1 /* 2 * Copyright (C) 2009 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ART_RUNTIME_INDIRECT_REFERENCE_TABLE_H_ 18 #define ART_RUNTIME_INDIRECT_REFERENCE_TABLE_H_ 19 20 #include <stdint.h> 21 22 #include <iosfwd> 23 #include <limits> 24 #include <string> 25 26 #include <android-base/logging.h> 27 28 #include "base/bit_utils.h" 29 #include "base/locks.h" 30 #include "base/macros.h" 31 #include "base/mem_map.h" 32 #include "gc_root.h" 33 #include "obj_ptr.h" 34 #include "offsets.h" 35 #include "read_barrier_option.h" 36 37 namespace art { 38 39 class RootInfo; 40 41 namespace mirror { 42 class Object; 43 } // namespace mirror 44 45 // Maintain a table of indirect references. Used for local/global JNI references. 46 // 47 // The table contains object references, where the strong (local/global) references are part of the 48 // GC root set (but not the weak global references). When an object is added we return an 49 // IndirectRef that is not a valid pointer but can be used to find the original value in O(1) time. 50 // Conversions to and from indirect references are performed on upcalls and downcalls, so they need 51 // to be very fast. 52 // 53 // To be efficient for JNI local variable storage, we need to provide operations that allow us to 54 // operate on segments of the table, where segments are pushed and popped as if on a stack. For 55 // example, deletion of an entry should only succeed if it appears in the current segment, and we 56 // want to be able to strip off the current segment quickly when a method returns. Additions to the 57 // table must be made in the current segment even if space is available in an earlier area. 58 // 59 // A new segment is created when we call into native code from interpreted code, or when we handle 60 // the JNI PushLocalFrame function. 61 // 62 // The GC must be able to scan the entire table quickly. 63 // 64 // In summary, these must be very fast: 65 // - adding or removing a segment 66 // - adding references to a new segment 67 // - converting an indirect reference back to an Object 68 // These can be a little slower, but must still be pretty quick: 69 // - adding references to a "mature" segment 70 // - removing individual references 71 // - scanning the entire table straight through 72 // 73 // If there's more than one segment, we don't guarantee that the table will fill completely before 74 // we fail due to lack of space. We do ensure that the current segment will pack tightly, which 75 // should satisfy JNI requirements (e.g. EnsureLocalCapacity). 76 // 77 // Only SynchronizedGet is synchronized. 78 79 // Indirect reference definition. This must be interchangeable with JNI's jobject, and it's 80 // convenient to let null be null, so we use void*. 81 // 82 // We need a (potentially) large table index and a 2-bit reference type (global, local, weak 83 // global). We also reserve some bits to be used to detect stale indirect references: we put a 84 // serial number in the extra bits, and keep a copy of the serial number in the table. This requires 85 // more memory and additional memory accesses on add/get, but is moving-GC safe. It will catch 86 // additional problems, e.g.: create iref1 for obj, delete iref1, create iref2 for same obj, 87 // lookup iref1. A pattern based on object bits will miss this. 88 typedef void* IndirectRef; 89 90 // Indirect reference kind, used as the two low bits of IndirectRef. 91 // 92 // For convenience these match up with enum jobjectRefType from jni.h. 93 enum IndirectRefKind { 94 kHandleScopeOrInvalid = 0, // <<stack indirect reference table or invalid reference>> 95 kLocal = 1, // <<local reference>> 96 kGlobal = 2, // <<global reference>> 97 kWeakGlobal = 3, // <<weak global reference>> 98 kLastKind = kWeakGlobal 99 }; 100 std::ostream& operator<<(std::ostream& os, IndirectRefKind rhs); 101 const char* GetIndirectRefKindString(const IndirectRefKind& kind); 102 103 // Table definition. 104 // 105 // For the global reference table, the expected common operations are adding a new entry and 106 // removing a recently-added entry (usually the most-recently-added entry). For JNI local 107 // references, the common operations are adding a new entry and removing an entire table segment. 108 // 109 // If we delete entries from the middle of the list, we will be left with "holes". We track the 110 // number of holes so that, when adding new elements, we can quickly decide to do a trivial append 111 // or go slot-hunting. 