1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_RUNTIME_BASE_MUTEX_INL_H_
18 #define ART_RUNTIME_BASE_MUTEX_INL_H_
19 
20 #include <inttypes.h>
21 
22 #include "mutex.h"
23 
24 #include "base/utils.h"
25 #include "base/value_object.h"
26 #include "thread.h"
27 
28 #if ART_USE_FUTEXES
29 #include "linux/futex.h"
30 #include "sys/syscall.h"
31 #ifndef SYS_futex
32 #define SYS_futex __NR_futex
33 #endif
34 #endif  // ART_USE_FUTEXES
35 
36 #define CHECK_MUTEX_CALL(call, args) CHECK_PTHREAD_CALL(call, args, name_)
37 
38 namespace art {
39 
40 #if ART_USE_FUTEXES
futex(volatile int * uaddr,int op,int val,const struct timespec * timeout,volatile int * uaddr2,int val3)41 static inline int futex(volatile int *uaddr, int op, int val, const struct timespec *timeout,
42                         volatile int *uaddr2, int val3) {
43   return syscall(SYS_futex, uaddr, op, val, timeout, uaddr2, val3);
44 }
45 #endif  // ART_USE_FUTEXES
46 
47 // The following isn't strictly necessary, but we want updates on Atomic<pid_t> to be lock-free.
48 // TODO: Use std::atomic::is_always_lock_free after switching to C++17 atomics.
49 static_assert(sizeof(pid_t) <= sizeof(int32_t), "pid_t should fit in 32 bits");
50 
SafeGetTid(const Thread * self)51 static inline pid_t SafeGetTid(const Thread* self) {
52   if (self != nullptr) {
53     return self->GetTid();
54   } else {
55     return GetTid();
56   }
57 }
58 
CheckUnattachedThread(LockLevel level)59 static inline void CheckUnattachedThread(LockLevel level) NO_THREAD_SAFETY_ANALYSIS {
60   // The check below enumerates the cases where we expect not to be able to check the validity of
61   // locks on a thread. Lock checking is disabled to avoid deadlock when checking shutdown lock.
62   // TODO: tighten this check.
63   if (kDebugLocking) {
64     CHECK(!Locks::IsSafeToCallAbortRacy() ||
65           // Used during thread creation to avoid races with runtime shutdown. Thread::Current not
66           // yet established.
67           level == kRuntimeShutdownLock ||
68           // Thread Ids are allocated/released before threads are established.
69           level == kAllocatedThreadIdsLock ||
70           // Thread LDT's are initialized without Thread::Current established.
71           level == kModifyLdtLock ||
72           // Threads are unregistered while holding the thread list lock, during this process they
73           // no longer exist and so we expect an unlock with no self.
74           level == kThreadListLock ||
75           // Ignore logging which may or may not have set up thread data structures.
76           level == kLoggingLock ||
77           // When transitioning from suspended to runnable, a daemon thread might be in
78           // a situation where the runtime is shutting down. To not crash our debug locking
79           // mechanism we just pass null Thread* to the MutexLock during that transition
80           // (see Thread::TransitionFromSuspendedToRunnable).
81           level == kThreadSuspendCountLock ||
82           // Avoid recursive death.
83           level == kAbortLock ||
84           // Locks at the absolute top of the stack can be locked at any time.
85           level == kTopLockLevel ||
86           // The unexpected signal handler may be catching signals from any thread.
87           level == kUnexpectedSignalLock) << level;
88   }
89 }
90 
RegisterAsLocked(Thread * self)91 inline void BaseMutex::RegisterAsLocked(Thread* self) {
92   if (UNLIKELY(self == nullptr)) {
93     CheckUnattachedThread(level_);
94     return;
95   }
96   LockLevel level = level_;
97   // It would be nice to avoid this condition checking in the non-debug case,
98   // but that would make the various methods that check if a mutex is held not
99   // work properly for thread wait locks. Since the vast majority of lock
100   // acquisitions are not thread wait locks, this check should not be too
101   // expensive.
102   if (UNLIKELY(level == kThreadWaitLock) && self->GetHeldMutex(kThreadWaitLock) != nullptr) {
103     level = kThreadWaitWakeLock;
104   }
105   if (kDebugLocking) {
106     // Check if a bad Mutex of this level or lower is held.
107     bool bad_mutexes_held = false;
108     // Specifically allow a kTopLockLevel lock to be gained when the current thread holds the
109     // mutator_lock_ exclusive. This is because we suspending when holding locks at this level is
110     // not allowed and if we hold the mutator_lock_ exclusive we must unsuspend stuff eventually
111     // so there are no deadlocks.
