/* * Copyright (C) 2020 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "SerializedFlushToState.h" #include #include #include #include #include using android::base::Join; using android::base::StringPrintf; constexpr size_t kChunkSize = 3 * 4096; class SerializedFlushToStateTest : public testing::Test { protected: void SetUp() override { // This test spams many unneeded INFO logs, so we suppress them. old_log_severity_ = android::base::SetMinimumLogSeverity(android::base::WARNING); } void TearDown() override { android::base::SetMinimumLogSeverity(old_log_severity_); } std::string TestReport(const std::vector& expected, const std::vector& read) { auto sequence_to_log_id = [&](uint64_t sequence) -> int { for (const auto& [log_id, sequences] : sequence_numbers_per_buffer_) { if (std::find(sequences.begin(), sequences.end(), sequence) != sequences.end()) { return log_id; } } return -1; }; std::map> missing_sequences; std::vector missing_expected; std::set_difference(expected.begin(), expected.end(), read.begin(), read.end(), std::back_inserter(missing_expected)); for (uint64_t sequence : missing_expected) { int log_id = sequence_to_log_id(sequence); missing_sequences[log_id].emplace_back(sequence); } std::map> extra_sequences; std::vector extra_read; std::set_difference(read.begin(), read.end(), expected.begin(), expected.end(), std::back_inserter(extra_read)); for (uint64_t sequence : extra_read) { int log_id = sequence_to_log_id(sequence); extra_sequences[log_id].emplace_back(sequence); } std::vector errors; for (const auto& [log_id, sequences] : missing_sequences) { errors.emplace_back( StringPrintf("Log id %d missing %zu sequences", log_id, sequences.size())); } for (const auto& [log_id, sequences] : extra_sequences) { errors.emplace_back( StringPrintf("Log id %d has extra %zu sequences", log_id, sequences.size())); } return Join(errors, ", "); } // Read sequence numbers in order from SerializedFlushToState for every mask combination and all // sequence numbers from 0 through the highest logged sequence number + 1. // This assumes that all of the logs have already been written. void TestAllReading() { uint64_t max_sequence = sequence_ + 1; uint32_t max_mask = (1 << LOG_ID_MAX) - 1; for (uint64_t sequence = 0; sequence < max_sequence; ++sequence) { for (uint32_t mask = 0; mask < max_mask; ++mask) { auto state = SerializedFlushToState{sequence, mask}; state.InitializeLogs(log_chunks_); TestReading(sequence, mask, state); } } } // Similar to TestAllReading() except that it doesn't assume any logs are in the buffer, instead // it calls write_logs() in a loop for sequence/mask combination. It clears log_chunks_ and // sequence_numbers_per_buffer_ between calls, such that only the sequence numbers written in // the previous call to write_logs() are expected. void TestAllReadingWithFutureMessages(const std::function& write_logs) { uint64_t max_sequence = sequence_ + 1; uint32_t max_mask = (1 << LOG_ID_MAX) - 1; for (uint64_t sequence = 1; sequence < max_sequence; ++sequence) { for (uint32_t mask = 1; mask < max_mask; ++mask) { log_id_for_each(i) { log_chunks_[i].clear(); } auto state = SerializedFlushToState{sequence, mask}; state.InitializeLogs(log_chunks_); int loop_count = 0; while (write_logs(loop_count++)) { TestReading(sequence, mask, state); sequence_numbers_per_buffer_.clear(); } } } } void TestReading(uint64_t start, LogMask log_mask, SerializedFlushToState& state) { std::vector expected_sequence; log_id_for_each(i) { if (((1 << i) & log_mask) == 0) { continue; } for (const auto& sequence : sequence_numbers_per_buffer_[i]) { if (sequence >= start) { expected_sequence.emplace_back(sequence); } } } std::sort(expected_sequence.begin(), expected_sequence.end()); std::vector read_sequence; while (state.HasUnreadLogs()) { auto top = state.PopNextUnreadLog(); read_sequence.emplace_back(top.entry->sequence()); } EXPECT_TRUE(std::is_sorted(read_sequence.begin(), read_sequence.end())); EXPECT_EQ(expected_sequence.size(), read_sequence.size()); EXPECT_EQ(expected_sequence, read_sequence) << "start: " << start << " log_mask: " << log_mask << " " << TestReport(expected_sequence, read_sequence); } // Add a chunk with the given messages to the a given log buffer. Keep track of the sequence // numbers for future validation. Optionally mark the block as having finished writing. void AddChunkWithMessages(bool finish_writing, int buffer, const std::vector& messages) { auto chunk = SerializedLogChunk{kChunkSize}; for (const