112 // 113 // When the top-most entry is removed, any holes immediately below it are also removed. Thus, 114 // deletion of an entry may reduce "top_index" by more than one. 115 // 116 // To get the desired behavior for JNI locals, we need to know the bottom and top of the current 117 // "segment". The top is managed internally, and the bottom is passed in as a function argument. 118 // When we call a native method or push a local frame, the current top index gets pushed on, and 119 // serves as the new bottom. When we pop a frame off, the value from the stack becomes the new top 120 // index, and the value stored in the previous frame becomes the new bottom. 121 // 122 // Holes are being locally cached for the segment. Otherwise we'd have to pass bottom index and 123 // number of holes, which restricts us to 16 bits for the top index. The value is cached within the 124 // table. To avoid code in generated JNI transitions, which implicitly form segments, the code for 125 // adding and removing references needs to detect the change of a segment. Helper fields are used 126 // for this detection. 127 // 128 // Common alternative implementation: make IndirectRef a pointer to the actual reference slot. 129 // Instead of getting a table and doing a lookup, the lookup can be done instantly. Operations like 130 // determining the type and deleting the reference are more expensive because the table must be 131 // hunted for (i.e. you have to do a pointer comparison to see which table it's in), you can't move 132 // the table when expanding it (so realloc() is out), and tricks like serial number checking to 133 // detect stale references aren't possible (though we may be able to get similar benefits with other 134 // approaches). 135 // 136 // TODO: consider a "lastDeleteIndex" for quick hole-filling when an add immediately follows a 137 // delete; must invalidate after segment pop might be worth only using it for JNI globals. 138 // 139 // TODO: may want completely different add/remove algorithms for global and local refs to improve 140 // performance. A large circular buffer might reduce the amortized cost of adding global 141 // references. 142 143 // The state of the current segment. We only store the index. Splitting it for index and hole 144 // count restricts the range too much. 145 struct IRTSegmentState { 146 uint32_t top_index; 147 }; 148 149 // Use as initial value for "cookie", and when table has only one segment. 150 static constexpr IRTSegmentState kIRTFirstSegment = { 0 }; 151 152 // Try to choose kIRTPrevCount so that sizeof(IrtEntry) is a power of 2. 153 // Contains multiple entries but only one active one, this helps us detect use after free errors 154 // since the serial stored in the indirect ref wont match. 155 static constexpr size_t kIRTPrevCount = kIsDebugBuild ? 7 : 3; 156 157 class IrtEntry { 158 public: 159 void Add(ObjPtr<mirror::Object> obj) REQUIRES_SHARED(Locks::mutator_lock_); 160 GetReference()161 GcRoot<mirror::Object>* GetReference() { 162 DCHECK_LT(serial_, kIRTPrevCount); 163 return &references_[serial_]; 164 } 165 GetReference()166 const GcRoot<mirror::Object>* GetReference() const { 167 DCHECK_LT(serial_, kIRTPrevCount); 168 return &references_[serial_]; 169 } 170 GetSerial()171 uint32_t GetSerial() const { 172 return serial_; 173 } 174 175 void SetReference(ObjPtr<mirror::Object> obj) REQUIRES_SHARED(Locks::mutator_lock_); 176 177 private: 178 uint32_t serial_; 179 GcRoot<mirror::Object> references_[kIRTPrevCount]; 180 }; 181 static_assert(sizeof(IrtEntry) == (1 + kIRTPrevCount) * sizeof(uint32_t), 182 "Unexpected sizeof(IrtEntry)"); 183 static_assert(IsPowerOfTwo(sizeof(IrtEntry)), "Unexpected sizeof(IrtEntry)"); 184 185 class IrtIterator { 186 public: IrtIterator(IrtEntry * table,size_t i,size_t capacity)187 IrtIterator(IrtEntry* table, size_t i, size_t capacity) REQUIRES_SHARED(Locks::mutator_lock_) 188 : table_(table), i_(i), capacity_(capacity) { 189 // capacity_ is used in some target; has warning with unused attribute. 190 UNUSED(capacity_); 191 } 192 193 IrtIterator& operator++() REQUIRES_SHARED(Locks::mutator_lock_) { 194 ++i_; 195 return *this; 196 } 197 REQUIRES_SHARED(Locks::mutator_lock_)198 GcRoot<mirror::Object>* operator*() REQUIRES_SHARED(Locks::mutator_lock_) { 199 // This does not have a read barrier as this is used to visit roots. 