/** * Copyright 2020 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "NN_RAND_MODEL" #include #include #include #include #include #include #include #include #include #include #include #include "GeneratedTestUtils.h" #include "fuzzing/OperationManager.h" #include "fuzzing/RandomGraphGenerator.h" #include "fuzzing/RandomGraphGeneratorUtils.h" extern "C" JNIEXPORT jint JNICALL JNI_OnLoad(JavaVM* vm, void* reserved) { android::base::InitLogging(nullptr, android::base::LogdLogger()); android::base::SetMinimumLogSeverity(android::base::INFO); return JNI_VERSION_1_6; } enum RandomModelExecutionResult { kSuccess = 0, kFailedCompilation, kFailedExecution, kFailedOtherNnApiCall, // The following conditions are for internal retry kInvalidModelGenerated, kUnsupportedModelGenerated }; class FuzzerLogRAII { public: FuzzerLogRAII(const std::string& nnapiLogPath) { using android::nn::fuzzing_test::alignedString; using android::nn::fuzzing_test::Logger; using android::nn::fuzzing_test::LoggerStream; NN_FUZZER_LOG_WRITE_FATAL_TO_SYSLOG(LOG_TAG); mFuzzerLogOpen = false; if (!nnapiLogPath.empty()) { // Checking if we can write to target file std::ofstream os; os.open(nnapiLogPath); if (os.fail()) { LOG(ERROR) << "Opening file " << nnapiLogPath << " failed"; } else { NN_FUZZER_LOG_INIT(nnapiLogPath); LOG(INFO) << "Logging NNAPI to file " << nnapiLogPath; mFuzzerLogOpen = true; } } } ~FuzzerLogRAII() { if (mFuzzerLogOpen) { using android::nn::fuzzing_test::alignedString; using android::nn::fuzzing_test::Logger; using android::nn::fuzzing_test::LoggerStream; NN_FUZZER_LOG_CLOSE; } } private: bool mFuzzerLogOpen; }; std::vector getOperationsInModel( const test_helper::TestModel& testModel) { std::vector result; testModel.forEachSubgraph( [&result](const test_helper::TestSubgraph& subgraph) { for (const auto& operation : subgraph.operations) { result.push_back(operation.type); } }); return result; } const ANeuralNetworksDevice* findDeviceByName(const char* deviceName) { if (!deviceName) return nullptr; std::string deviceNameStr(deviceName); uint32_t numDevices = 0; ANeuralNetworks_getDeviceCount(&numDevices); for (uint32_t i = 0; i < numDevices; i++) { ANeuralNetworksDevice* device = nullptr; const char* buffer = nullptr; int getDeviceResult = ANeuralNetworks_getDevice(i, &device); if (getDeviceResult != ANEURALNETWORKS_NO_ERROR) { LOG(ERROR) << "Unable to get NNAPI device " << i << ": " << getDeviceResult; return nullptr; } int getDeviceNameResult = ANeuralNetworksDevice_getName(device, &buffer); if (getDeviceNameResult != ANEURALNETWORKS_NO_ERROR) { LOG(ERROR) << "Unable to get name of NNAPI device " << i << ": " << getDeviceNameResult; return nullptr; } if (deviceNameStr == buffer) { return device; } } LOG(ERROR) << "No device with name " << deviceNameStr; return nullptr; } const ANeuralNetworksDevice* getNnApiReferenceDevice() { return findDeviceByName("nnapi-reference"); } class RandomGraphGenerator { public: RandomGraphGenerator(const ANeuralNetworksDevice* device, const std::string& deviceName, const std::string& testName, uint32_t numOperations, uint32_t dimensionRange, std::string nnapiLogPath, std::string failedModelDumpPath) : mTestName(testName), mDevice(device), mDeviceName(deviceName), mNnApiReference(getNnApiReferenceDevice()), mSupportedOpsFilter(), mNumOperations(numOperations), mDimensionRange(dimensionRange), nnapiFuzzerLogRAII(nnapiLogPath), mFailedModelDumpPath(failedModelDumpPath) {} RandomModelExecutionResult init() { // Limiting the ops in the generator to a subset we know the target device // supports to avoid failing the test because we are unable to find a // suitable model to compile. RandomModelExecutionResult filterInitResult; filterInitResult = HalVersionsSupportedByDevice(&mSupportedOpsFilter.versions); if (filterInitResult != kSuccess) return filterInitResult; filterInitResult = OperandTypesSupportedByDevice(&mSupportedOpsFilter.dataTypes); if (filterInitResult != kSuccess) return filterInitResult; return OperationsSupportedByDevice(mSupportedOpsFilter, &mSupportedOpsFilter.opcodes); } RandomModelExecutionResult