/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "command.h" #include #include #include #include "callchain.h" #include "event_attr.h" #include "event_type.h" #include "record_file.h" #include "sample_tree.h" #include "tracing.h" #include "utils.h" namespace { struct SlabSample { const Symbol* symbol; // the function making allocation uint64_t ptr; // the start address of the allocated space uint64_t bytes_req; // requested space size uint64_t bytes_alloc; // allocated space size uint64_t sample_count; // count of allocations uint64_t gfp_flags; // flags used for allocation uint64_t cross_cpu_allocations; // count of allocations freed not on the // cpu allocating them CallChainRoot callchain; // a callchain tree representing all // callchains in this sample SlabSample(const Symbol* symbol, uint64_t ptr, uint64_t bytes_req, uint64_t bytes_alloc, uint64_t sample_count, uint64_t gfp_flags, uint64_t cross_cpu_allocations) : symbol(symbol), ptr(ptr), bytes_req(bytes_req), bytes_alloc(bytes_alloc), sample_count(sample_count), gfp_flags(gfp_flags), cross_cpu_allocations(cross_cpu_allocations) {} uint64_t GetPeriod() const { return sample_count; } }; struct SlabAccumulateInfo { uint64_t bytes_req; uint64_t bytes_alloc; }; BUILD_COMPARE_VALUE_FUNCTION(ComparePtr, ptr); BUILD_COMPARE_VALUE_FUNCTION_REVERSE(CompareBytesReq, bytes_req); BUILD_COMPARE_VALUE_FUNCTION_REVERSE(CompareBytesAlloc, bytes_alloc); BUILD_COMPARE_VALUE_FUNCTION(CompareGfpFlags, gfp_flags); BUILD_COMPARE_VALUE_FUNCTION_REVERSE(CompareCrossCpuAllocations, cross_cpu_allocations); BUILD_DISPLAY_HEX64_FUNCTION(DisplayPtr, ptr); BUILD_DISPLAY_UINT64_FUNCTION(DisplayBytesReq, bytes_req); BUILD_DISPLAY_UINT64_FUNCTION(DisplayBytesAlloc, bytes_alloc); BUILD_DISPLAY_HEX64_FUNCTION(DisplayGfpFlags, gfp_flags); BUILD_DISPLAY_UINT64_FUNCTION(DisplayCrossCpuAllocations, cross_cpu_allocations); static int CompareFragment(const SlabSample* sample1, const SlabSample* sample2) { uint64_t frag1 = sample1->bytes_alloc - sample1->bytes_req; uint64_t frag2 = sample2->bytes_alloc - sample2->bytes_req; return Compare(frag2, frag1); } static std::string DisplayFragment(const SlabSample* sample) { return android::base::StringPrintf("%" PRIu64, sample->bytes_alloc - sample->bytes_req); } struct SlabSampleTree { std::vector samples; uint64_t total_requested_bytes; uint64_t total_allocated_bytes; uint64_t nr_allocations; uint64_t nr_frees; uint64_t nr_cross_cpu_allocations; }; struct SlabFormat { enum { KMEM_ALLOC, KMEM_FREE, } type; TracingFieldPlace call_site; TracingFieldPlace ptr; TracingFieldPlace bytes_req; TracingFieldPlace bytes_alloc; TracingFieldPlace gfp_flags; }; class SlabSampleTreeBuilder : public SampleTreeBuilder { public: SlabSampleTreeBuilder(const SampleComparator& sample_comparator, ThreadTree* thread_tree) : SampleTreeBuilder(sample_comparator), thread_tree_(thread_tree), total_requested_bytes_(0), total_allocated_bytes_(0), nr_allocations_(0), nr_cross_cpu_allocations_(0) {} SlabSampleTree GetSampleTree() const { SlabSampleTree sample_tree; sample_tree.samples = GetSamples(); sample_tree.total_requested_bytes = total_requested_bytes_; sample_tree.total_allocated_bytes = total_allocated_bytes_; sample_tree.nr_allocations = nr_allocations_; sample_tree.nr_frees = nr_frees_; sample_tree.nr_cross_cpu_allocations = nr_cross_cpu_allocations_; return sample_tree; } void AddSlabFormat(const std::vector& event_ids, SlabFormat format) { std::unique_ptr p(new SlabFormat(format)); for (auto id : event_ids) { event_id_to_format_map_[id] = p.get(); } formats_.push_back(std::move(p)); } protected: SlabSample* CreateSample(const SampleRecord& r, bool in_kernel, SlabAccumulateInfo* acc_info) override { if (!in_kernel) { // Normally we don't parse records in user space because tracepoint // events all happen in kernel. But if r.ip_data.ip == 0, it may be // a kernel record failed to dump ip register and is still useful. if (r.ip_data.ip == 0) { // It seems we are on a kernel can't dump regset for tracepoint events // because of lacking perf_arch_fetch_caller_regs(). We can't get // callchain, but we can still do a normal report. static bool first = true; if (first) { first = false; if (accumulate_callchain_) { // The kernel doesn't seem to support dumping registers for // tracepoint events because of lacking // perf_arch_fetch_caller_regs(). LOG(WARNING) << "simpleperf may not get callchains for tracepoint" << " events because of lacking kernel support."; } } } else { return nullptr; } } uint64_t id = r.id_data.id; auto it = event_id_to_format_map_.find(id); if (it == event_id_to_format_map_.end()) { return nullptr; } const char* raw_data = r.raw_data.data; SlabFormat* format = it->second; if (format->type == SlabFormat::KMEM_ALLOC) { uint64_t call_site = format->call_site.ReadFromData(raw_data); const Symbol* symbol = thread_tree_->FindKernelSymbol(call_site); uint64_t ptr = format->ptr.ReadFromData(raw_data); uint64_t bytes_req = format->bytes_req.ReadFromData(raw_data); uint64_t bytes_alloc = format->bytes_alloc.ReadFromData(raw_data); uint64_t gfp_flags = format->gfp_flags.ReadFromData(raw_data); SlabSample* sample = InsertSample(std::unique_ptr(new SlabSample( symbol, ptr, bytes_req, bytes_alloc, 1, gfp_flags, 0))); alloc_cpu_record_map_.insert( std::make_pair(ptr, std::make_pair(r.cpu_data.cpu, sample))); acc_info->bytes_req = bytes_req; acc_info->bytes_alloc = bytes_alloc; return sample; } else if (format->type == SlabFormat::KMEM_FREE) { uint64_t ptr = format->ptr.ReadFromData(raw_data); auto it = alloc_cpu_record_map_.find(ptr); if (it != alloc_cpu_record_map_.end()) { SlabSample* sample = it->second.second; if (r.cpu_data.cpu != it->second.first) { sample->cross_cpu_allocations++; nr_cross_cpu_allocations_++; } alloc_cpu_record_map_.erase(it); } nr_frees_++; } return nullptr; } SlabSample* CreateBranchSample(const SampleRecord&, const BranchStackItemType&) override { return nullptr; } SlabSample* CreateCallChainSample(const ThreadEntry*, const SlabSample* sample, uint64_t ip, bool in_kernel, const std::vector& callchain, const SlabAccumulateInfo& acc_info) override { if (!in_kernel) { return nullptr; } const Symbol* symbol = thread_tree_->FindKernelSymbol(ip); return InsertCallChainSample( std::unique_ptr( new SlabSample(symbol, sample->ptr, acc_info.bytes_req, acc_info.bytes_alloc, 1, sample->gfp_flags, 0)), callchain); } const ThreadEntry* GetThreadOfSample(SlabSample*) override { return nullptr; } uint64_t GetPeriodForCallChain(const SlabAccumulateInfo&) override { // Decide the percentage of callchain by the sample_count, so use 1 as the // period when calling AddCallChain(). return 1; } void UpdateSummary(const SlabSample* sample) override { total_requested_bytes_ += sample->bytes_req; total_allocated_bytes_ += sample->bytes_alloc; nr_allocations_++; } void MergeSample(SlabSample* sample1, SlabSample* sample2) override { sample1->bytes_req += sample2->bytes_req; sample1->bytes_alloc += sample2->bytes_alloc; sample1->sample_count += sample2->sample_count; } private: ThreadTree* thread_tree_; uint64_t