112     if (level == kTopLockLevel &&
113         Locks::mutator_lock_->IsSharedHeld(self) &&
114         !Locks::mutator_lock_->IsExclusiveHeld(self)) {
115       LOG(ERROR) << "Lock level violation: holding \"" << Locks::mutator_lock_->name_ << "\" "
116                   << "(level " << kMutatorLock << " - " << static_cast<int>(kMutatorLock)
117                   << ") non-exclusive while locking \"" << name_ << "\" "
118                   << "(level " << level << " - " << static_cast<int>(level) << ") a top level"
119                   << "mutex. This is not allowed.";
120       bad_mutexes_held = true;
121     } else if (this == Locks::mutator_lock_ && self->GetHeldMutex(kTopLockLevel) != nullptr) {
122       LOG(ERROR) << "Lock level violation. Locking mutator_lock_ while already having a "
123                  << "kTopLevelLock (" << self->GetHeldMutex(kTopLockLevel)->name_ << "held is "
124                  << "not allowed.";
125       bad_mutexes_held = true;
126     }
127     for (int i = level; i >= 0; --i) {
128       LockLevel lock_level_i = static_cast<LockLevel>(i);
129       BaseMutex* held_mutex = self->GetHeldMutex(lock_level_i);
130       if (level == kTopLockLevel &&
131           lock_level_i == kMutatorLock &&
132           Locks::mutator_lock_->IsExclusiveHeld(self)) {
133         // This is checked above.
134         continue;
135       } else if (UNLIKELY(held_mutex != nullptr) && lock_level_i != kAbortLock) {
136         LOG(ERROR) << "Lock level violation: holding \"" << held_mutex->name_ << "\" "
137                    << "(level " << lock_level_i << " - " << i
138                    << ") while locking \"" << name_ << "\" "
139                    << "(level " << level << " - " << static_cast<int>(level) << ")";
140         if (lock_level_i > kAbortLock) {
141           // Only abort in the check below if this is more than abort level lock.
142           bad_mutexes_held = true;
143         }
144       }
145     }
146     if (gAborting == 0) {  // Avoid recursive aborts.
147       CHECK(!bad_mutexes_held);
148     }
149   }
150   // Don't record monitors as they are outside the scope of analysis. They may be inspected off of
151   // the monitor list.
152   if (level != kMonitorLock) {
153     self->SetHeldMutex(level, this);
154   }
155 }
156 
RegisterAsUnlocked(Thread * self)157 inline void BaseMutex::RegisterAsUnlocked(Thread* self) {
158   if (UNLIKELY(self == nullptr)) {
159     CheckUnattachedThread(level_);
160     return;
161   }
162   if (level_ != kMonitorLock) {
163     auto level = level_;
164     if (UNLIKELY(level == kThreadWaitLock) && self->GetHeldMutex(kThreadWaitWakeLock) == this) {
165       level = kThreadWaitWakeLock;
166     }
167     if (kDebugLocking && gAborting == 0) {  // Avoid recursive aborts.
168       if (level == kThreadWaitWakeLock) {
169         CHECK(self->GetHeldMutex(kThreadWaitLock) != nullptr) << "Held " << kThreadWaitWakeLock << " without " << kThreadWaitLock;;
170       }
171       CHECK(self->GetHeldMutex(level) == this) << "Unlocking on unacquired mutex: " << name_;
172     }
173     self->SetHeldMutex(level, nullptr);
174   }
175 }
176 
SharedLock(Thread * self)177 inline void ReaderWriterMutex::SharedLock(Thread* self) {
178   DCHECK(self == nullptr || self == Thread::Current());
179 #if ART_USE_FUTEXES
180   bool done = false;
181   do {
182     int32_t cur_state = state_.load(std::memory_order_relaxed);
183     if (LIKELY(cur_state >= 0)) {
184       // Add as an extra reader.
185       done = state_.CompareAndSetWeakAcquire(cur_state, cur_state + 1);
186     } else {
187       HandleSharedLockContention(self, cur_state);
188     }
189   } while (!done);
190 #else
191   CHECK_MUTEX_CALL(pthread_rwlock_rdlock, (&rwlock_));
192 #endif
193   DCHECK(GetExclusiveOwnerTid() == 0 || GetExclusiveOwnerTid() == -1);
194   RegisterAsLocked(self);
195   AssertSharedHeld(self);
196 }
197 
SharedUnlock(Thread * self)198 inline void ReaderWriterMutex::SharedUnlock(Thread* self) {
199   DCHECK(self == nullptr || self == Thread::Current());
200   DCHECK(GetExclusiveOwnerTid() == 0 || GetExclusiveOwnerTid() == -1);
201   AssertSharedHeld(self);
202   RegisterAsUnlocked(self);
203 #if ART_USE_FUTEXES
204   bool done = false;
205   do {
206     int32_t cur_state = state_.load(std::memory_order_relaxed);
207     if (LIKELY(cur_state > 0)) {
208       // Reduce state by 1 and impose lock release load/store ordering.
209       // Note, the num_contenders_ load below musn't reorder before the CompareAndSet.
