#!/usr/bin/python3
"""Read intermediate tensors generated by DumpAllTensors activity
Tools for reading/ parsing intermediate tensors.
"""
import argparse
import numpy as np
import os
import pandas as pd
import tensorflow as tf
import matplotlib.pyplot as plt
import json
from matplotlib.pylab import *
import matplotlib.animation as animation
# Enable tensor.numpy()
tf.compat.v1.enable_eager_execution()
################################ ModelMetaDataManager ################################
class ModelMetaDataManager(object):
"""Maps model name in nnapi to its graph architecture with lazy initialization.
# Arguments
android_build_top: the root directory of android source tree
dump_dir: directory containing intermediate tensors pulled from device
tflite_model_json_path: directory containing intermediate json output of
model visualization tool (third_party/tensorflow/lite/tools:visualize)
The json output path from the tool is always /tmp.
"""
class ModelMetaData(object):
"""Store graph information of a model."""
def __init__(self, tflite_model_json_path='/tmp'):
with open(tflite_model_json_path, 'rb') as f:
model_json = json.load(f)
self.operators = model_json['subgraphs'][0]['operators']
self.operator_codes = [item['builtin_code']\
for item in model_json['operator_codes']]
self.output_meta_data = []
self.load_output_meta_data()
def load_output_meta_data(self):
for operator in self.operators:
data = {}
# Each operator can only have one output
assert(len(operator['outputs']) == 1)
data['output_tensor_index'] = operator['outputs'][0]
data['fused_activation_function'] = operator\
.get('builtin_options', {})\
.get('fused_activation_function', '')
data['operator_code'] = self.operator_codes[operator['opcode_index']]
self.output_meta_data.append(data)
def __init__(self, android_build_top, dump_dir, tflite_model_json_dir='/tmp'):
# key: nnapi model name, value: ModelMetaData
self.models = dict()
self.ANDROID_BUILD_TOP = android_build_top
self.TFLITE_MODEL_JSON_DIR = tflite_model_json_dir
self.DUMP_DIR = dump_dir
self.nnapi_to_tflite_name = dict()
self.tflite_to_nnapi_name = dict()
self.__load_mobilenet_topk_aosp__()
self.model_names = sorted(os.listdir(dump_dir))
def __load_mobilenet_topk_aosp__(self):
"""Load information about tflite and nnapi model names."""
json_path = '{}/{}'.format(
self.ANDROID_BUILD_TOP,
'test/mlts/models/assets/models_list/mobilenet_topk_aosp.json')
with open(json_path, 'rb') as f:
topk_aosp = json.load(f)
for model in topk_aosp['models']:
self.nnapi_to_tflite_name[model['name']] = model['modelFile']
self.tflite_to_nnapi_name[model['modelFile']] = model['name']
def __get_model_json_path__(self, tflite_model_name):
"""Return tflite model jason path."""
json_path = '{}/{}.json'.format(self.TFLITE_MODEL_JSON_DIR, tflite_model_name)
return json_path
def __load_model__(self, tflite_model_name):
"""Initialize a ModelMetaData for this model."""
model = self.ModelMetaData(self.__get_model_json_path__(tflite_model_name))
nnapi_model_name = self.model_name_tflite_to_nnapi(tflite_model_name)
self.models[nnapi_model_name] = model
def model_name_nnapi_to_tflite(self, nnapi_model_name):
return self.nnapi_to_tflite_name.get(nnapi_model_name, nnapi_model_name)
def model_name_tflite_to_nnapi(self, tflite_model_name):
return self.tflite_to_nnapi_name.get(tflite_model_name, tflite_model_name)
def get_model_meta_data(self, nnapi_model_name):
"""Retrieve the ModelMetaData with lazy initialization."""