200 return table_[i_].GetReference(); 201 } 202 equals(const IrtIterator & rhs)203 bool equals(const IrtIterator& rhs) const { 204 return (i_ == rhs.i_ && table_ == rhs.table_); 205 } 206 207 private: 208 IrtEntry* const table_; 209 size_t i_; 210 const size_t capacity_; 211 }; 212 213 bool inline operator==(const IrtIterator& lhs, const IrtIterator& rhs) { 214 return lhs.equals(rhs); 215 } 216 217 bool inline operator!=(const IrtIterator& lhs, const IrtIterator& rhs) { 218 return !lhs.equals(rhs); 219 } 220 221 class IndirectReferenceTable { 222 public: 223 enum class ResizableCapacity { 224 kNo, 225 kYes 226 }; 227 228 // WARNING: Construction of the IndirectReferenceTable may fail. 229 // error_msg must not be null. If error_msg is set by the constructor, then 230 // construction has failed and the IndirectReferenceTable will be in an 231 // invalid state. Use IsValid to check whether the object is in an invalid 232 // state. 233 IndirectReferenceTable(size_t max_count, 234 IndirectRefKind kind, 235 ResizableCapacity resizable, 236 std::string* error_msg); 237 238 ~IndirectReferenceTable(); 239 240 /* 241 * Checks whether construction of the IndirectReferenceTable succeeded. 242 * 243 * This object must only be used if IsValid() returns true. It is safe to 244 * call IsValid from multiple threads without locking or other explicit 245 * synchronization. 246 */ 247 bool IsValid() const; 248 249 // Add a new entry. "obj" must be a valid non-null object reference. This function will 250 // return null if an error happened (with an appropriate error message set). 251 IndirectRef Add(IRTSegmentState previous_state, 252 ObjPtr<mirror::Object> obj, 253 std::string* error_msg) 254 REQUIRES_SHARED(Locks::mutator_lock_); 255 256 // Given an IndirectRef in the table, return the Object it refers to. 257 // 258 // This function may abort under error conditions. 259 template<ReadBarrierOption kReadBarrierOption = kWithReadBarrier> 260 ObjPtr<mirror::Object> Get(IndirectRef iref) const REQUIRES_SHARED(Locks::mutator_lock_) 261 ALWAYS_INLINE; 262 263 // Synchronized get which reads a reference, acquiring a lock if necessary. 264 template<ReadBarrierOption kReadBarrierOption = kWithReadBarrier> SynchronizedGet(IndirectRef iref)265 ObjPtr<mirror::Object> SynchronizedGet(IndirectRef iref) const 266 REQUIRES_SHARED(Locks::mutator_lock_) { 267 return Get<kReadBarrierOption>(iref); 268 } 269 270 // Updates an existing indirect reference to point to a new object. 271 void Update(IndirectRef iref, ObjPtr<mirror::Object> obj) REQUIRES_SHARED(Locks::mutator_lock_); 272 273 // Remove an existing entry. 274 // 275 // If the entry is not between the current top index and the bottom index 276 // specified by the cookie, we don't remove anything. This is the behavior 277 // required by JNI's DeleteLocalRef function. 278 // 279 // Returns "false" if nothing was removed. 280 bool Remove(IRTSegmentState previous_state, IndirectRef iref); 281 282 void AssertEmpty() REQUIRES_SHARED(Locks::mutator_lock_); 283 284 void Dump(std::ostream& os) const 285 REQUIRES_SHARED(Locks::mutator_lock_) 286 REQUIRES(!Locks::alloc_tracker_lock_); 287 288 // Return the #of entries in the entire table. This includes holes, and 289 // so may be larger than the actual number of "live" entries. Capacity()290 size_t Capacity() const { 291 return segment_state_.top_index; 292 } 293 294 // Ensure that at least free_capacity elements are available, or return false. 295 bool EnsureFreeCapacity(size_t free_capacity, std::string* error_msg) 296 REQUIRES_SHARED(Locks::mutator_lock_); 297 // See implementation of EnsureFreeCapacity. We'll only state here how much is trivially free, 298 // without recovering holes. Thus this is a conservative estimate. 299 size_t FreeCapacity() const; 300 301 // Note IrtIterator does not have a read barrier as it's used to visit roots. begin()302 IrtIterator begin() { 303 return IrtIterator(table_, 0, Capacity()); 304 } 305 end()306 IrtIterator end() { 307 return IrtIterator(table_, Capacity(), Capacity()); 308 } 309 310 void VisitRoots(RootVisitor* visitor, const RootInfo& root_info) 311 REQUIRES_SHARED(Locks::mutator_lock_); 312 GetSegmentState()313 IRTSegmentState GetSegmentState() const { 314 return segment_state_; 315 } 316 317 void SetSegmentState(IRTSegmentState new_state); 318 SegmentStateOffset(size_t pointer_size ATTRIBUTE_UNUSED)319 static Offset SegmentStateOffset(size_t pointer_size ATTRIBUTE_UNUSED) { 320 // Note: Currently segment_state_ is at offset 0. We're testing the expected value in 321 // jni_internal_test to make sure it stays correct. It is not OFFSETOF_MEMBER, as that 322 // is not pointer-size-safe. 323 return Offset(0); 324 } 325 326 // Release pages past the end of the table that may have previously held references. 