritesThread = std::thread(startPendingWritesThread, this); mWakelockThread = std::thread(startWakelockThread, this); for (size_t i = 0; i < mSubHalList.size(); i++) { auto subHal = mSubHalList[i]; const auto& subHalCallback = mSubHalCallbacks[i]; Result currRes = subHal->initialize(subHalCallback); if (currRes != Result::OK) { result = currRes; ALOGE("Subhal '%s' failed to initialize.", subHal->getName().c_str()); break; } } mCurrentOperationMode = OperationMode::NORMAL; return result; } Return HalProxy::batch(int32_t sensorHandle, int64_t samplingPeriodNs, int64_t maxReportLatencyNs) { if (!isSubHalIndexValid(sensorHandle)) { return Result::BAD_VALUE; } return getSubHalForSensorHandle(sensorHandle) ->batch(clearSubHalIndex(sensorHandle), samplingPeriodNs, maxReportLatencyNs); } Return HalProxy::flush(int32_t sensorHandle) { if (!isSubHalIndexValid(sensorHandle)) { return Result::BAD_VALUE; } return getSubHalForSensorHandle(sensorHandle)->flush(clearSubHalIndex(sensorHandle)); } Return HalProxy::injectSensorData(const Event& event) { Result result = Result::OK; if (mCurrentOperationMode == OperationMode::NORMAL && event.sensorType != V1_0::SensorType::ADDITIONAL_INFO) { ALOGE("An event with type != ADDITIONAL_INFO passed to injectSensorData while operation" " mode was NORMAL."); result = Result::BAD_VALUE; } if (result == Result::OK) { Event subHalEvent = event; if (!isSubHalIndexValid(event.sensorHandle)) { return Result::BAD_VALUE; } subHalEvent.sensorHandle = clearSubHalIndex(event.sensorHandle); result = getSubHalForSensorHandle(event.sensorHandle)->injectSensorData(subHalEvent); } return result; } Return HalProxy::registerDirectChannel(const SharedMemInfo& mem, registerDirectChannel_cb _hidl_cb) { if (mDirectChannelSubHal == nullptr) { _hidl_cb(Result::INVALID_OPERATION, -1 /* channelHandle */); } else { mDirectChannelSubHal->registerDirectChannel(mem, _hidl_cb); } return Return(); } Return HalProxy::unregisterDirectChannel(int32_t channelHandle) { Result result; if (mDirectChannelSubHal == nullptr) { result = Result::INVALID_OPERATION; } else { result = mDirectChannelSubHal->unregisterDirectChannel(channelHandle); } return result; } Return HalProxy::configDirectReport(int32_t sensorHandle, int32_t channelHandle, RateLevel rate, configDirectReport_cb _hidl_cb) { if (mDirectChannelSubHal == nullptr) { _hidl_cb(Result::INVALID_OPERATION, -1 /* reportToken */); } else { mDirectChannelSubHal->configDirectReport(clearSubHalIndex(sensorHandle), channelHandle, rate, _hidl_cb); } return Return(); } Return HalProxy::debug(const hidl_handle& fd, const hidl_vec& /*args*/) { if (fd.getNativeHandle() == nullptr || fd->numFds < 1) { ALOGE("%s: missing fd for writing", __FUNCTION__); return Void(); } android::base::borrowed_fd writeFd = dup(fd->data[0]); std::ostringstream stream; stream << "===HalProxy===" << std::endl; stream << "Internal values:" << std::endl; stream << " Threads are running: " << (mThreadsRun.load() ? "true" : "false") << std::endl; int64_t now = getTimeNow(); stream << " Wakelock timeout start time: " << msFromNs(now - mWakelockTimeoutStartTime) << " ms ago" << std::endl; stream << " Wakelock timeout reset time: " << msFromNs(now - mWakelockTimeoutResetTime) << " ms ago" << std::endl; // TODO(b/142969448): Add logging for history of wakelock acquisition per subhal. stream << " Wakelock ref count: " << mWakelockRefCount << std::endl; stream << " # of events