total_requested_bytes_; uint64_t total_allocated_bytes_; uint64_t nr_allocations_; uint64_t nr_frees_; uint64_t nr_cross_cpu_allocations_; std::unordered_map event_id_to_format_map_; std::vector> formats_; std::unordered_map> alloc_cpu_record_map_; }; using SlabSampleTreeSorter = SampleTreeSorter; using SlabSampleTreeDisplayer = SampleTreeDisplayer; using SlabSampleCallgraphDisplayer = CallgraphDisplayer>; struct EventAttrWithName { perf_event_attr attr; std::string name; std::vector event_ids; }; class KmemCommand : public Command { public: KmemCommand() : Command( "kmem", "collect kernel memory allocation information", // clang-format off "Usage: kmem (record [record options] | report [report options])\n" "kmem record\n" "-g Enable call graph recording. Same as '--call-graph fp'.\n" "--slab Collect slab allocation information. Default option.\n" "Other record options provided by simpleperf record command are also available.\n" "kmem report\n" "--children Print the accumulated allocation info appeared in the callchain.\n" " Can be used on perf.data recorded with `--call-graph fp` option.\n" "-g [callee|caller] Print call graph for perf.data recorded with\n" " `--call-graph fp` option. If callee mode is used, the graph\n" " shows how functions are called from others. Otherwise, the\n" " graph shows how functions call others. Default is callee\n" " mode. The percentage shown in the graph is determined by\n" " the hit count of the callchain.\n" "-i Specify path of record file, default is perf.data\n" "-o report_file_name Set report file name, default is stdout.\n" "--slab Report slab allocation information. Default option.\n" "--slab-sort key1,key2,...\n" " Select the keys to sort and print slab allocation information.\n" " Should be used with --slab option. Possible keys include:\n" " hit -- the allocation count.\n" " caller -- the function calling allocation.\n" " ptr -- the address of the allocated space.\n" " bytes_req -- the total requested space size.\n" " bytes_alloc -- the total allocated space size.\n" " fragment -- the extra allocated space size\n" " (bytes_alloc - bytes_req).\n" " gfp_flags -- the flags used for allocation.\n" " pingpong -- the count of allocations that are freed not on\n" " the cpu allocating them.\n" " The default slab sort keys are:\n" " hit,caller,bytes_req,bytes_alloc,fragment,pingpong.\n" // clang-format on ), is_record_(false), use_slab_(false), accumulate_callchain_(false), print_callgraph_(false), callgraph_show_callee_(false), record_filename_("perf.data"), record_file_arch_(GetBuildArch()) {} bool Run(const std::vector& args); private: bool ParseOptions(const std::vector& args, std::vector* left_args); bool RecordKmemInfo(const std::vector& record_args); bool ReportKmemInfo(); bool PrepareToBuildSampleTree(); void ReadEventAttrsFromRecordFile(); bool ReadFeaturesFromRecordFile(); bool ReadSampleTreeFromRecordFile(); bool ProcessRecord(std::unique_ptr record); void ProcessTracingData(const std::vector& data); bool PrintReport(); void PrintReportContext(FILE* fp); void PrintSlabReportContext(FILE* fp); bool is_record_; bool use_slab_; std::vector slab_sort_keys_; bool accumulate_callchain_; bool print_callgraph_; bool callgraph_show_callee_; std::string record_filename_; std::unique_ptr record_file_reader_; std::vector event_attrs_; std::string record_cmdline_; ArchType record_file_arch_; ThreadTree thread_tree_; SlabSampleTree slab_sample_tree_; std::unique_ptr slab_sample_tree_builder_; std::unique_ptr slab_sample_tree_sorter_; std::unique_ptr