327 void Trim() REQUIRES_SHARED(Locks::mutator_lock_); 328 329 // Determine what kind of indirect reference this is. Opposite of EncodeIndirectRefKind. GetIndirectRefKind(IndirectRef iref)330 ALWAYS_INLINE static inline IndirectRefKind GetIndirectRefKind(IndirectRef iref) { 331 return DecodeIndirectRefKind(reinterpret_cast<uintptr_t>(iref)); 332 } 333 334 private: 335 static constexpr size_t kSerialBits = MinimumBitsToStore(kIRTPrevCount); 336 static constexpr uint32_t kShiftedSerialMask = (1u << kSerialBits) - 1; 337 338 static constexpr size_t kKindBits = MinimumBitsToStore( 339 static_cast<uint32_t>(IndirectRefKind::kLastKind)); 340 static constexpr uint32_t kKindMask = (1u << kKindBits) - 1; 341 EncodeIndex(uint32_t table_index)342 static constexpr uintptr_t EncodeIndex(uint32_t table_index) { 343 static_assert(sizeof(IndirectRef) == sizeof(uintptr_t), "Unexpected IndirectRef size"); 344 DCHECK_LE(MinimumBitsToStore(table_index), BitSizeOf<uintptr_t>() - kSerialBits - kKindBits); 345 return (static_cast<uintptr_t>(table_index) << kKindBits << kSerialBits); 346 } DecodeIndex(uintptr_t uref)347 static constexpr uint32_t DecodeIndex(uintptr_t uref) { 348 return static_cast<uint32_t>((uref >> kKindBits) >> kSerialBits); 349 } 350 EncodeIndirectRefKind(IndirectRefKind kind)351 static constexpr uintptr_t EncodeIndirectRefKind(IndirectRefKind kind) { 352 return static_cast<uintptr_t>(kind); 353 } DecodeIndirectRefKind(uintptr_t uref)354 static constexpr IndirectRefKind DecodeIndirectRefKind(uintptr_t uref) { 355 return static_cast<IndirectRefKind>(uref & kKindMask); 356 } 357 EncodeSerial(uint32_t serial)358 static constexpr uintptr_t EncodeSerial(uint32_t serial) { 359 DCHECK_LE(MinimumBitsToStore(serial), kSerialBits); 360 return serial << kKindBits; 361 } DecodeSerial(uintptr_t uref)362 static constexpr uint32_t DecodeSerial(uintptr_t uref) { 363 return static_cast<uint32_t>(uref >> kKindBits) & kShiftedSerialMask; 364 } 365 EncodeIndirectRef(uint32_t table_index,uint32_t serial)366 constexpr uintptr_t EncodeIndirectRef(uint32_t table_index, uint32_t serial) const { 367 DCHECK_LT(table_index, max_entries_); 368 return EncodeIndex(table_index) | EncodeSerial(serial) | EncodeIndirectRefKind(kind_); 369 } 370 371 static void ConstexprChecks(); 372 373 // Extract the table index from an indirect reference. ExtractIndex(IndirectRef iref)374 ALWAYS_INLINE static uint32_t ExtractIndex(IndirectRef iref) { 375 return DecodeIndex(reinterpret_cast<uintptr_t>(iref)); 376 } 377 ToIndirectRef(uint32_t table_index)378 IndirectRef ToIndirectRef(uint32_t table_index) const { 379 DCHECK_LT(table_index, max_entries_); 380 uint32_t serial = table_[table_index].GetSerial(); 381 return reinterpret_cast<IndirectRef>(EncodeIndirectRef(table_index, serial)); 382 } 383 384 // Resize the backing table. Currently must be larger than the current size. 385 bool Resize(size_t new_size, std::string* error_msg); 386 387 void RecoverHoles(IRTSegmentState from); 388 389 // Abort if check_jni is not enabled. Otherwise, just log as an error. 390 static void AbortIfNoCheckJNI(const std::string& msg); 391 392 /* extra debugging checks */ 393 bool GetChecked(IndirectRef) const REQUIRES_SHARED(Locks::mutator_lock_); 394 bool CheckEntry(const char*, IndirectRef, uint32_t) const; 395 396 /// semi-public - read/write by jni down calls. 397 IRTSegmentState segment_state_; 398 399 // Mem map where we store the indirect refs. 400 MemMap table_mem_map_; 401 // bottom of the stack. Do not directly access the object references 402 // in this as they are roots. Use Get() that has a read barrier. 403 IrtEntry* table_; 404 // bit mask, ORed into all irefs. 405 const IndirectRefKind kind_; 406 407 // max #of entries allowed (modulo resizing). 408 size_t max_entries_; 409 410 // Some values to retain old behavior with holes. Description of the algorithm is in the .cc 411 // file. 412 // TODO: Consider other data structures for compact tables, e.g., free lists. 413 size_t current_num_holes_; 414 IRTSegmentState last_known_previous_state_; 415 416 // Whether the table's capacity may be resized. As there are no locks used, it is the caller's 417 // responsibility to ensure thread-safety. 418 ResizableCapacity resizable_; 419 }; 420 421 } // namespace art 422 423 #endif // ART_RUNTIME_INDIRECT_REFERENCE_TABLE_H_ 424