210       done = state_.CompareAndSetWeakSequentiallyConsistent(cur_state, cur_state - 1);
211       if (done && (cur_state - 1) == 0) {  // Weak CAS may fail spuriously.
212         if (num_contenders_.load(std::memory_order_seq_cst) > 0) {
213           // Wake any exclusive waiters as there are now no readers.
214           futex(state_.Address(), FUTEX_WAKE_PRIVATE, kWakeAll, nullptr, nullptr, 0);
215         }
216       }
217     } else {
218       LOG(FATAL) << "Unexpected state_:" << cur_state << " for " << name_;
219     }
220   } while (!done);
221 #else
222   CHECK_MUTEX_CALL(pthread_rwlock_unlock, (&rwlock_));
223 #endif
224 }
225 
IsExclusiveHeld(const Thread * self)226 inline bool Mutex::IsExclusiveHeld(const Thread* self) const {
227   DCHECK(self == nullptr || self == Thread::Current());
228   bool result = (GetExclusiveOwnerTid() == SafeGetTid(self));
229   if (kDebugLocking) {
230     // Debug check that if we think it is locked we have it in our held mutexes.
231     if (result && self != nullptr && level_ != kMonitorLock && !gAborting) {
232       if (level_ == kThreadWaitLock && self->GetHeldMutex(kThreadWaitLock) != this) {
233         CHECK_EQ(self->GetHeldMutex(kThreadWaitWakeLock), this);
234       } else {
235         CHECK_EQ(self->GetHeldMutex(level_), this);
236       }
237     }
238   }
239   return result;
240 }
241 
GetExclusiveOwnerTid()242 inline pid_t Mutex::GetExclusiveOwnerTid() const {
243   return exclusive_owner_.load(std::memory_order_relaxed);
244 }
245 
AssertExclusiveHeld(const Thread * self)246 inline void Mutex::AssertExclusiveHeld(const Thread* self) const {
247   if (kDebugLocking && (gAborting == 0)) {
248     CHECK(IsExclusiveHeld(self)) << *this;
249   }
250 }
251 
AssertHeld(const Thread * self)252 inline void Mutex::AssertHeld(const Thread* self) const {
253   AssertExclusiveHeld(self);
254 }
255 
IsExclusiveHeld(const Thread * self)256 inline bool ReaderWriterMutex::IsExclusiveHeld(const Thread* self) const {
257   DCHECK(self == nullptr || self == Thread::Current());
258   bool result = (GetExclusiveOwnerTid() == SafeGetTid(self));
259   if (kDebugLocking) {
260     // Verify that if the pthread thinks we own the lock the Thread agrees.
261     if (self != nullptr && result)  {
262       CHECK_EQ(self->GetHeldMutex(level_), this);
263     }
264   }
265   return result;
266 }
267 
GetExclusiveOwnerTid()268 inline pid_t ReaderWriterMutex::GetExclusiveOwnerTid() const {
269 #if ART_USE_FUTEXES
270   int32_t state = state_.load(std::memory_order_relaxed);
271   if (state == 0) {
272     return 0;  // No owner.
273   } else if (state > 0) {
274     return -1;  // Shared.
275   } else {
276     return exclusive_owner_.load(std::memory_order_relaxed);
277   }
278 #else
279   return exclusive_owner_.load(std::memory_order_relaxed);
280 #endif
281 }
282 
AssertExclusiveHeld(const Thread * self)283 inline void ReaderWriterMutex::AssertExclusiveHeld(const Thread* self) const {
284   if (kDebugLocking && (gAborting == 0)) {
285     CHECK(IsExclusiveHeld(self)) << *this;
286   }
287 }
288 
AssertWriterHeld(const Thread * self)289 inline void ReaderWriterMutex::AssertWriterHeld(const Thread* self) const {
290   AssertExclusiveHeld(self);
291 }
292 
TransitionFromRunnableToSuspended(Thread * self)293 inline void MutatorMutex::TransitionFromRunnableToSuspended(Thread* self) {
294   AssertSharedHeld(self);
295   RegisterAsUnlocked(self);
296 }
297 
TransitionFromSuspendedToRunnable(Thread * self)298 inline void MutatorMutex::TransitionFromSuspendedToRunnable(Thread* self) {
299   RegisterAsLocked(self);
300   AssertSharedHeld(self);
301 }
302 
ReaderMutexLock(Thread * self,ReaderWriterMutex & mu)303 inline ReaderMutexLock::ReaderMutexLock(Thread* self, ReaderWriterMutex& mu)
304     : self_(self), mu_(mu) {
305   mu_.SharedLock(self_);
306 }
307 
~ReaderMutexLock()308 inline ReaderMutexLock::~ReaderMutexLock() {
309   mu_.SharedUnlock(self_);
310 }
311 
312 }  // namespace art
313 
314 #endif  // ART_RUNTIME_BASE_MUTEX_INL_H_
315