slab_sample_tree_displayer_; std::string report_filename_; }; bool KmemCommand::Run(const std::vector& args) { std::vector left_args; if (!ParseOptions(args, &left_args)) { return false; } if (!use_slab_) { use_slab_ = true; } if (is_record_) { return RecordKmemInfo(left_args); } return ReportKmemInfo(); } bool KmemCommand::ParseOptions(const std::vector& args, std::vector* left_args) { if (args.empty()) { LOG(ERROR) << "No subcommand specified"; return false; } if (args[0] == "record") { if (!IsRoot()) { LOG(ERROR) << "simpleperf kmem record command needs root privilege"; return false; } is_record_ = true; size_t i; for (i = 1; i < args.size() && !args[i].empty() && args[i][0] == '-'; ++i) { if (args[i] == "-g") { left_args->push_back("--call-graph"); left_args->push_back("fp"); } else if (args[i] == "--slab") { use_slab_ = true; } else { left_args->push_back(args[i]); } } left_args->insert(left_args->end(), args.begin() + i, args.end()); } else if (args[0] == "report") { is_record_ = false; for (size_t i = 1; i < args.size(); ++i) { if (args[i] == "--children") { accumulate_callchain_ = true; } else if (args[i] == "-g") { print_callgraph_ = true; accumulate_callchain_ = true; callgraph_show_callee_ = true; if (i + 1 < args.size() && args[i + 1][0] != '-') { ++i; if (args[i] == "callee") { callgraph_show_callee_ = true; } else if (args[i] == "caller") { callgraph_show_callee_ = false; } else { LOG(ERROR) << "Unknown argument with -g option: " << args[i]; return false; } } } else if (args[i] == "-i") { if (!NextArgumentOrError(args, &i)) { return false; } record_filename_ = args[i]; } else if (args[i] == "-o") { if (!NextArgumentOrError(args, &i)) { return false; } report_filename_ = args[i]; } else if (args[i] == "--slab") { use_slab_ = true; } else if (args[i] == "--slab-sort") { if (!NextArgumentOrError(args, &i)) { return false; } slab_sort_keys_ = android::base::Split(args[i], ","); } else { ReportUnknownOption(args, i); return false; } } } else { LOG(ERROR) << "Unknown subcommand for " << Name() << ": " << args[0] << ". Try `simpleperf help " << Name() << "`"; return false; } return true; } bool KmemCommand::RecordKmemInfo(const std::vector& record_args) { std::vector args; if (use_slab_) { std::vector trace_events = { "kmem:kmalloc", "kmem:kmem_cache_alloc", "kmem:kmalloc_node", "kmem:kmem_cache_alloc_node", "kmem:kfree", "kmem:kmem_cache_free"}; for (const auto& name : trace_events) { if (ParseEventType(name)) { args.insert(args.end(), {"-e", name}); } } } if (args.empty()) { LOG(ERROR) << "Kernel allocation related trace events are not supported."; return false; } args.push_back("-a"); args.insert(args.end(), record_args.begin(), record_args.end()); std::unique_ptr record_cmd = CreateCommandInstance("record"); if (record_cmd == nullptr) { LOG(ERROR) << "record command isn't available"; return false; } return record_cmd->Run(args); } bool KmemCommand::ReportKmemInfo() { if (!PrepareToBuildSampleTree()) { return false; } record_file_reader_ = RecordFileReader::CreateInstance(record_filename_); if (record_file_reader_ == nullptr) { return false; } ReadEventAttrsFromRecordFile(); if (!ReadFeaturesFromRecordFile()) { return false; } if (!ReadSampleTreeFromRecordFile()) { return false; } if (!PrintReport()) { return false; } return true; } bool KmemCommand::PrepareToBuildSampleTree() { if (use_slab_) { if (slab_sort_keys_.empty()) { slab_sort_keys_ = {"hit", "caller", "bytes_req", "bytes_alloc", "fragment", "pingpong"}; } SampleComparator comparator; SampleComparator sort_comparator; SampleDisplayer