on pending write writes queue: " << mSizePendingWriteEventsQueue << std::endl; stream << " Most events seen on pending write events queue: " << mMostEventsObservedPendingWriteEventsQueue << std::endl; if (!mPendingWriteEventsQueue.empty()) { stream << " Size of events list on front of pending writes queue: " << mPendingWriteEventsQueue.front().first.size() << std::endl; } stream << " # of non-dynamic sensors across all subhals: " << mSensors.size() << std::endl; stream << " # of dynamic sensors across all subhals: " << mDynamicSensors.size() << std::endl; stream << "SubHals (" << mSubHalList.size() << "):" << std::endl; for (ISensorsSubHal* subHal : mSubHalList) { stream << " Name: " << subHal->getName() << std::endl; stream << " Debug dump: " << std::endl; android::base::WriteStringToFd(stream.str(), writeFd); subHal->debug(fd, {}); stream.str(""); stream << std::endl; } android::base::WriteStringToFd(stream.str(), writeFd); return Return(); } Return HalProxy::onDynamicSensorsConnected(const hidl_vec& dynamicSensorsAdded, int32_t subHalIndex) { std::vector sensors; { std::lock_guard lock(mDynamicSensorsMutex); for (SensorInfo sensor : dynamicSensorsAdded) { if (!subHalIndexIsClear(sensor.sensorHandle)) { ALOGE("Dynamic sensor added %s had sensorHandle with first byte not 0.", sensor.name.c_str()); } else { sensor.sensorHandle = setSubHalIndex(sensor.sensorHandle, subHalIndex); mDynamicSensors[sensor.sensorHandle] = sensor; sensors.push_back(sensor); } } } mDynamicSensorsCallback->onDynamicSensorsConnected(sensors); return Return(); } Return HalProxy::onDynamicSensorsDisconnected( const hidl_vec& dynamicSensorHandlesRemoved, int32_t subHalIndex) { // TODO(b/143302327): Block this call until all pending events are flushed from queue std::vector sensorHandles; { std::lock_guard lock(mDynamicSensorsMutex); for (int32_t sensorHandle : dynamicSensorHandlesRemoved) { if (!subHalIndexIsClear(sensorHandle)) { ALOGE("Dynamic sensorHandle removed had first byte not 0."); } else { sensorHandle = setSubHalIndex(sensorHandle, subHalIndex); if (mDynamicSensors.find(sensorHandle) != mDynamicSensors.end()) { mDynamicSensors.erase(sensorHandle); sensorHandles.push_back(sensorHandle); } } } } mDynamicSensorsCallback->onDynamicSensorsDisconnected(sensorHandles); return Return(); } void HalProxy::initializeSubHalListFromConfigFile(const char* configFileName) { std::ifstream subHalConfigStream(configFileName); if (!subHalConfigStream) { ALOGE("Failed to load subHal config file: %s", configFileName); } else { std::string subHalLibraryFile; while (subHalConfigStream >> subHalLibraryFile) { void* handle = getHandleForSubHalSharedObject(subHalLibraryFile); if (handle == nullptr) { ALOGE("dlopen failed for library: %s", subHalLibraryFile.c_str()); } else { SensorsHalGetSubHalFunc* sensorsHalGetSubHalPtr = (SensorsHalGetSubHalFunc*)dlsym(handle, "sensorsHalGetSubHal"); if (sensorsHalGetSubHalPtr == nullptr) { ALOGE("Failed to locate sensorsHalGetSubHal function for library: %s", subHalLibraryFile.c_str()); } else { std::function sensorsHalGetSubHal = *sensorsHalGetSubHalPtr; uint32_t version; ISensorsSubHal* subHal = sensorsHalGetSubHal(&version); if (version != SUB_HAL_2_0_VERSION) { ALOGE("SubHal version was not 2.0 for library: %s", subHalLibraryFile.c_str()); } else { ALOGV("Loaded SubHal from library: %s", subHalLibraryFile.c_str()); mSubHalList.push_back(subHal); } } } } } } void