tflite_model_name = self.model_name_nnapi_to_tflite(nnapi_model_name)
if nnapi_model_name not in self.models:
self.__load_model__(tflite_model_name)
return self.models[nnapi_model_name]
def generate_animation_html(self, output_file_path, model_names=None):
model_names = self.model_names if model_names is None else model_names
html_data = ''
for model_name in model_names:
print('processing', model_name)
html_data += '
{}
'.format(model_name)
model_data = ModelData(nnapi_model_name=model_name, manager=self)
ani = model_data.gen_error_hist_animation()
html_data += ani.to_jshtml()
with open(output_file_path, 'w') as f:
f.write(html_data)
################################ TensorDict ################################
class TensorDict(dict):
"""A class to store cpu and nnapi tensors.
# Arguments
model_dir: directory containing intermediate tensors pulled from device
"""
def __init__(self, model_dir):
super().__init__()
for useNNAPIDir in ['cpu', 'nnapi']:
dir_path = model_dir + useNNAPIDir + "/"
self[useNNAPIDir] = self.read_tensors_from_dir(dir_path)
self.tensor_sanity_check()
self.max_absolute_diff, self.min_absolute_diff = 0.0, 0.0
self.max_relative_diff, self.min_relative_diff = 0.0, 0.0
self.layers = sorted(self['cpu'].keys())
self.calc_range()
def bytes_to_numpy_tensor(self, file_path):
tensor_type = tf.int8 if 'quant' in file_path else tf.float32
with open(file_path, mode='rb') as f:
tensor_bytes = f.read()
tensor = tf.decode_raw(input_bytes=tensor_bytes, out_type=tensor_type)
if np.isnan(np.sum(tensor)):
print('WARNING: tensor contains inf or nan')
return tensor.numpy()
def read_tensors_from_dir(self, dir_path):
tensor_dict = dict()
for tensor_file in os.listdir(dir_path):
tensor = self.bytes_to_numpy_tensor(dir_path + tensor_file)
tensor_dict[tensor_file] = tensor
return tensor_dict
def tensor_sanity_check(self):
# Make sure the cpu tensors and nnapi tensors have the same outputs
assert(len(self['cpu']) == len(self['nnapi']))
key_diff = set(self['cpu'].keys()) - set(self['nnapi'].keys())
assert(len(key_diff) == 0)
print('Tensor sanity check passed')
def calc_range(self):
for layer in self.layers:
diff = self.calc_diff(layer, relative_error=False)
# update absolute max, min
self.max_absolute_diff = max(self.max_absolute_diff, np.max(diff))
self.min_absolute_diff = min(self.min_absolute_diff, np.min(diff))
self.absolute_range = max(abs(self.min_absolute_diff),
abs(self.max_absolute_diff))
def calc_diff(self, layer, relative_error=True):
cpu_tensor = self['cpu'][layer]
nnapi_tensor = self['nnapi'][layer]
assert(cpu_tensor.shape == nnapi_tensor.shape)
diff = cpu_tensor - nnapi_tensor
if not relative_error:
return diff
diff = diff.astype(float)
cpu_tensor = cpu_tensor.astype(float)
max_cpu_nnapi_tensor = np.maximum(np.abs(cpu_tensor), np.abs(nnapi_tensor))
relative_diff = np.divide(diff, max_cpu_nnapi_tensor, out=np.zeros_like(diff),\
where=max_cpu_nnapi_tensor>0)
relative_diff[relative_diff>1] = 1.0
relative_diff[relative_diff<-1] = -1.0
return relative_diff
def gen_tensor_diff_stats(self, relative_error=True, return_df=True, plot_diff=False):
stats = []
for layer in self.layers:
diff = self.calc_diff(layer, relative_error)
if plot_diff:
self.plot_tensor_diff(diff)
if return_df:
stats.append({
'layer': layer,
'min': np.min(diff),
'max': np.max(diff),
'mean': np.mean(diff),
'median': np.median(diff)
})
if return_df:
return pd.DataFrame(stats)
def plot_tensor_diff(diff):
plt.figure()
plt.hist(diff, bins=50, log=True)
plt.plot()
################################ Model Data ################################
class ModelData(object):
"""A class to store all relevant inormation of a model.