displayer; std::string accumulated_name = accumulate_callchain_ ? "Accumulated_" : ""; if (print_callgraph_) { displayer.AddExclusiveDisplayFunction(SlabSampleCallgraphDisplayer()); } for (const auto& key : slab_sort_keys_) { if (key == "hit") { sort_comparator.AddCompareFunction(CompareSampleCount); displayer.AddDisplayFunction(accumulated_name + "Hit", DisplaySampleCount); } else if (key == "caller") { comparator.AddCompareFunction(CompareSymbol); displayer.AddDisplayFunction("Caller", DisplaySymbol); } else if (key == "ptr") { comparator.AddCompareFunction(ComparePtr); displayer.AddDisplayFunction("Ptr", DisplayPtr); } else if (key == "bytes_req") { sort_comparator.AddCompareFunction(CompareBytesReq); displayer.AddDisplayFunction(accumulated_name + "BytesReq", DisplayBytesReq); } else if (key == "bytes_alloc") { sort_comparator.AddCompareFunction(CompareBytesAlloc); displayer.AddDisplayFunction(accumulated_name + "BytesAlloc", DisplayBytesAlloc); } else if (key == "fragment") { sort_comparator.AddCompareFunction(CompareFragment); displayer.AddDisplayFunction(accumulated_name + "Fragment", DisplayFragment); } else if (key == "gfp_flags") { comparator.AddCompareFunction(CompareGfpFlags); displayer.AddDisplayFunction("GfpFlags", DisplayGfpFlags); } else if (key == "pingpong") { sort_comparator.AddCompareFunction(CompareCrossCpuAllocations); displayer.AddDisplayFunction("Pingpong", DisplayCrossCpuAllocations); } else { LOG(ERROR) << "Unknown sort key for slab allocation: " << key; return false; } slab_sample_tree_builder_.reset( new SlabSampleTreeBuilder(comparator, &thread_tree_)); slab_sample_tree_builder_->SetCallChainSampleOptions( accumulate_callchain_, print_callgraph_, !callgraph_show_callee_); sort_comparator.AddComparator(comparator); slab_sample_tree_sorter_.reset(new SlabSampleTreeSorter(sort_comparator)); slab_sample_tree_displayer_.reset(new SlabSampleTreeDisplayer(displayer)); } } return true; } void KmemCommand::ReadEventAttrsFromRecordFile() { std::vector attrs = record_file_reader_->AttrSection(); for (const auto& attr_with_id : attrs) { EventAttrWithName attr; attr.attr = *attr_with_id.attr; attr.event_ids = attr_with_id.ids; attr.name = GetEventNameByAttr(attr.attr); event_attrs_.push_back(attr); } } bool KmemCommand::ReadFeaturesFromRecordFile() { record_file_reader_->LoadBuildIdAndFileFeatures(thread_tree_); std::string arch = record_file_reader_->ReadFeatureString(PerfFileFormat::FEAT_ARCH); if (!arch.empty()) { record_file_arch_ = GetArchType(arch); if (record_file_arch_ == ARCH_UNSUPPORTED) { return false; } } std::vector cmdline = record_file_reader_->ReadCmdlineFeature(); if (!cmdline.empty()) { record_cmdline_ = android::base::Join(cmdline, ' '); } if (record_file_reader_->HasFeature(PerfFileFormat::FEAT_TRACING_DATA)) { std::vector tracing_data; if (!record_file_reader_->ReadFeatureSection( PerfFileFormat::FEAT_TRACING_DATA, &tracing_data)) { return false; } ProcessTracingData(tracing_data); } return true; } bool KmemCommand::ReadSampleTreeFromRecordFile() { if (!record_file_reader_->ReadDataSection( [this](std::unique_ptr record) { return ProcessRecord(std::move(record)); })) { return false; } if (use_slab_) { slab_sample_tree_ = slab_sample_tree_builder_->GetSampleTree(); slab_sample_tree_sorter_->Sort(slab_sample_tree_.samples, print_callgraph_); } return true; } bool KmemCommand::ProcessRecord(std::unique_ptr record) { thread_tree_.Update(*record); if (record->type() == PERF_RECORD_SAMPLE) { if (use_slab_) { slab_sample_tree_builder_->ProcessSampleRecord( *static_cast(record.get())); } } else if (record->type() == PERF_RECORD_TRACING_DATA || record->type() == SIMPLE_PERF_RECORD_TRACING_DATA) { const auto& r = *static_cast(record.get()); ProcessTracingData(std::vector(r.data, r.data + r.data_size)); } return true; } void KmemCommand::ProcessTracingData(const std::vector& data) { Tracing tracing(data); for (auto& attr : event_attrs_) { if (attr.attr.type == PERF_TYPE_TRACEPOINT) { uint64_t trace_event_id = attr.attr.config; attr.name = tracing.GetTracingEventNameHavingId(trace_event_id); TracingFormat format = tracing.GetTracingFormatHavingId(trace_event_id); if (use_slab_) { if (format.name == "kmalloc" || format.name == "kmem_cache_alloc" || format.name == "kmalloc_node" || format.name == "kmem_cache_alloc_node") { SlabFormat f; f.type = SlabFormat::KMEM_ALLOC; format.GetField("call_site", f.call_site); format.GetField("ptr", f.ptr); format.GetField("bytes_req", f.bytes_req); format.GetField("bytes_alloc", f.bytes_alloc); format.GetField("gfp_flags", f.gfp_flags); slab_sample_tree_builder_->AddSlabFormat(attr.event_ids, f); } else if (format.name == "kfree" || format.name == "kmem_cache_free") { SlabFormat f; f.type = SlabFormat::KMEM_FREE; format.GetField("call_site", f.call_site); format.GetField("ptr", f.ptr); slab_sample_tree_builder_->AddSlabFormat(attr.event_ids, f); } } } } } bool KmemCommand::PrintReport() { std::unique_ptr file_handler(nullptr, fclose); FILE* report_fp = stdout; if (!report_filename_.empty()) { file_handler.reset(fopen(report_filename_.c_str(), "w")); if (file_handler == nullptr) { PLOG(ERROR) << "failed to open " << report_filename_; return false; } report_fp = file_handler.get(); } PrintReportContext(report_fp); if (use_slab_) { fprintf(report_fp, "\n\n"); PrintSlabReportContext(report_fp); slab_sample_tree_displayer_->DisplaySamples( report_fp, slab_sample_tree_.samples, &slab_sample_tree_); } return true; } void KmemCommand::PrintReportContext(FILE* fp) { if (!record_cmdline_.empty()) { fprintf(fp, "Cmdline: %s\n", record_cmdline_.c_str()); } fprintf(fp, "Arch: %s\n", GetArchString(record_file_arch_).c_str()); for (const auto& attr : event_attrs_) { fprintf(fp, "Event: %s (type %u, config %llu)\n", attr.name.c_str(), attr.attr.type, attr.attr.config); } } void KmemCommand::PrintSlabReportContext(FILE* fp) { fprintf(fp, "Slab allocation information:\n"); fprintf(fp, "Total requested bytes: %" PRIu64 "\n", slab_sample_tree_.total_requested_bytes); fprintf(fp, "Total allocated bytes: %" PRIu64 "\n", slab_sample_tree_.total_allocated_bytes); uint64_t fragment = slab_sample_tree_.total_allocated_bytes - slab_sample_tree_.total_requested_bytes; double percentage = 0.0; if (slab_sample_tree_.total_allocated_bytes != 0) { percentage = 100.0 * fragment / slab_sample_tree_.total_allocated_bytes; } fprintf(fp, "Total fragment: %" PRIu64 ", %f%%\n", fragment, percentage); fprintf(fp, "Total allocations: %" PRIu64 "\n", slab_sample_tree_.nr_allocations); fprintf(fp, "Total frees: %" PRIu64 "\n", slab_sample_tree_.nr_frees); percentage = 0.0; if (slab_sample_tree_.nr_allocations != 0) { percentage = 100.0 * slab_sample_tree_.nr_cross_cpu_allocations / slab_sample_tree_.nr_allocations; } fprintf(fp, "Total cross cpu allocation/free: %" PRIu64 ", %f%%\n", slab_sample_tree_.nr_cross_cpu_allocations, percentage); fprintf(fp, "\n"); } } // namespace namespace simpleperf { void RegisterKmemCommand() { RegisterCommand("kmem", [] { return std::unique_ptr(new KmemCommand()); }); } } // namespace simpleperf