HalProxy::initializeSubHalCallbacks() { for (size_t subHalIndex = 0; subHalIndex < mSubHalList.size(); subHalIndex++) { sp callback = new HalProxyCallback(this, subHalIndex); mSubHalCallbacks.push_back(callback); } } void HalProxy::initializeSensorList() { for (size_t subHalIndex = 0; subHalIndex < mSubHalList.size(); subHalIndex++) { ISensorsSubHal* subHal = mSubHalList[subHalIndex]; auto result = subHal->getSensorsList([&](const auto& list) { for (SensorInfo sensor : list) { if (!subHalIndexIsClear(sensor.sensorHandle)) { ALOGE("SubHal sensorHandle's first byte was not 0"); } else { ALOGV("Loaded sensor: %s", sensor.name.c_str()); sensor.sensorHandle = setSubHalIndex(sensor.sensorHandle, subHalIndex); setDirectChannelFlags(&sensor, subHal); mSensors[sensor.sensorHandle] = sensor; } } }); if (!result.isOk()) { ALOGE("getSensorsList call failed for SubHal: %s", subHal->getName().c_str()); } } } void* HalProxy::getHandleForSubHalSharedObject(const std::string& filename) { static const std::string kSubHalShareObjectLocations[] = { "", // Default locations will be searched #ifdef __LP64__ "/vendor/lib64/hw/", "/odm/lib64/", "/odm/lib64/hw/" #else "/vendor/lib/hw/", "/odm/lib/", "/odm/lib/hw/" #endif }; for (const std::string& dir : kSubHalShareObjectLocations) { void* handle = dlopen((dir + filename).c_str(), RTLD_NOW); if (handle != nullptr) { return handle; } } return nullptr; } void HalProxy::init() { initializeSubHalCallbacks(); initializeSensorList(); } void HalProxy::stopThreads() { mThreadsRun.store(false); if (mEventQueueFlag != nullptr && mEventQueue != nullptr) { size_t numToRead = mEventQueue->availableToRead(); std::vector events(numToRead); mEventQueue->read(events.data(), numToRead); mEventQueueFlag->wake(static_cast(EventQueueFlagBits::EVENTS_READ)); } if (mWakelockQueueFlag != nullptr && mWakeLockQueue != nullptr) { uint32_t kZero = 0; mWakeLockQueue->write(&kZero); mWakelockQueueFlag->wake(static_cast(WakeLockQueueFlagBits::DATA_WRITTEN)); } mWakelockCV.notify_one(); mEventQueueWriteCV.notify_one(); if (mPendingWritesThread.joinable()) { mPendingWritesThread.join(); } if (mWakelockThread.joinable()) { mWakelockThread.join(); } } void HalProxy::disableAllSensors() { for (const auto& sensorEntry : mSensors) { int32_t sensorHandle = sensorEntry.first; activate(sensorHandle, false /* enabled */); } std::lock_guard dynamicSensorsLock(mDynamicSensorsMutex); for (const auto& sensorEntry : mDynamicSensors) { int32_t sensorHandle = sensorEntry.first; activate(sensorHandle, false /* enabled */); } } void HalProxy::startPendingWritesThread(HalProxy* halProxy) { halProxy->handlePendingWrites(); } void HalProxy::handlePendingWrites() { // TODO(b/143302327): Find a way to optimize locking strategy maybe using two mutexes instead of // one. std::unique_lock lock(mEventQueueWriteMutex); while (mThreadsRun.load()) { mEventQueueWriteCV.wait( lock, [&] { return !mPendingWriteEventsQueue.empty() || !mThreadsRun.load(); }); if (mThreadsRun.load()) { std::vector& pendingWriteEvents = mPendingWriteEventsQueue.front().first; size_t numWakeupEvents = mPendingWriteEventsQueue.front().second; size_t eventQueueSize = mEventQueue->getQuantumCount(); size_t numToWrite = std::min(pendingWriteEvents.size(), eventQueueSize); lock.unlock(); if (!mEventQueue->writeBlocking( pendingWriteEvents.data(), numToWrite, static_cast(EventQueueFlagBits::EVENTS_READ), static_cast(EventQueueFlagBits::READ_AND_PROCESS), kPendingWriteTimeoutNs, mEventQueueFlag)) { ALOGE("Dropping %zu events after blockingWrite failed.", numToWrite); if (numWakeupEvents > 0) { if (pendingWriteEvents.size() > eventQueueSize) { decrementRefCountAndMaybeReleaseWakelock( countNumWakeupEvents(pendingWriteEvents, eventQueueSize)); } else { decrementRefCountAndMaybeReleaseWakelock(numWakeupEvents); } } } lock.lock(); mSizePendingWriteEventsQueue -= numToWrite; if (pendingWriteEvents.size() > eventQueueSize) { // TODO(b/143302327): Check if this erase operation is too inefficient. It will copy // all the events ahead of it down to fill gap off array at front after the erase. pendingWriteEvents.erase(pendingWriteEvents.begin(), pendingWriteEvents.begin() + eventQueueSize); } else { mPendingWriteEventsQueue.pop(); } } } } void HalProxy::startWakelockThread(HalProxy* halProxy) { halProxy->handleWakelocks(); } void HalProxy::handleWakelocks() { std::unique_lock lock(mWakelockMutex); while (mThreadsRun.load()) { mWakelockCV.wait(lock, [&] { return mWakelockRefCount > 0 || !mThreadsRun.load(); }); if (mThreadsRun.load()) { int64_t timeLeft; if (sharedWakelockDidTimeout(&timeLeft)) { resetSharedWakelock(); } else { uint32_t numWakeLocksProcessed; lock.unlock(); bool success = mWakeLockQueue->readBlocking( &numWakeLocksProcessed, 1, 0, static_cast(WakeLockQueueFlagBits::DATA_WRITTEN), timeLeft); lock.lock(); if (success) { decrementRefCountAndMaybeReleaseWakelock( static_cast(numWakeLocksProcessed)); } } } } resetSharedWakelock(); } bool HalProxy::sharedWakelockDidTimeout(int64_t* timeLeft) { bool didTimeout; int64_t duration = getTimeNow() - mWakelockTimeoutStartTime; if (duration > kWakelockTimeoutNs) { didTimeout = true; } else { didTimeout = false; *timeLeft = kWakelockTimeoutNs - duration; } return didTimeout; } void HalProxy::resetSharedWakelock() { std::lock_guard lockGuard(mWakelockMutex); decrementRefCountAndMaybeReleaseWakelock(mWakelockRefCount); mWakelockTimeoutResetTime = getTimeNow(); } void HalProxy::postEventsToMessageQueue(const std::vector& events, size_t numWakeupEvents, ScopedWakelock wakelock) { size_t numToWrite = 0; std::lock_guard lock(mEventQueueWriteMutex); if (wakelock.isLocked()) { incrementRefCountAndMaybeAcquireWakelock(numWakeupEvents); } if (mPendingWriteEventsQueue.empty()) { numToWrite = std::min(events.size(), mEventQueue->availableToWrite()); if (numToWrite > 0) { if (mEventQueue->write(events.data(), numToWrite)) { // TODO(b/143302327): While loop if mEventQueue->avaiableToWrite > 0 to possibly fit // in more writes immediately mEventQueueFlag->wake(static_cast(EventQueueFlagBits::READ_AND_PROCESS)); } else { numToWrite = 0; } } } size_t numLeft = events.size() - numToWrite; if (numToWrite < events.size() && mSizePendingWriteEventsQueue + numLeft <= kMaxSizePendingWriteEventsQueue) { std::vector eventsLeft(events.begin() + numToWrite, events.end()); mPendingWriteEventsQueue.push({eventsLeft, numWakeupEvents}); mSizePendingWriteEventsQueue += numLeft; mMostEventsObservedPendingWriteEventsQueue = std::max(mMostEventsObservedPendingWriteEventsQueue, mSizePendingWriteEventsQueue); mEventQueueWriteCV.notify_one(); } } bool HalProxy::incrementRefCountAndMaybeAcquireWakelock(size_t delta, int64_t* timeoutStart /* = nullptr */) { if (!mThreadsRun.load()) return false; std::lock_guard lockGuard(mWakelockMutex); if (mWakelockRefCount == 