# Arguments
nnapi_model_name: the name of the model
manager: ModelMetaDataManager
"""
def __init__(self, nnapi_model_name, manager):
self.nnapi_model_name = nnapi_model_name
self.manager = manager
self.model_dir = self.get_target_model_dir(manager.DUMP_DIR, nnapi_model_name)
self.tensor_dict = TensorDict(self.model_dir)
self.mmd = manager.get_model_meta_data(nnapi_model_name)
self.stats = self.tensor_dict.gen_tensor_diff_stats(relative_error=True,
return_df=True)
self.layers = sorted(self.tensor_dict['cpu'].keys())
def get_target_model_dir(self, dump_dir, target_model_name):
target_model_dir = dump_dir + target_model_name + "/"
return target_model_dir
def updateData(self, i, fig, ax1, ax2, bins=50):
operation = self.mmd.output_meta_data[i % len(self.mmd.output_meta_data)]['operator_code']
layer = self.layers[i]
subtitle = fig.suptitle('{} | {}\n{}'
.format(self.nnapi_model_name, layer, operation),
fontsize='x-large')
for ax in (ax1, ax2):
ax.clear()
ax1.set_title('Relative Error')
ax2.set_title('Absolute Error')
ax1.hist(self.tensor_dict.calc_diff(layer, relative_error=True), bins=bins,
range=(-1, 1), log=True)
absolute_range = self.tensor_dict.absolute_range
ax2.hist(self.tensor_dict.calc_diff(layer, relative_error=False), bins=bins,
range=(-absolute_range, absolute_range), log=True)
def gen_error_hist_animation(self):
# For fast testing, add [:10] to the end of next line
layers = self.layers
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12,9))
ani = animation.FuncAnimation(fig, self.updateData, len(layers),
fargs=(fig, ax1, ax2),
interval=200, repeat=False)
# close before return to avoid dangling plot
plt.close()
return ani
def plot_error_heatmap(self, target_layer, length=1):
target_diff = self.tensor_dict['cpu'][target_layer] - \
self.tensor_dict['nnapi'][target_layer]
width = int(len(target_diff)/ length)
reshaped_target_diff = target_diff[:length * width].reshape(length, width)
fig, ax = subplots(figsize=(18, 5))
plt.title('Heat Map of Error between CPU and NNAPI')
plt.imshow(reshaped_target_diff, cmap='hot', interpolation='nearest')
plt.colorbar()
plt.show()
################################NumpyEncoder ################################
class NumpyEncoder(json.JSONEncoder):
"""Enable numpy array serilization in a dictionary.
# Usage:
a = np.array([[1, 2, 3], [4, 5, 6]])
json.dumps({'a': a, 'aa': [2, (2, 3, 4), a], 'bb': [2]}, cls=NumpyEncoder)
"""
def default(self, obj):
if isinstance(obj, np.ndarray):
return obj.tolist()
return json.JSONEncoder.default(self, obj)
def main(android_build_top, dump_dir, model_name):
manager = ModelMetaDataManager(
android_build_top,
dump_dir,
tflite_model_json_dir='/tmp')
model_data = ModelData(nnapi_model_name=model_name, manager=manager)
print(model_data.tensor_dict)
if __name__ == '__main__':
# Example usage
# python tensor_utils.py ~/android/master/ ~/android/master/intermediate/ tts_float
parser = argparse.ArgumentParser(description='Utilities for parsing intermediate tensors.')
parser.add_argument('android_build_top', help='Your Android build top path')
parser.add_argument('dump_dir', help='The dump dir pulled from the device')
parser.add_argument('model_name', help='NNAPI model name')
args = parser.parse_args()
main(args.android_build_top, args.dump_dir, args.model_name)