auto& message : messages) { auto sequence = sequence_++; sequence_numbers_per_buffer_[buffer].emplace_back(sequence); ASSERT_TRUE(chunk.CanLog(message.size() + 1)); chunk.Log(sequence, log_time(), 0, 1, 1, message.c_str(), message.size() + 1); } if (finish_writing) { chunk.FinishWriting(); } log_chunks_[buffer].emplace_back(std::move(chunk)); } android::base::LogSeverity old_log_severity_; std::map> sequence_numbers_per_buffer_; std::list log_chunks_[LOG_ID_MAX]; uint64_t sequence_ = 1; }; // 0: multiple chunks, with variable number of entries, with/without finishing writing // 1: 1 chunk with 1 log and finished writing // 2: 1 chunk with 1 log and not finished writing // 3: 1 chunk with 0 logs and not finished writing // 4: 1 chunk with 0 logs and finished writing (impossible, but SerializedFlushToState handles it) // 5-7: 0 chunks TEST_F(SerializedFlushToStateTest, smoke) { AddChunkWithMessages(true, 0, {"1st", "2nd"}); AddChunkWithMessages(true, 1, {"3rd"}); AddChunkWithMessages(false, 0, {"4th"}); AddChunkWithMessages(true, 0, {"4th", "5th", "more", "even", "more", "go", "here"}); AddChunkWithMessages(false, 2, {"6th"}); AddChunkWithMessages(true, 0, {"7th"}); AddChunkWithMessages(false, 3, {}); AddChunkWithMessages(true, 4, {}); TestAllReading(); } TEST_F(SerializedFlushToStateTest, random) { srand(1); for (int count = 0; count < 20; ++count) { unsigned int num_messages = 1 + rand() % 15; auto messages = std::vector{num_messages, "same message"}; bool compress = rand() % 2; int buf = rand() % LOG_ID_MAX; AddChunkWithMessages(compress, buf, messages); } TestAllReading(); } // Same start as smoke, but we selectively write logs to the buffers and ensure they're read. TEST_F(SerializedFlushToStateTest, future_writes) { auto write_logs = [&](int loop_count) { switch (loop_count) { case 0: // Initial writes. AddChunkWithMessages(true, 0, {"1st", "2nd"}); AddChunkWithMessages(true, 1, {"3rd"}); AddChunkWithMessages(false, 0, {"4th"}); AddChunkWithMessages(true, 0, {"4th", "5th", "more", "even", "more", "go", "here"}); AddChunkWithMessages(false, 2, {"6th"}); AddChunkWithMessages(true, 0, {"7th"}); AddChunkWithMessages(false, 3, {}); AddChunkWithMessages(true, 4, {}); break; case 1: // Smoke test, add a simple chunk. AddChunkWithMessages(true, 0, {"1st", "2nd"}); break; case 2: // Add chunks to all but one of the logs. AddChunkWithMessages(true, 0, {"1st", "2nd"}); AddChunkWithMessages(true, 1, {"1st", "2nd"}); AddChunkWithMessages(true, 2, {"1st", "2nd"}); AddChunkWithMessages(true, 3, {"1st", "2nd"}); AddChunkWithMessages(true, 4, {"1st", "2nd"}); AddChunkWithMessages(true, 5, {"1st", "2nd"}); AddChunkWithMessages(true, 6, {"1st", "2nd"}); break; case 3: // Finally add chunks to all logs. AddChunkWithMessages(true, 0, {"1st", "2nd"}); AddChunkWithMessages(true, 1, {"1st", "2nd"}); AddChunkWithMessages(true, 2, {"1st", "2nd"}); AddChunkWithMessages(true, 3, {"1st", "2nd"}); AddChunkWithMessages(true, 4, {"1st", "2nd"}); AddChunkWithMessages(true, 5, {"1st", "2nd"}); AddChunkWithMessages(true, 6, {"1st", "2nd"}); AddChunkWithMessages(true, 7, {"1st", "2nd"}); break; default: return false; } return true; }; TestAllReadingWithFutureMessages(write_logs); } TEST_F(SerializedFlushToStateTest, no_dangling_references) { AddChunkWithMessages(true, 0, {"1st", "2nd"}); AddChunkWithMessages(true, 0, {"3rd", "4th"}); auto state = SerializedFlushToState{1, kLogMaskAll}; state.InitializeLogs(log_chunks_); ASSERT_EQ(log_chunks_[0].size(), 2U); auto first_chunk = log_chunks_[0].begin(); auto second_chunk = std::next(first_chunk); ASSERT_TRUE(state.HasUnreadLogs()); auto first_log = state.PopNextUnreadLog(); EXPECT_STREQ(first_log.entry->msg(), "1st"); EXPECT_EQ(first_chunk->reader_ref_count(), 1U); EXPECT_EQ(second_chunk->reader_ref_count(), 0U); ASSERT_TRUE(state.HasUnreadLogs()); auto second_log = state.PopNextUnreadLog(); EXPECT_STREQ(second_log.entry->msg(), "2nd"); EXPECT_EQ(first_chunk->reader_ref_count(), 1U); EXPECT_EQ(second_chunk->reader_ref_count(), 0U); ASSERT_TRUE(state.HasUnreadLogs()); auto third_log = state.PopNextUnreadLog(); EXPECT_STREQ(third_log.entry->msg(), "3rd"); EXPECT_EQ(first_chunk->reader_ref_count(), 0U); EXPECT_EQ(second_chunk->reader_ref_count(), 1U); ASSERT_TRUE(state.HasUnreadLogs()); auto fourth_log = state.PopNextUnreadLog(); EXPECT_STREQ(fourth_log.entry->msg(), "4th"); EXPECT_EQ(first_chunk->reader_ref_count(), 0U); EXPECT_EQ(second_chunk->reader_ref_count(), 1U); EXPECT_FALSE(state.HasUnreadLogs()); }