0) { acquire_wake_lock(PARTIAL_WAKE_LOCK, kWakelockName); mWakelockCV.notify_one(); } mWakelockTimeoutStartTime = getTimeNow(); mWakelockRefCount += delta; if (timeoutStart != nullptr) { *timeoutStart = mWakelockTimeoutStartTime; } return true; } void HalProxy::decrementRefCountAndMaybeReleaseWakelock(size_t delta, int64_t timeoutStart /* = -1 */) { if (!mThreadsRun.load()) return; std::lock_guard lockGuard(mWakelockMutex); if (timeoutStart == -1) timeoutStart = mWakelockTimeoutResetTime; if (mWakelockRefCount == 0 || timeoutStart < mWakelockTimeoutResetTime) return; mWakelockRefCount -= std::min(mWakelockRefCount, delta); if (mWakelockRefCount == 0) { release_wake_lock(kWakelockName); } } void HalProxy::setDirectChannelFlags(SensorInfo* sensorInfo, ISensorsSubHal* subHal) { bool sensorSupportsDirectChannel = (sensorInfo->flags & (V1_0::SensorFlagBits::MASK_DIRECT_REPORT | V1_0::SensorFlagBits::MASK_DIRECT_CHANNEL)) != 0; if (mDirectChannelSubHal == nullptr && sensorSupportsDirectChannel) { mDirectChannelSubHal = subHal; } else if (mDirectChannelSubHal != nullptr && subHal != mDirectChannelSubHal) { // disable direct channel capability for sensors in subHals that are not // the only one we will enable sensorInfo->flags &= ~(V1_0::SensorFlagBits::MASK_DIRECT_REPORT | V1_0::SensorFlagBits::MASK_DIRECT_CHANNEL); } } ISensorsSubHal* HalProxy::getSubHalForSensorHandle(int32_t sensorHandle) { return mSubHalList[extractSubHalIndex(sensorHandle)]; } bool HalProxy::isSubHalIndexValid(int32_t sensorHandle) { return extractSubHalIndex(sensorHandle) < mSubHalList.size(); } size_t HalProxy::countNumWakeupEvents(const std::vector& events, size_t n) { size_t numWakeupEvents = 0; for (size_t i = 0; i < n; i++) { int32_t sensorHandle = events[i].sensorHandle; if (mSensors[sensorHandle].flags & static_cast(V1_0::SensorFlagBits::WAKE_UP)) { numWakeupEvents++; } } return numWakeupEvents; } int32_t HalProxy::clearSubHalIndex(int32_t sensorHandle) { return sensorHandle & (~kSensorHandleSubHalIndexMask); } bool HalProxy::subHalIndexIsClear(int32_t sensorHandle) { return (sensorHandle & kSensorHandleSubHalIndexMask) == 0; } void HalProxyCallback::postEvents(const std::vector& events, ScopedWakelock wakelock) { if (events.empty() || !mHalProxy->areThreadsRunning()) return; size_t numWakeupEvents; std::vector processedEvents = processEvents(events, &numWakeupEvents); if (numWakeupEvents > 0) { ALOG_ASSERT(wakelock.isLocked(), "Wakeup events posted while wakelock unlocked for subhal" " w/ index %" PRId32 ".", mSubHalIndex); } else { ALOG_ASSERT(!wakelock.isLocked(), "No Wakeup events posted but wakelock locked for subhal" " w/ index %" PRId32 ".", mSubHalIndex); } mHalProxy->postEventsToMessageQueue(processedEvents, numWakeupEvents, std::move(wakelock)); } ScopedWakelock HalProxyCallback::createScopedWakelock(bool lock) { ScopedWakelock wakelock(mHalProxy, lock); return wakelock; } std::vector HalProxyCallback::processEvents(const std::vector& events, size_t* numWakeupEvents) const { *numWakeupEvents = 0; std::vector eventsOut; for (Event event : events) { event.sensorHandle = setSubHalIndex(event.sensorHandle, mSubHalIndex); eventsOut.push_back(event); const SensorInfo& sensor = mHalProxy->getSensorInfo(event.sensorHandle); if ((sensor.flags & V1_0::SensorFlagBits::WAKE_UP) != 0) { (*numWakeupEvents)++; } } return eventsOut; } } // namespace implementation } // namespace V2_0 } // namespace sensors } // namespace hardware } // namespace android