runRandomModel(bool compilationOnly) { using android::nn::generated_tests::createModel; using android::nn::generated_tests::createRequest; using android::nn::generated_tests::GeneratedModel; using android::nn::test_wrapper::Compilation; using android::nn::test_wrapper::Execution; using android::nn::wrapper::Result; std::optional testModel = createRandomModel(mSupportedOpsFilter); if (!testModel) { LOG(ERROR) << mTestName << ": No model generated"; return kInvalidModelGenerated; } GeneratedModel model; createModel(*testModel, &model); if (!model.isValid()) { LOG(ERROR) << mTestName << ": Randomly generated model is not valid"; return kInvalidModelGenerated; } auto modelFinishResult = model.finish(); if (modelFinishResult != Result::NO_ERROR) { LOG(ERROR) << mTestName << ": Failed to finish model, result is " << static_cast(modelFinishResult); return kInvalidModelGenerated; } bool fullySupportedModel = false; if (mDevice) { std::unique_ptr opsSupportedFlags = std::make_unique(mNumOperations); std::fill(opsSupportedFlags.get(), opsSupportedFlags.get() + mNumOperations, false); // Check if the device fully supports the graph. int supportedOpResult = ANeuralNetworksModel_getSupportedOperationsForDevices( model.getHandle(), &mDevice, 1, opsSupportedFlags.get()); if (supportedOpResult != ANEURALNETWORKS_NO_ERROR) { return kFailedOtherNnApiCall; } // accepting the model even if partially supported since we found that it // is extremely difficult to have fully supported models. // We could consider a minimum number (or percentage of total number) of // operations to be supported to consider the model acceptable. For the // moment we just accept any model that has any supported op. bool supported = std::any_of(opsSupportedFlags.get(), opsSupportedFlags.get() + mNumOperations, [](bool v) { return v; }); if (!supported) { return kUnsupportedModelGenerated; } fullySupportedModel = std::all_of( opsSupportedFlags.get(), opsSupportedFlags.get() + mNumOperations, [](bool v) { return v; }); } std::vector devices; if (mDevice) { devices.push_back(mDevice); if (!fullySupportedModel) { // If model is not fully supported we allow NNAPI to use reference // implementation. This is to avoid having this test constantly // nullified by the inability of finding a fully supported model. LOG(VERBOSE) << "Allowing model to be partially executed on NNAPI reference device"; devices.push_back(mNnApiReference); } } auto [compilationResult, compilation] = CreateCompilation(model, devices); if (compilationResult != Result::NO_ERROR) { LOG(WARNING) << mTestName << ": Compilation preparation failed with result " << static_cast(compilationResult); dumpModel(*testModel); return kFailedCompilation; } compilationResult = compilation.finish(); if (compilationResult != Result::NO_ERROR) { LOG(WARNING) << mTestName << ": Compilation failed with result " << static_cast(compilationResult); dumpModel(*testModel); return kFailedCompilation; } if (!compilationOnly) { Execution execution(&compilation); std::vector outputs; createRequest(*testModel, &execution, &outputs); // Compute result. Result executeReturn = execution.compute(); if (executeReturn != Result::NO_ERROR) { LOG(WARNING) << mTestName << ": Execution failed with result " << static_cast(executeReturn); dumpModel(*testModel); return kFailedExecution; } } return kSuccess; } const std::string mTestName; private: android::nn::fuzzing_test::RandomGraph mRandomGraph; std::random_device mSeedGenerator; const ANeuralNetworksDevice* mDevice; // empty string if mDevice is null const std::string mDeviceName; const ANeuralNetworksDevice* mNnApiReference; android::nn::fuzzing_test::OperationFilter mSupportedOpsFilter; const uint32_t mNumOperations; const uint32_t mDimensionRange; FuzzerLogRAII nnapiFuzzerLogRAII; const std::string mFailedModelDumpPath; std::optional createRandomModel( const android::nn::fuzzing_test::OperationFilter& opFilter) { android::nn::fuzzing_test::OperationManager::get()->applyFilter(opFilter); auto seed = mSeedGenerator(); if (!mRandomGraph.generate(seed, mNumOperations, mDimensionRange)) { return std::nullopt; } return {mRandomGraph.createTestModel()}; } RandomModelExecutionResult HalVersionsSupportedByDevice( std::vector* result) { if (!mDevice) { return kSuccess; } int64_t featureLevel; auto getDeviceFeatureLevelResult = ANeuralNetworksDevice_getFeatureLevel(mDevice, &featureLevel); if (getDeviceFeatureLevelResult != ANEURALNETWORKS_NO_ERROR) { LOG(ERROR) << mTestName << ": Unable to query device feature level"; return kFailedOtherNnApiCall; } if (featureLevel == 27) *result = {test_helper::TestHalVersion::V1_0}; if (featureLevel == 28) *result = {test_helper::TestHalVersion::V1_1}; if (featureLevel == 29) *result = {test_helper::TestHalVersion::V1_2}; return kSuccess; } RandomModelExecutionResult OperandTypesSupportedByDevice( std::vector* result) { if (!mDevice) { return kSuccess; } int32_t deviceType; auto getDeviceTypeResult = ANeuralNetworksDevice_getType(mDevice, &deviceType); if (getDeviceTypeResult != ANEURALNETWORKS_NO_ERROR) { LOG(ERROR) << mTestName << ": Unable to query device type"; return kFailedOtherNnApiCall; } using test_helper::TestOperandType; switch (deviceType) { case ANEURALNETWORKS_DEVICE_GPU: // No quantized types *result = { TestOperandType::FLOAT32, TestOperandType::INT32, TestOperandType::UINT32, TestOperandType::TENSOR_FLOAT32, TestOperandType::TENSOR_INT32, TestOperandType::BOOL, TestOperandType::TENSOR_FLOAT16, TestOperandType::TENSOR_BOOL8, TestOperandType::FLOAT16}; break; case ANEURALNETWORKS_DEVICE_CPU: case ANEURALNETWORKS_DEVICE_ACCELERATOR: result->clear(); // no filter break; case ANEURALNETWORKS_DEVICE_UNKNOWN: case ANEURALNETWORKS_DEVICE_OTHER: if (mDeviceName.find("dsp") != std::string::npos) { *result = {TestOperandType::INT32, TestOperandType::UINT32, TestOperandType::TENSOR_INT32, TestOperandType::BOOL, TestOperandType::TENSOR_BOOL8, TestOperandType::TENSOR_QUANT8_ASYMM, TestOperandType::TENSOR_QUANT16_SYMM, TestOperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL, TestOperandType::TENSOR_QUANT16_ASYMM, TestOperandType::TENSOR_QUANT8_SYMM, TestOperandType::TENSOR_QUANT8_ASYMM_SIGNED}; break; } FALLTHROUGH_INTENDED; default: result->clear(); // no filter } return kSuccess; } /// Finds some operations supported by the device RandomModelExecutionResult OperationsSupportedByDevice( const android::nn::fuzzing_test::OperationFilter& basicFilter, std::vector* result) { if (!mDevice) { return kSuccess; } constexpr int kNumOfAttempts = 50; std::set supportedOps; for (int i = 0; i < kNumOfAttempts; i++) { std::optional testModel = createRandomModel(basicFilter); if (!testModel) { LOG(ERROR) << mTestName << ": Unable to generate a model trying to understand the ops " "supported by target device"; continue; } android::nn::generated_tests::GeneratedModel model; createModel(*testModel, &model); if (!model.isValid()) { LOG(WARNING) << mTestName << ": Randomly generated model is not valid"; continue; } auto modelFinishResult = model.finish(); if (modelFinishResult != android::nn::wrapper::Result::NO_ERROR) { LOG(WARNING) << "Model::finish call failed, result is " << static_cast(modelFinishResult); continue; } std::unique_ptr opsSupportedFlags = std::make_unique(mNumOperations); std::fill(opsSupportedFlags.get(), opsSupportedFlags.get() + mNumOperations, false); // Check if the device fully supports the graph. int supportedOpResult = ANeuralNetworksModel_getSupportedOperationsForDevices( model.getHandle(), &mDevice, 1, opsSupportedFlags.get()); if (supportedOpResult != ANEURALNETWORKS_NO_ERROR) { return kFailedOtherNnApiCall; } std::vector opsInModel = getOperationsInModel(*testModel); for (int opIndex = 0; opIndex < mNumOperations; opIndex++) { test_helper::TestOperationType currOp = opsInModel[opIndex]; if (opsSupportedFlags[opIndex]) { supportedOps.insert(currOp); } } } std::copy(supportedOps.begin(), supportedOps.end(), std::back_inserter(*result)); if (result->empty()) { LOG(WARNING) << mTestName << ": Could not find any operation supported by target device." << " Returning no filter."; } else { LOG(INFO) << mTestName << ": Filtering to " << result->size() << " supported operations"; } return kSuccess; } void dumpModel(const test_helper::TestModel& testModel) { if (mFailedModelDumpPath.empty()) return; LOG(INFO) << mTestName << ": Dumping model failing tests to " << mFailedModelDumpPath; std::ofstream os(mFailedModelDumpPath); ASSERT_TRUE(os.is_open()); os << "# Generated from " << mTestName << ". Do not edit.\n\n"; test_helper::SpecDumper dumper(testModel, os); dumper.dumpTestModel(); } std::pair CreateCompilation(const android::nn::generated_tests::GeneratedModel& model, const std::vector& devices) { using android::nn::test_wrapper::Compilation; if (!devices.empty()) return Compilation::createForDevices(&model, devices); else return {android::nn::wrapper::Result::NO_ERROR, Compilation(&model)}; } }; extern "C" JNIEXPORT jint JNICALL Java_com_android_nn_crashtest_core_RandomGraphTest_runRandomModel( JNIEnv* env, jclass /* static method */, jlong _generatorHandle, jboolean _compilationOnly, jlong _maxModelSearchTimeSeconds) { RandomGraphGenerator* graphGenerator = reinterpret_cast(_generatorHandle); std::time_t startTime = std::time(nullptr); int result = kSuccess; int modelSearchAttempt = 0; while (std::difftime(std::time(nullptr), startTime) < _maxModelSearchTimeSeconds) { modelSearchAttempt++; result = graphGenerator->runRandomModel(_compilationOnly); // if by chance we generated an invalid model or a model that couldn't run // on the target accelerator we will try again. if (result != kInvalidModelGenerated && result != kUnsupportedModelGenerated) { break; } } if (result == kInvalidModelGenerated || result == kUnsupportedModelGenerated) { LOG(WARNING) << graphGenerator->mTestName << ": Max time to search for a model of " << static_cast(_maxModelSearchTimeSeconds) << "seconds reached. Aborting test at attempt " << modelSearchAttempt; } return result; } extern "C" JNIEXPORT jlong JNICALL com_android_nn_crashtest_core_RandomGraphTest_RandomGraphTest_createRandomGraphGenerator( JNIEnv* env, jclass /* static method */, jstring _nnApiDeviceName, jint _numOperations, jint _dimensionRange, jstring _testName, jstring _nnapiLogPath, jstring _failedModelDumpPath) { const char* nnApiDeviceName = _nnApiDeviceName ? env->GetStringUTFChars(_nnApiDeviceName, nullptr) : nullptr; std::string nnApiDeviceNameStr{nnApiDeviceName ? nnApiDeviceName : ""}; const ANeuralNetworksDevice* device = nullptr; if (nnApiDeviceName) { device = findDeviceByName(nnApiDeviceName); if (!device) { LOG(ERROR) << ": Unable to find accelerator " << nnApiDeviceName; env->ReleaseStringUTFChars(_nnApiDeviceName, nnApiDeviceName); return reinterpret_cast(nullptr); } env->ReleaseStringUTFChars(_nnApiDeviceName, nnApiDeviceName); } std::string testName{"no-test-name"}; if (_testName) { const char* testNameBuf = env->GetStringUTFChars(_testName, nullptr); testName = testNameBuf; env->ReleaseStringUTFChars(_testName, testNameBuf); } std::string nnapiLogPath; if (_nnapiLogPath) { const char* nnapiLogPathTmp = env->GetStringUTFChars(_nnapiLogPath, nullptr); nnapiLogPath = nnapiLogPathTmp; env->ReleaseStringUTFChars(_nnapiLogPath, nnapiLogPathTmp); } std::string failedModelDumpPath; if (_failedModelDumpPath) { const char* failedModelDumpPathTmp = env->GetStringUTFChars(_failedModelDumpPath, nullptr); failedModelDumpPath = failedModelDumpPathTmp; env->ReleaseStringUTFChars(_failedModelDumpPath, failedModelDumpPathTmp); } uint32_t numOperations = static_cast(_numOperations); uint32_t dimensionRange = static_cast(_dimensionRange); RandomGraphGenerator* result = new RandomGraphGenerator( device, nnApiDeviceNameStr, testName, numOperations, dimensionRange, nnapiLogPath, failedModelDumpPath); if (result->init() != kSuccess) { delete result; return reinterpret_cast(nullptr); } return reinterpret_cast(result); } extern "C" JNIEXPORT void JNICALL com_android_nn_crashtest_core_RandomGraphTest_RandomGraphTest_destroyRandomGraphGenerator( JNIEnv* env, jclass /* static method */, jlong generatorHandle) { RandomGraphGenerator* graphGenerator = reinterpret_cast(generatorHandle); delete graphGenerator; }